1 | /* The copyright in this software is being made available under the BSD |
---|
2 | * License, included below. This software may be subject to other third party |
---|
3 | * and contributor rights, including patent rights, and no such rights are |
---|
4 | * granted under this license. |
---|
5 | * |
---|
6 | * Copyright (c) 2010-2015, ITU/ISO/IEC |
---|
7 | * All rights reserved. |
---|
8 | * |
---|
9 | * Redistribution and use in source and binary forms, with or without |
---|
10 | * modification, are permitted provided that the following conditions are met: |
---|
11 | * |
---|
12 | * * Redistributions of source code must retain the above copyright notice, |
---|
13 | * this list of conditions and the following disclaimer. |
---|
14 | * * Redistributions in binary form must reproduce the above copyright notice, |
---|
15 | * this list of conditions and the following disclaimer in the documentation |
---|
16 | * and/or other materials provided with the distribution. |
---|
17 | * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may |
---|
18 | * be used to endorse or promote products derived from this software without |
---|
19 | * specific prior written permission. |
---|
20 | * |
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
---|
22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS |
---|
25 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
---|
26 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
---|
27 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
28 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
---|
29 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
---|
30 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
---|
31 | * THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | */ |
---|
33 | |
---|
34 | /** \file TComTrQuant.cpp |
---|
35 | \brief transform and quantization class |
---|
36 | */ |
---|
37 | |
---|
38 | #include <stdlib.h> |
---|
39 | #include <math.h> |
---|
40 | #include <limits> |
---|
41 | #include <memory.h> |
---|
42 | #include "TComTrQuant.h" |
---|
43 | #include "TComPic.h" |
---|
44 | #include "ContextTables.h" |
---|
45 | #include "TComTU.h" |
---|
46 | #include "Debug.h" |
---|
47 | |
---|
48 | typedef struct |
---|
49 | { |
---|
50 | Int iNNZbeforePos0; |
---|
51 | Double d64CodedLevelandDist; // distortion and level cost only |
---|
52 | Double d64UncodedDist; // all zero coded block distortion |
---|
53 | Double d64SigCost; |
---|
54 | Double d64SigCost_0; |
---|
55 | } coeffGroupRDStats; |
---|
56 | |
---|
57 | //! \ingroup TLibCommon |
---|
58 | //! \{ |
---|
59 | |
---|
60 | // ==================================================================================================================== |
---|
61 | // Constants |
---|
62 | // ==================================================================================================================== |
---|
63 | |
---|
64 | #define RDOQ_CHROMA 1 ///< use of RDOQ in chroma |
---|
65 | |
---|
66 | |
---|
67 | // ==================================================================================================================== |
---|
68 | // QpParam constructor |
---|
69 | // ==================================================================================================================== |
---|
70 | |
---|
71 | QpParam::QpParam(const Int qpy, |
---|
72 | const ChannelType chType, |
---|
73 | const Int qpBdOffset, |
---|
74 | const Int chromaQPOffset, |
---|
75 | const ChromaFormat chFmt ) |
---|
76 | { |
---|
77 | Int baseQp; |
---|
78 | |
---|
79 | if(isLuma(chType)) |
---|
80 | { |
---|
81 | baseQp = qpy + qpBdOffset; |
---|
82 | } |
---|
83 | else |
---|
84 | { |
---|
85 | baseQp = Clip3( -qpBdOffset, (chromaQPMappingTableSize - 1), qpy + chromaQPOffset ); |
---|
86 | |
---|
87 | if(baseQp < 0) |
---|
88 | { |
---|
89 | baseQp = baseQp + qpBdOffset; |
---|
90 | } |
---|
91 | else |
---|
92 | { |
---|
93 | baseQp = getScaledChromaQP(baseQp, chFmt) + qpBdOffset; |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | Qp =baseQp; |
---|
98 | per=baseQp/6; |
---|
99 | rem=baseQp%6; |
---|
100 | } |
---|
101 | |
---|
102 | QpParam::QpParam(const TComDataCU &cu, const ComponentID compID) |
---|
103 | { |
---|
104 | Int chromaQpOffset = 0; |
---|
105 | |
---|
106 | if (isChroma(compID)) |
---|
107 | { |
---|
108 | chromaQpOffset += cu.getSlice()->getPPS()->getQpOffset(compID); |
---|
109 | chromaQpOffset += cu.getSlice()->getSliceChromaQpDelta(compID); |
---|
110 | |
---|
111 | chromaQpOffset += cu.getSlice()->getPPS()->getPpsRangeExtension().getChromaQpOffsetListEntry(cu.getChromaQpAdj(0)).u.offset[Int(compID)-1]; |
---|
112 | } |
---|
113 | |
---|
114 | *this = QpParam(cu.getQP( 0 ), |
---|
115 | toChannelType(compID), |
---|
116 | cu.getSlice()->getSPS()->getQpBDOffset(toChannelType(compID)), |
---|
117 | chromaQpOffset, |
---|
118 | cu.getPic()->getChromaFormat()); |
---|
119 | } |
---|
120 | |
---|
121 | |
---|
122 | // ==================================================================================================================== |
---|
123 | // TComTrQuant class member functions |
---|
124 | // ==================================================================================================================== |
---|
125 | |
---|
126 | TComTrQuant::TComTrQuant() |
---|
127 | { |
---|
128 | // allocate temporary buffers |
---|
129 | m_plTempCoeff = new TCoeff[ MAX_CU_SIZE*MAX_CU_SIZE ]; |
---|
130 | |
---|
131 | // allocate bit estimation class (for RDOQ) |
---|
132 | m_pcEstBitsSbac = new estBitsSbacStruct; |
---|
133 | initScalingList(); |
---|
134 | } |
---|
135 | |
---|
136 | TComTrQuant::~TComTrQuant() |
---|
137 | { |
---|
138 | // delete temporary buffers |
---|
139 | if ( m_plTempCoeff ) |
---|
140 | { |
---|
141 | delete [] m_plTempCoeff; |
---|
142 | m_plTempCoeff = NULL; |
---|
143 | } |
---|
144 | |
---|
145 | // delete bit estimation class |
---|
146 | if ( m_pcEstBitsSbac ) |
---|
147 | { |
---|
148 | delete m_pcEstBitsSbac; |
---|
149 | } |
---|
150 | destroyScalingList(); |
---|
151 | } |
---|
152 | |
---|
153 | #if ADAPTIVE_QP_SELECTION |
---|
154 | Void TComTrQuant::storeSliceQpNext(TComSlice* pcSlice) |
---|
155 | { |
---|
156 | // NOTE: does this work with negative QPs or when some blocks are transquant-bypass enabled? |
---|
157 | |
---|
158 | Int qpBase = pcSlice->getSliceQpBase(); |
---|
159 | Int sliceQpused = pcSlice->getSliceQp(); |
---|
160 | Int sliceQpnext; |
---|
161 | Double alpha = qpBase < 17 ? 0.5 : 1; |
---|
162 | |
---|
163 | Int cnt=0; |
---|
164 | for(Int u=1; u<=LEVEL_RANGE; u++) |
---|
165 | { |
---|
166 | cnt += m_sliceNsamples[u] ; |
---|
167 | } |
---|
168 | |
---|
169 | if( !m_useRDOQ ) |
---|
170 | { |
---|
171 | sliceQpused = qpBase; |
---|
172 | alpha = 0.5; |
---|
173 | } |
---|
174 | |
---|
175 | if( cnt > 120 ) |
---|
176 | { |
---|
177 | Double sum = 0; |
---|
178 | Int k = 0; |
---|
179 | for(Int u=1; u<LEVEL_RANGE; u++) |
---|
180 | { |
---|
181 | sum += u*m_sliceSumC[u]; |
---|
182 | k += u*u*m_sliceNsamples[u]; |
---|
183 | } |
---|
184 | |
---|
185 | Int v; |
---|
186 | Double q[MAX_QP+1] ; |
---|
187 | for(v=0; v<=MAX_QP; v++) |
---|
188 | { |
---|
189 | q[v] = (Double)(g_invQuantScales[v%6] * (1<<(v/6)))/64 ; |
---|
190 | } |
---|
191 | |
---|
192 | Double qnext = sum/k * q[sliceQpused] / (1<<ARL_C_PRECISION); |
---|
193 | |
---|
194 | for(v=0; v<MAX_QP; v++) |
---|
195 | { |
---|
196 | if(qnext < alpha * q[v] + (1 - alpha) * q[v+1] ) |
---|
197 | { |
---|
198 | break; |
---|
199 | } |
---|
200 | } |
---|
201 | sliceQpnext = Clip3(sliceQpused - 3, sliceQpused + 3, v); |
---|
202 | } |
---|
203 | else |
---|
204 | { |
---|
205 | sliceQpnext = sliceQpused; |
---|
206 | } |
---|
207 | |
---|
208 | m_qpDelta[qpBase] = sliceQpnext - qpBase; |
---|
209 | } |
---|
210 | |
---|
211 | Void TComTrQuant::initSliceQpDelta() |
---|
212 | { |
---|
213 | for(Int qp=0; qp<=MAX_QP; qp++) |
---|
214 | { |
---|
215 | m_qpDelta[qp] = qp < 17 ? 0 : 1; |
---|
216 | } |
---|
217 | } |
---|
218 | |
---|
219 | Void TComTrQuant::clearSliceARLCnt() |
---|
220 | { |
---|
221 | memset(m_sliceSumC, 0, sizeof(Double)*(LEVEL_RANGE+1)); |
---|
222 | memset(m_sliceNsamples, 0, sizeof(Int)*(LEVEL_RANGE+1)); |
---|
223 | } |
---|
224 | #endif |
---|
225 | |
---|
226 | |
---|
227 | |
---|
228 | #if MATRIX_MULT |
---|
229 | /** NxN forward transform (2D) using brute force matrix multiplication (3 nested loops) |
---|
230 | * \param block pointer to input data (residual) |
---|
231 | * \param coeff pointer to output data (transform coefficients) |
---|
232 | * \param uiStride stride of input data |
---|
233 | * \param uiTrSize transform size (uiTrSize x uiTrSize) |
---|
234 | * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only |
---|
235 | */ |
---|
236 | Void xTr(Int bitDepth, Pel *block, TCoeff *coeff, UInt uiStride, UInt uiTrSize, Bool useDST, const Int maxLog2TrDynamicRange) |
---|
237 | { |
---|
238 | UInt i,j,k; |
---|
239 | TCoeff iSum; |
---|
240 | TCoeff tmp[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
241 | const TMatrixCoeff *iT; |
---|
242 | UInt uiLog2TrSize = g_aucConvertToBit[ uiTrSize ] + 2; |
---|
243 | |
---|
244 | if (uiTrSize==4) |
---|
245 | { |
---|
246 | iT = (useDST ? g_as_DST_MAT_4[TRANSFORM_FORWARD][0] : g_aiT4[TRANSFORM_FORWARD][0]); |
---|
247 | } |
---|
248 | else if (uiTrSize==8) |
---|
249 | { |
---|
250 | iT = g_aiT8[TRANSFORM_FORWARD][0]; |
---|
251 | } |
---|
252 | else if (uiTrSize==16) |
---|
253 | { |
---|
254 | iT = g_aiT16[TRANSFORM_FORWARD][0]; |
---|
255 | } |
---|
256 | else if (uiTrSize==32) |
---|
257 | { |
---|
258 | iT = g_aiT32[TRANSFORM_FORWARD][0]; |
---|
259 | } |
---|
260 | else |
---|
261 | { |
---|
262 | assert(0); |
---|
263 | } |
---|
264 | |
---|
265 | const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_FORWARD]; |
---|
266 | |
---|
267 | const Int shift_1st = (uiLog2TrSize + bitDepth + TRANSFORM_MATRIX_SHIFT) - maxLog2TrDynamicRange; |
---|
268 | const Int shift_2nd = uiLog2TrSize + TRANSFORM_MATRIX_SHIFT; |
---|
269 | const Int add_1st = (shift_1st>0) ? (1<<(shift_1st-1)) : 0; |
---|
270 | const Int add_2nd = 1<<(shift_2nd-1); |
---|
271 | |
---|
272 | /* Horizontal transform */ |
---|
273 | |
---|
274 | for (i=0; i<uiTrSize; i++) |
---|
275 | { |
---|
276 | for (j=0; j<uiTrSize; j++) |
---|
277 | { |
---|
278 | iSum = 0; |
---|
279 | for (k=0; k<uiTrSize; k++) |
---|
280 | { |
---|
281 | iSum += iT[i*uiTrSize+k]*block[j*uiStride+k]; |
---|
282 | } |
---|
283 | tmp[i*uiTrSize+j] = (iSum + add_1st)>>shift_1st; |
---|
284 | } |
---|
285 | } |
---|
286 | |
---|
287 | /* Vertical transform */ |
---|
288 | for (i=0; i<uiTrSize; i++) |
---|
289 | { |
---|
290 | for (j=0; j<uiTrSize; j++) |
---|
291 | { |
---|
292 | iSum = 0; |
---|
293 | for (k=0; k<uiTrSize; k++) |
---|
294 | { |
---|
295 | iSum += iT[i*uiTrSize+k]*tmp[j*uiTrSize+k]; |
---|
296 | } |
---|
297 | coeff[i*uiTrSize+j] = (iSum + add_2nd)>>shift_2nd; |
---|
298 | } |
---|
299 | } |
---|
300 | } |
---|
301 | |
---|
302 | /** NxN inverse transform (2D) using brute force matrix multiplication (3 nested loops) |
---|
303 | * \param coeff pointer to input data (transform coefficients) |
---|
304 | * \param block pointer to output data (residual) |
---|
305 | * \param uiStride stride of output data |
---|
306 | * \param uiTrSize transform size (uiTrSize x uiTrSize) |
---|
307 | * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only |
---|
308 | */ |
---|
309 | Void xITr(Int bitDepth, TCoeff *coeff, Pel *block, UInt uiStride, UInt uiTrSize, Bool useDST, const Int maxLog2TrDynamicRange) |
---|
310 | { |
---|
311 | UInt i,j,k; |
---|
312 | TCoeff iSum; |
---|
313 | TCoeff tmp[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
314 | const TMatrixCoeff *iT; |
---|
315 | |
---|
316 | if (uiTrSize==4) |
---|
317 | { |
---|
318 | iT = (useDST ? g_as_DST_MAT_4[TRANSFORM_INVERSE][0] : g_aiT4[TRANSFORM_INVERSE][0]); |
---|
319 | } |
---|
320 | else if (uiTrSize==8) |
---|
321 | { |
---|
322 | iT = g_aiT8[TRANSFORM_INVERSE][0]; |
---|
323 | } |
---|
324 | else if (uiTrSize==16) |
---|
325 | { |
---|
326 | iT = g_aiT16[TRANSFORM_INVERSE][0]; |
---|
327 | } |
---|
328 | else if (uiTrSize==32) |
---|
329 | { |
---|
330 | iT = g_aiT32[TRANSFORM_INVERSE][0]; |
---|
331 | } |
---|
332 | else |
---|
333 | { |
---|
334 | assert(0); |
---|
335 | } |
---|
336 | |
---|
337 | const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_INVERSE]; |
---|
338 | |
---|
339 | const Int shift_1st = TRANSFORM_MATRIX_SHIFT + 1; //1 has been added to shift_1st at the expense of shift_2nd |
---|
340 | const Int shift_2nd = (TRANSFORM_MATRIX_SHIFT + maxLog2TrDynamicRange - 1) - bitDepth; |
---|
341 | const TCoeff clipMinimum = -(1 << maxLog2TrDynamicRange); |
---|
342 | const TCoeff clipMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
343 | assert(shift_2nd>=0); |
---|
344 | const Int add_1st = 1<<(shift_1st-1); |
---|
345 | const Int add_2nd = (shift_2nd>0) ? (1<<(shift_2nd-1)) : 0; |
---|
346 | |
---|
347 | /* Horizontal transform */ |
---|
348 | for (i=0; i<uiTrSize; i++) |
---|
349 | { |
---|
350 | for (j=0; j<uiTrSize; j++) |
---|
351 | { |
---|
352 | iSum = 0; |
---|
353 | for (k=0; k<uiTrSize; k++) |
---|
354 | { |
---|
355 | iSum += iT[k*uiTrSize+i]*coeff[k*uiTrSize+j]; |
---|
356 | } |
---|
357 | |
---|
358 | // Clipping here is not in the standard, but is used to protect the "Pel" data type into which the inverse-transformed samples will be copied |
---|
359 | tmp[i*uiTrSize+j] = Clip3<TCoeff>(clipMinimum, clipMaximum, (iSum + add_1st)>>shift_1st); |
---|
360 | } |
---|
361 | } |
---|
362 | |
---|
363 | /* Vertical transform */ |
---|
364 | for (i=0; i<uiTrSize; i++) |
---|
365 | { |
---|
366 | for (j=0; j<uiTrSize; j++) |
---|
367 | { |
---|
368 | iSum = 0; |
---|
369 | for (k=0; k<uiTrSize; k++) |
---|
370 | { |
---|
371 | iSum += iT[k*uiTrSize+j]*tmp[i*uiTrSize+k]; |
---|
372 | } |
---|
373 | |
---|
374 | block[i*uiStride+j] = Clip3<TCoeff>(std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max(), (iSum + add_2nd)>>shift_2nd); |
---|
375 | } |
---|
376 | } |
---|
377 | } |
---|
378 | |
---|
379 | #endif //MATRIX_MULT |
---|
380 | |
---|
381 | |
---|
382 | /** 4x4 forward transform implemented using partial butterfly structure (1D) |
---|
383 | * \param src input data (residual) |
---|
384 | * \param dst output data (transform coefficients) |
---|
385 | * \param shift specifies right shift after 1D transform |
---|
386 | * \param line |
---|
387 | */ |
---|
388 | Void partialButterfly4(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
389 | { |
---|
390 | Int j; |
---|
391 | TCoeff E[2],O[2]; |
---|
392 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
393 | |
---|
394 | for (j=0; j<line; j++) |
---|
395 | { |
---|
396 | /* E and O */ |
---|
397 | E[0] = src[0] + src[3]; |
---|
398 | O[0] = src[0] - src[3]; |
---|
399 | E[1] = src[1] + src[2]; |
---|
400 | O[1] = src[1] - src[2]; |
---|
401 | |
---|
402 | dst[0] = (g_aiT4[TRANSFORM_FORWARD][0][0]*E[0] + g_aiT4[TRANSFORM_FORWARD][0][1]*E[1] + add)>>shift; |
---|
403 | dst[2*line] = (g_aiT4[TRANSFORM_FORWARD][2][0]*E[0] + g_aiT4[TRANSFORM_FORWARD][2][1]*E[1] + add)>>shift; |
---|
404 | dst[line] = (g_aiT4[TRANSFORM_FORWARD][1][0]*O[0] + g_aiT4[TRANSFORM_FORWARD][1][1]*O[1] + add)>>shift; |
---|
405 | dst[3*line] = (g_aiT4[TRANSFORM_FORWARD][3][0]*O[0] + g_aiT4[TRANSFORM_FORWARD][3][1]*O[1] + add)>>shift; |
---|
406 | |
---|
407 | src += 4; |
---|
408 | dst ++; |
---|
409 | } |
---|
410 | } |
---|
411 | |
---|
412 | // Fast DST Algorithm. Full matrix multiplication for DST and Fast DST algorithm |
---|
413 | // give identical results |
---|
414 | Void fastForwardDst(TCoeff *block, TCoeff *coeff, Int shift) // input block, output coeff |
---|
415 | { |
---|
416 | Int i; |
---|
417 | TCoeff c[4]; |
---|
418 | TCoeff rnd_factor = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
419 | for (i=0; i<4; i++) |
---|
420 | { |
---|
421 | // Intermediate Variables |
---|
422 | c[0] = block[4*i+0]; |
---|
423 | c[1] = block[4*i+1]; |
---|
424 | c[2] = block[4*i+2]; |
---|
425 | c[3] = block[4*i+3]; |
---|
426 | |
---|
427 | for (Int row = 0; row < 4; row++) |
---|
428 | { |
---|
429 | TCoeff result = 0; |
---|
430 | for (Int column = 0; column < 4; column++) |
---|
431 | { |
---|
432 | result += c[column] * g_as_DST_MAT_4[TRANSFORM_FORWARD][row][column]; // use the defined matrix, rather than hard-wired numbers |
---|
433 | } |
---|
434 | |
---|
435 | coeff[(row * 4) + i] = rightShift((result + rnd_factor), shift); |
---|
436 | } |
---|
437 | } |
---|
438 | } |
---|
439 | |
---|
440 | Void fastInverseDst(TCoeff *tmp, TCoeff *block, Int shift, const TCoeff outputMinimum, const TCoeff outputMaximum) // input tmp, output block |
---|
441 | { |
---|
442 | Int i; |
---|
443 | TCoeff c[4]; |
---|
444 | TCoeff rnd_factor = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
445 | for (i=0; i<4; i++) |
---|
446 | { |
---|
447 | // Intermediate Variables |
---|
448 | c[0] = tmp[ i]; |
---|
449 | c[1] = tmp[4 +i]; |
---|
450 | c[2] = tmp[8 +i]; |
---|
451 | c[3] = tmp[12+i]; |
---|
452 | |
---|
453 | for (Int column = 0; column < 4; column++) |
---|
454 | { |
---|
455 | TCoeff &result = block[(i * 4) + column]; |
---|
456 | |
---|
457 | result = 0; |
---|
458 | for (Int row = 0; row < 4; row++) |
---|
459 | { |
---|
460 | result += c[row] * g_as_DST_MAT_4[TRANSFORM_INVERSE][row][column]; // use the defined matrix, rather than hard-wired numbers |
---|
461 | } |
---|
462 | |
---|
463 | result = Clip3( outputMinimum, outputMaximum, rightShift((result + rnd_factor), shift)); |
---|
464 | } |
---|
465 | } |
---|
466 | } |
---|
467 | |
---|
468 | /** 4x4 inverse transform implemented using partial butterfly structure (1D) |
---|
469 | * \param src input data (transform coefficients) |
---|
470 | * \param dst output data (residual) |
---|
471 | * \param shift specifies right shift after 1D transform |
---|
472 | * \param line |
---|
473 | * \param outputMinimum minimum for clipping |
---|
474 | * \param outputMaximum maximum for clipping |
---|
475 | */ |
---|
476 | Void partialButterflyInverse4(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
477 | { |
---|
478 | Int j; |
---|
479 | TCoeff E[2],O[2]; |
---|
480 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
481 | |
---|
482 | for (j=0; j<line; j++) |
---|
483 | { |
---|
484 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
485 | O[0] = g_aiT4[TRANSFORM_INVERSE][1][0]*src[line] + g_aiT4[TRANSFORM_INVERSE][3][0]*src[3*line]; |
---|
486 | O[1] = g_aiT4[TRANSFORM_INVERSE][1][1]*src[line] + g_aiT4[TRANSFORM_INVERSE][3][1]*src[3*line]; |
---|
487 | E[0] = g_aiT4[TRANSFORM_INVERSE][0][0]*src[0] + g_aiT4[TRANSFORM_INVERSE][2][0]*src[2*line]; |
---|
488 | E[1] = g_aiT4[TRANSFORM_INVERSE][0][1]*src[0] + g_aiT4[TRANSFORM_INVERSE][2][1]*src[2*line]; |
---|
489 | |
---|
490 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
491 | dst[0] = Clip3( outputMinimum, outputMaximum, (E[0] + O[0] + add)>>shift ); |
---|
492 | dst[1] = Clip3( outputMinimum, outputMaximum, (E[1] + O[1] + add)>>shift ); |
---|
493 | dst[2] = Clip3( outputMinimum, outputMaximum, (E[1] - O[1] + add)>>shift ); |
---|
494 | dst[3] = Clip3( outputMinimum, outputMaximum, (E[0] - O[0] + add)>>shift ); |
---|
495 | |
---|
496 | src ++; |
---|
497 | dst += 4; |
---|
498 | } |
---|
499 | } |
---|
500 | |
---|
501 | /** 8x8 forward transform implemented using partial butterfly structure (1D) |
---|
502 | * \param src input data (residual) |
---|
503 | * \param dst output data (transform coefficients) |
---|
504 | * \param shift specifies right shift after 1D transform |
---|
505 | * \param line |
---|
506 | */ |
---|
507 | Void partialButterfly8(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
508 | { |
---|
509 | Int j,k; |
---|
510 | TCoeff E[4],O[4]; |
---|
511 | TCoeff EE[2],EO[2]; |
---|
512 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
513 | |
---|
514 | for (j=0; j<line; j++) |
---|
515 | { |
---|
516 | /* E and O*/ |
---|
517 | for (k=0;k<4;k++) |
---|
518 | { |
---|
519 | E[k] = src[k] + src[7-k]; |
---|
520 | O[k] = src[k] - src[7-k]; |
---|
521 | } |
---|
522 | /* EE and EO */ |
---|
523 | EE[0] = E[0] + E[3]; |
---|
524 | EO[0] = E[0] - E[3]; |
---|
525 | EE[1] = E[1] + E[2]; |
---|
526 | EO[1] = E[1] - E[2]; |
---|
527 | |
---|
528 | dst[0] = (g_aiT8[TRANSFORM_FORWARD][0][0]*EE[0] + g_aiT8[TRANSFORM_FORWARD][0][1]*EE[1] + add)>>shift; |
---|
529 | dst[4*line] = (g_aiT8[TRANSFORM_FORWARD][4][0]*EE[0] + g_aiT8[TRANSFORM_FORWARD][4][1]*EE[1] + add)>>shift; |
---|
530 | dst[2*line] = (g_aiT8[TRANSFORM_FORWARD][2][0]*EO[0] + g_aiT8[TRANSFORM_FORWARD][2][1]*EO[1] + add)>>shift; |
---|
531 | dst[6*line] = (g_aiT8[TRANSFORM_FORWARD][6][0]*EO[0] + g_aiT8[TRANSFORM_FORWARD][6][1]*EO[1] + add)>>shift; |
---|
532 | |
---|
533 | dst[line] = (g_aiT8[TRANSFORM_FORWARD][1][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][1][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][1][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][1][3]*O[3] + add)>>shift; |
---|
534 | dst[3*line] = (g_aiT8[TRANSFORM_FORWARD][3][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][3][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][3][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][3][3]*O[3] + add)>>shift; |
---|
535 | dst[5*line] = (g_aiT8[TRANSFORM_FORWARD][5][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][5][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][5][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][5][3]*O[3] + add)>>shift; |
---|
536 | dst[7*line] = (g_aiT8[TRANSFORM_FORWARD][7][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][7][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][7][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][7][3]*O[3] + add)>>shift; |
---|
537 | |
---|
538 | src += 8; |
---|
539 | dst ++; |
---|
540 | } |
---|
541 | } |
---|
542 | |
---|
543 | /** 8x8 inverse transform implemented using partial butterfly structure (1D) |
---|
544 | * \param src input data (transform coefficients) |
---|
545 | * \param dst output data (residual) |
---|
546 | * \param shift specifies right shift after 1D transform |
---|
547 | * \param line |
---|
548 | * \param outputMinimum minimum for clipping |
---|
549 | * \param outputMaximum maximum for clipping |
---|
550 | */ |
---|
551 | Void partialButterflyInverse8(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
552 | { |
---|
553 | Int j,k; |
---|
554 | TCoeff E[4],O[4]; |
---|
555 | TCoeff EE[2],EO[2]; |
---|
556 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
557 | |
---|
558 | for (j=0; j<line; j++) |
---|
559 | { |
---|
560 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
561 | for (k=0;k<4;k++) |
---|
562 | { |
---|
563 | O[k] = g_aiT8[TRANSFORM_INVERSE][ 1][k]*src[line] + g_aiT8[TRANSFORM_INVERSE][ 3][k]*src[3*line] + |
---|
564 | g_aiT8[TRANSFORM_INVERSE][ 5][k]*src[5*line] + g_aiT8[TRANSFORM_INVERSE][ 7][k]*src[7*line]; |
---|
565 | } |
---|
566 | |
---|
567 | EO[0] = g_aiT8[TRANSFORM_INVERSE][2][0]*src[ 2*line ] + g_aiT8[TRANSFORM_INVERSE][6][0]*src[ 6*line ]; |
---|
568 | EO[1] = g_aiT8[TRANSFORM_INVERSE][2][1]*src[ 2*line ] + g_aiT8[TRANSFORM_INVERSE][6][1]*src[ 6*line ]; |
---|
569 | EE[0] = g_aiT8[TRANSFORM_INVERSE][0][0]*src[ 0 ] + g_aiT8[TRANSFORM_INVERSE][4][0]*src[ 4*line ]; |
---|
570 | EE[1] = g_aiT8[TRANSFORM_INVERSE][0][1]*src[ 0 ] + g_aiT8[TRANSFORM_INVERSE][4][1]*src[ 4*line ]; |
---|
571 | |
---|
572 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
573 | E[0] = EE[0] + EO[0]; |
---|
574 | E[3] = EE[0] - EO[0]; |
---|
575 | E[1] = EE[1] + EO[1]; |
---|
576 | E[2] = EE[1] - EO[1]; |
---|
577 | for (k=0;k<4;k++) |
---|
578 | { |
---|
579 | dst[ k ] = Clip3( outputMinimum, outputMaximum, (E[k] + O[k] + add)>>shift ); |
---|
580 | dst[ k+4 ] = Clip3( outputMinimum, outputMaximum, (E[3-k] - O[3-k] + add)>>shift ); |
---|
581 | } |
---|
582 | src ++; |
---|
583 | dst += 8; |
---|
584 | } |
---|
585 | } |
---|
586 | |
---|
587 | /** 16x16 forward transform implemented using partial butterfly structure (1D) |
---|
588 | * \param src input data (residual) |
---|
589 | * \param dst output data (transform coefficients) |
---|
590 | * \param shift specifies right shift after 1D transform |
---|
591 | * \param line |
---|
592 | */ |
---|
593 | Void partialButterfly16(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
594 | { |
---|
595 | Int j,k; |
---|
596 | TCoeff E[8],O[8]; |
---|
597 | TCoeff EE[4],EO[4]; |
---|
598 | TCoeff EEE[2],EEO[2]; |
---|
599 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
600 | |
---|
601 | for (j=0; j<line; j++) |
---|
602 | { |
---|
603 | /* E and O*/ |
---|
604 | for (k=0;k<8;k++) |
---|
605 | { |
---|
606 | E[k] = src[k] + src[15-k]; |
---|
607 | O[k] = src[k] - src[15-k]; |
---|
608 | } |
---|
609 | /* EE and EO */ |
---|
610 | for (k=0;k<4;k++) |
---|
611 | { |
---|
612 | EE[k] = E[k] + E[7-k]; |
---|
613 | EO[k] = E[k] - E[7-k]; |
---|
614 | } |
---|
615 | /* EEE and EEO */ |
---|
616 | EEE[0] = EE[0] + EE[3]; |
---|
617 | EEO[0] = EE[0] - EE[3]; |
---|
618 | EEE[1] = EE[1] + EE[2]; |
---|
619 | EEO[1] = EE[1] - EE[2]; |
---|
620 | |
---|
621 | dst[ 0 ] = (g_aiT16[TRANSFORM_FORWARD][ 0][0]*EEE[0] + g_aiT16[TRANSFORM_FORWARD][ 0][1]*EEE[1] + add)>>shift; |
---|
622 | dst[ 8*line ] = (g_aiT16[TRANSFORM_FORWARD][ 8][0]*EEE[0] + g_aiT16[TRANSFORM_FORWARD][ 8][1]*EEE[1] + add)>>shift; |
---|
623 | dst[ 4*line ] = (g_aiT16[TRANSFORM_FORWARD][ 4][0]*EEO[0] + g_aiT16[TRANSFORM_FORWARD][ 4][1]*EEO[1] + add)>>shift; |
---|
624 | dst[ 12*line] = (g_aiT16[TRANSFORM_FORWARD][12][0]*EEO[0] + g_aiT16[TRANSFORM_FORWARD][12][1]*EEO[1] + add)>>shift; |
---|
625 | |
---|
626 | for (k=2;k<16;k+=4) |
---|
627 | { |
---|
628 | dst[ k*line ] = (g_aiT16[TRANSFORM_FORWARD][k][0]*EO[0] + g_aiT16[TRANSFORM_FORWARD][k][1]*EO[1] + |
---|
629 | g_aiT16[TRANSFORM_FORWARD][k][2]*EO[2] + g_aiT16[TRANSFORM_FORWARD][k][3]*EO[3] + add)>>shift; |
---|
630 | } |
---|
631 | |
---|
632 | for (k=1;k<16;k+=2) |
---|
633 | { |
---|
634 | dst[ k*line ] = (g_aiT16[TRANSFORM_FORWARD][k][0]*O[0] + g_aiT16[TRANSFORM_FORWARD][k][1]*O[1] + |
---|
635 | g_aiT16[TRANSFORM_FORWARD][k][2]*O[2] + g_aiT16[TRANSFORM_FORWARD][k][3]*O[3] + |
---|
636 | g_aiT16[TRANSFORM_FORWARD][k][4]*O[4] + g_aiT16[TRANSFORM_FORWARD][k][5]*O[5] + |
---|
637 | g_aiT16[TRANSFORM_FORWARD][k][6]*O[6] + g_aiT16[TRANSFORM_FORWARD][k][7]*O[7] + add)>>shift; |
---|
638 | } |
---|
639 | |
---|
640 | src += 16; |
---|
641 | dst ++; |
---|
642 | |
---|
643 | } |
---|
644 | } |
---|
645 | |
---|
646 | /** 16x16 inverse transform implemented using partial butterfly structure (1D) |
---|
647 | * \param src input data (transform coefficients) |
---|
648 | * \param dst output data (residual) |
---|
649 | * \param shift specifies right shift after 1D transform |
---|
650 | * \param line |
---|
651 | * \param outputMinimum minimum for clipping |
---|
652 | * \param outputMaximum maximum for clipping |
---|
653 | */ |
---|
654 | Void partialButterflyInverse16(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
655 | { |
---|
656 | Int j,k; |
---|
657 | TCoeff E[8],O[8]; |
---|
658 | TCoeff EE[4],EO[4]; |
---|
659 | TCoeff EEE[2],EEO[2]; |
---|
660 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
661 | |
---|
662 | for (j=0; j<line; j++) |
---|
663 | { |
---|
664 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
665 | for (k=0;k<8;k++) |
---|
666 | { |
---|
667 | O[k] = g_aiT16[TRANSFORM_INVERSE][ 1][k]*src[ line] + g_aiT16[TRANSFORM_INVERSE][ 3][k]*src[ 3*line] + |
---|
668 | g_aiT16[TRANSFORM_INVERSE][ 5][k]*src[ 5*line] + g_aiT16[TRANSFORM_INVERSE][ 7][k]*src[ 7*line] + |
---|
669 | g_aiT16[TRANSFORM_INVERSE][ 9][k]*src[ 9*line] + g_aiT16[TRANSFORM_INVERSE][11][k]*src[11*line] + |
---|
670 | g_aiT16[TRANSFORM_INVERSE][13][k]*src[13*line] + g_aiT16[TRANSFORM_INVERSE][15][k]*src[15*line]; |
---|
671 | } |
---|
672 | for (k=0;k<4;k++) |
---|
673 | { |
---|
674 | EO[k] = g_aiT16[TRANSFORM_INVERSE][ 2][k]*src[ 2*line] + g_aiT16[TRANSFORM_INVERSE][ 6][k]*src[ 6*line] + |
---|
675 | g_aiT16[TRANSFORM_INVERSE][10][k]*src[10*line] + g_aiT16[TRANSFORM_INVERSE][14][k]*src[14*line]; |
---|
676 | } |
---|
677 | EEO[0] = g_aiT16[TRANSFORM_INVERSE][4][0]*src[ 4*line ] + g_aiT16[TRANSFORM_INVERSE][12][0]*src[ 12*line ]; |
---|
678 | EEE[0] = g_aiT16[TRANSFORM_INVERSE][0][0]*src[ 0 ] + g_aiT16[TRANSFORM_INVERSE][ 8][0]*src[ 8*line ]; |
---|
679 | EEO[1] = g_aiT16[TRANSFORM_INVERSE][4][1]*src[ 4*line ] + g_aiT16[TRANSFORM_INVERSE][12][1]*src[ 12*line ]; |
---|
680 | EEE[1] = g_aiT16[TRANSFORM_INVERSE][0][1]*src[ 0 ] + g_aiT16[TRANSFORM_INVERSE][ 8][1]*src[ 8*line ]; |
---|
681 | |
---|
682 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
683 | for (k=0;k<2;k++) |
---|
684 | { |
---|
685 | EE[k] = EEE[k] + EEO[k]; |
---|
686 | EE[k+2] = EEE[1-k] - EEO[1-k]; |
---|
687 | } |
---|
688 | for (k=0;k<4;k++) |
---|
689 | { |
---|
690 | E[k] = EE[k] + EO[k]; |
---|
691 | E[k+4] = EE[3-k] - EO[3-k]; |
---|
692 | } |
---|
693 | for (k=0;k<8;k++) |
---|
694 | { |
---|
695 | dst[k] = Clip3( outputMinimum, outputMaximum, (E[k] + O[k] + add)>>shift ); |
---|
696 | dst[k+8] = Clip3( outputMinimum, outputMaximum, (E[7-k] - O[7-k] + add)>>shift ); |
---|
697 | } |
---|
698 | src ++; |
---|
699 | dst += 16; |
---|
700 | } |
---|
701 | } |
---|
702 | |
---|
703 | /** 32x32 forward transform implemented using partial butterfly structure (1D) |
---|
704 | * \param src input data (residual) |
---|
705 | * \param dst output data (transform coefficients) |
---|
706 | * \param shift specifies right shift after 1D transform |
---|
707 | * \param line |
---|
708 | */ |
---|
709 | Void partialButterfly32(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
710 | { |
---|
711 | Int j,k; |
---|
712 | TCoeff E[16],O[16]; |
---|
713 | TCoeff EE[8],EO[8]; |
---|
714 | TCoeff EEE[4],EEO[4]; |
---|
715 | TCoeff EEEE[2],EEEO[2]; |
---|
716 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
717 | |
---|
718 | for (j=0; j<line; j++) |
---|
719 | { |
---|
720 | /* E and O*/ |
---|
721 | for (k=0;k<16;k++) |
---|
722 | { |
---|
723 | E[k] = src[k] + src[31-k]; |
---|
724 | O[k] = src[k] - src[31-k]; |
---|
725 | } |
---|
726 | /* EE and EO */ |
---|
727 | for (k=0;k<8;k++) |
---|
728 | { |
---|
729 | EE[k] = E[k] + E[15-k]; |
---|
730 | EO[k] = E[k] - E[15-k]; |
---|
731 | } |
---|
732 | /* EEE and EEO */ |
---|
733 | for (k=0;k<4;k++) |
---|
734 | { |
---|
735 | EEE[k] = EE[k] + EE[7-k]; |
---|
736 | EEO[k] = EE[k] - EE[7-k]; |
---|
737 | } |
---|
738 | /* EEEE and EEEO */ |
---|
739 | EEEE[0] = EEE[0] + EEE[3]; |
---|
740 | EEEO[0] = EEE[0] - EEE[3]; |
---|
741 | EEEE[1] = EEE[1] + EEE[2]; |
---|
742 | EEEO[1] = EEE[1] - EEE[2]; |
---|
743 | |
---|
744 | dst[ 0 ] = (g_aiT32[TRANSFORM_FORWARD][ 0][0]*EEEE[0] + g_aiT32[TRANSFORM_FORWARD][ 0][1]*EEEE[1] + add)>>shift; |
---|
745 | dst[ 16*line ] = (g_aiT32[TRANSFORM_FORWARD][16][0]*EEEE[0] + g_aiT32[TRANSFORM_FORWARD][16][1]*EEEE[1] + add)>>shift; |
---|
746 | dst[ 8*line ] = (g_aiT32[TRANSFORM_FORWARD][ 8][0]*EEEO[0] + g_aiT32[TRANSFORM_FORWARD][ 8][1]*EEEO[1] + add)>>shift; |
---|
747 | dst[ 24*line ] = (g_aiT32[TRANSFORM_FORWARD][24][0]*EEEO[0] + g_aiT32[TRANSFORM_FORWARD][24][1]*EEEO[1] + add)>>shift; |
---|
748 | for (k=4;k<32;k+=8) |
---|
749 | { |
---|
750 | dst[ k*line ] = (g_aiT32[TRANSFORM_FORWARD][k][0]*EEO[0] + g_aiT32[TRANSFORM_FORWARD][k][1]*EEO[1] + |
---|
751 | g_aiT32[TRANSFORM_FORWARD][k][2]*EEO[2] + g_aiT32[TRANSFORM_FORWARD][k][3]*EEO[3] + add)>>shift; |
---|
752 | } |
---|
753 | for (k=2;k<32;k+=4) |
---|
754 | { |
---|
755 | dst[ k*line ] = (g_aiT32[TRANSFORM_FORWARD][k][0]*EO[0] + g_aiT32[TRANSFORM_FORWARD][k][1]*EO[1] + |
---|
756 | g_aiT32[TRANSFORM_FORWARD][k][2]*EO[2] + g_aiT32[TRANSFORM_FORWARD][k][3]*EO[3] + |
---|
757 | g_aiT32[TRANSFORM_FORWARD][k][4]*EO[4] + g_aiT32[TRANSFORM_FORWARD][k][5]*EO[5] + |
---|
758 | g_aiT32[TRANSFORM_FORWARD][k][6]*EO[6] + g_aiT32[TRANSFORM_FORWARD][k][7]*EO[7] + add)>>shift; |
---|
759 | } |
---|
760 | for (k=1;k<32;k+=2) |
---|
761 | { |
---|
762 | dst[ k*line ] = (g_aiT32[TRANSFORM_FORWARD][k][ 0]*O[ 0] + g_aiT32[TRANSFORM_FORWARD][k][ 1]*O[ 1] + |
---|
763 | g_aiT32[TRANSFORM_FORWARD][k][ 2]*O[ 2] + g_aiT32[TRANSFORM_FORWARD][k][ 3]*O[ 3] + |
---|
764 | g_aiT32[TRANSFORM_FORWARD][k][ 4]*O[ 4] + g_aiT32[TRANSFORM_FORWARD][k][ 5]*O[ 5] + |
---|
765 | g_aiT32[TRANSFORM_FORWARD][k][ 6]*O[ 6] + g_aiT32[TRANSFORM_FORWARD][k][ 7]*O[ 7] + |
---|
766 | g_aiT32[TRANSFORM_FORWARD][k][ 8]*O[ 8] + g_aiT32[TRANSFORM_FORWARD][k][ 9]*O[ 9] + |
---|
767 | g_aiT32[TRANSFORM_FORWARD][k][10]*O[10] + g_aiT32[TRANSFORM_FORWARD][k][11]*O[11] + |
---|
768 | g_aiT32[TRANSFORM_FORWARD][k][12]*O[12] + g_aiT32[TRANSFORM_FORWARD][k][13]*O[13] + |
---|
769 | g_aiT32[TRANSFORM_FORWARD][k][14]*O[14] + g_aiT32[TRANSFORM_FORWARD][k][15]*O[15] + add)>>shift; |
---|
770 | } |
---|
771 | |
---|
772 | src += 32; |
---|
773 | dst ++; |
---|
774 | } |
---|
775 | } |
---|
776 | |
---|
777 | /** 32x32 inverse transform implemented using partial butterfly structure (1D) |
---|
778 | * \param src input data (transform coefficients) |
---|
779 | * \param dst output data (residual) |
---|
780 | * \param shift specifies right shift after 1D transform |
---|
781 | * \param line |
---|
782 | * \param outputMinimum minimum for clipping |
---|
783 | * \param outputMaximum maximum for clipping |
---|
784 | */ |
---|
785 | Void partialButterflyInverse32(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
786 | { |
---|
787 | Int j,k; |
---|
788 | TCoeff E[16],O[16]; |
---|
789 | TCoeff EE[8],EO[8]; |
---|
790 | TCoeff EEE[4],EEO[4]; |
---|
791 | TCoeff EEEE[2],EEEO[2]; |
---|
792 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
793 | |
---|
794 | for (j=0; j<line; j++) |
---|
795 | { |
---|
796 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
797 | for (k=0;k<16;k++) |
---|
798 | { |
---|
799 | O[k] = g_aiT32[TRANSFORM_INVERSE][ 1][k]*src[ line ] + g_aiT32[TRANSFORM_INVERSE][ 3][k]*src[ 3*line ] + |
---|
800 | g_aiT32[TRANSFORM_INVERSE][ 5][k]*src[ 5*line ] + g_aiT32[TRANSFORM_INVERSE][ 7][k]*src[ 7*line ] + |
---|
801 | g_aiT32[TRANSFORM_INVERSE][ 9][k]*src[ 9*line ] + g_aiT32[TRANSFORM_INVERSE][11][k]*src[ 11*line ] + |
---|
802 | g_aiT32[TRANSFORM_INVERSE][13][k]*src[ 13*line ] + g_aiT32[TRANSFORM_INVERSE][15][k]*src[ 15*line ] + |
---|
803 | g_aiT32[TRANSFORM_INVERSE][17][k]*src[ 17*line ] + g_aiT32[TRANSFORM_INVERSE][19][k]*src[ 19*line ] + |
---|
804 | g_aiT32[TRANSFORM_INVERSE][21][k]*src[ 21*line ] + g_aiT32[TRANSFORM_INVERSE][23][k]*src[ 23*line ] + |
---|
805 | g_aiT32[TRANSFORM_INVERSE][25][k]*src[ 25*line ] + g_aiT32[TRANSFORM_INVERSE][27][k]*src[ 27*line ] + |
---|
806 | g_aiT32[TRANSFORM_INVERSE][29][k]*src[ 29*line ] + g_aiT32[TRANSFORM_INVERSE][31][k]*src[ 31*line ]; |
---|
807 | } |
---|
808 | for (k=0;k<8;k++) |
---|
809 | { |
---|
810 | EO[k] = g_aiT32[TRANSFORM_INVERSE][ 2][k]*src[ 2*line ] + g_aiT32[TRANSFORM_INVERSE][ 6][k]*src[ 6*line ] + |
---|
811 | g_aiT32[TRANSFORM_INVERSE][10][k]*src[ 10*line ] + g_aiT32[TRANSFORM_INVERSE][14][k]*src[ 14*line ] + |
---|
812 | g_aiT32[TRANSFORM_INVERSE][18][k]*src[ 18*line ] + g_aiT32[TRANSFORM_INVERSE][22][k]*src[ 22*line ] + |
---|
813 | g_aiT32[TRANSFORM_INVERSE][26][k]*src[ 26*line ] + g_aiT32[TRANSFORM_INVERSE][30][k]*src[ 30*line ]; |
---|
814 | } |
---|
815 | for (k=0;k<4;k++) |
---|
816 | { |
---|
817 | EEO[k] = g_aiT32[TRANSFORM_INVERSE][ 4][k]*src[ 4*line ] + g_aiT32[TRANSFORM_INVERSE][12][k]*src[ 12*line ] + |
---|
818 | g_aiT32[TRANSFORM_INVERSE][20][k]*src[ 20*line ] + g_aiT32[TRANSFORM_INVERSE][28][k]*src[ 28*line ]; |
---|
819 | } |
---|
820 | EEEO[0] = g_aiT32[TRANSFORM_INVERSE][8][0]*src[ 8*line ] + g_aiT32[TRANSFORM_INVERSE][24][0]*src[ 24*line ]; |
---|
821 | EEEO[1] = g_aiT32[TRANSFORM_INVERSE][8][1]*src[ 8*line ] + g_aiT32[TRANSFORM_INVERSE][24][1]*src[ 24*line ]; |
---|
822 | EEEE[0] = g_aiT32[TRANSFORM_INVERSE][0][0]*src[ 0 ] + g_aiT32[TRANSFORM_INVERSE][16][0]*src[ 16*line ]; |
---|
823 | EEEE[1] = g_aiT32[TRANSFORM_INVERSE][0][1]*src[ 0 ] + g_aiT32[TRANSFORM_INVERSE][16][1]*src[ 16*line ]; |
---|
824 | |
---|
825 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
826 | EEE[0] = EEEE[0] + EEEO[0]; |
---|
827 | EEE[3] = EEEE[0] - EEEO[0]; |
---|
828 | EEE[1] = EEEE[1] + EEEO[1]; |
---|
829 | EEE[2] = EEEE[1] - EEEO[1]; |
---|
830 | for (k=0;k<4;k++) |
---|
831 | { |
---|
832 | EE[k] = EEE[k] + EEO[k]; |
---|
833 | EE[k+4] = EEE[3-k] - EEO[3-k]; |
---|
834 | } |
---|
835 | for (k=0;k<8;k++) |
---|
836 | { |
---|
837 | E[k] = EE[k] + EO[k]; |
---|
838 | E[k+8] = EE[7-k] - EO[7-k]; |
---|
839 | } |
---|
840 | for (k=0;k<16;k++) |
---|
841 | { |
---|
842 | dst[k] = Clip3( outputMinimum, outputMaximum, (E[k] + O[k] + add)>>shift ); |
---|
843 | dst[k+16] = Clip3( outputMinimum, outputMaximum, (E[15-k] - O[15-k] + add)>>shift ); |
---|
844 | } |
---|
845 | src ++; |
---|
846 | dst += 32; |
---|
847 | } |
---|
848 | } |
---|
849 | |
---|
850 | /** MxN forward transform (2D) |
---|
851 | * \param bitDepth [in] bit depth |
---|
852 | * \param block [in] residual block |
---|
853 | * \param coeff [out] transform coefficients |
---|
854 | * \param iWidth [in] width of transform |
---|
855 | * \param iHeight [in] height of transform |
---|
856 | * \param useDST [in] |
---|
857 | * \param maxLog2TrDynamicRange [in] |
---|
858 | |
---|
859 | */ |
---|
860 | Void xTrMxN(Int bitDepth, TCoeff *block, TCoeff *coeff, Int iWidth, Int iHeight, Bool useDST, const Int maxLog2TrDynamicRange) |
---|
861 | { |
---|
862 | const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_FORWARD]; |
---|
863 | |
---|
864 | const Int shift_1st = ((g_aucConvertToBit[iWidth] + 2) + bitDepth + TRANSFORM_MATRIX_SHIFT) - maxLog2TrDynamicRange; |
---|
865 | const Int shift_2nd = (g_aucConvertToBit[iHeight] + 2) + TRANSFORM_MATRIX_SHIFT; |
---|
866 | |
---|
867 | assert(shift_1st >= 0); |
---|
868 | assert(shift_2nd >= 0); |
---|
869 | |
---|
870 | TCoeff tmp[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
871 | |
---|
872 | switch (iWidth) |
---|
873 | { |
---|
874 | case 4: |
---|
875 | { |
---|
876 | if ((iHeight == 4) && useDST) // Check for DCT or DST |
---|
877 | { |
---|
878 | fastForwardDst( block, tmp, shift_1st ); |
---|
879 | } |
---|
880 | else |
---|
881 | { |
---|
882 | partialButterfly4 ( block, tmp, shift_1st, iHeight ); |
---|
883 | } |
---|
884 | } |
---|
885 | break; |
---|
886 | |
---|
887 | case 8: partialButterfly8 ( block, tmp, shift_1st, iHeight ); break; |
---|
888 | case 16: partialButterfly16( block, tmp, shift_1st, iHeight ); break; |
---|
889 | case 32: partialButterfly32( block, tmp, shift_1st, iHeight ); break; |
---|
890 | default: |
---|
891 | assert(0); exit (1); break; |
---|
892 | } |
---|
893 | |
---|
894 | switch (iHeight) |
---|
895 | { |
---|
896 | case 4: |
---|
897 | { |
---|
898 | if ((iWidth == 4) && useDST) // Check for DCT or DST |
---|
899 | { |
---|
900 | fastForwardDst( tmp, coeff, shift_2nd ); |
---|
901 | } |
---|
902 | else |
---|
903 | { |
---|
904 | partialButterfly4 ( tmp, coeff, shift_2nd, iWidth ); |
---|
905 | } |
---|
906 | } |
---|
907 | break; |
---|
908 | |
---|
909 | case 8: partialButterfly8 ( tmp, coeff, shift_2nd, iWidth ); break; |
---|
910 | case 16: partialButterfly16( tmp, coeff, shift_2nd, iWidth ); break; |
---|
911 | case 32: partialButterfly32( tmp, coeff, shift_2nd, iWidth ); break; |
---|
912 | default: |
---|
913 | assert(0); exit (1); break; |
---|
914 | } |
---|
915 | } |
---|
916 | |
---|
917 | |
---|
918 | /** MxN inverse transform (2D) |
---|
919 | * \param bitDepth [in] bit depth |
---|
920 | * \param coeff [in] transform coefficients |
---|
921 | * \param block [out] residual block |
---|
922 | * \param iWidth [in] width of transform |
---|
923 | * \param iHeight [in] height of transform |
---|
924 | * \param useDST [in] |
---|
925 | * \param maxLog2TrDynamicRange [in] |
---|
926 | */ |
---|
927 | Void xITrMxN(Int bitDepth, TCoeff *coeff, TCoeff *block, Int iWidth, Int iHeight, Bool useDST, const Int maxLog2TrDynamicRange) |
---|
928 | { |
---|
929 | const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_INVERSE]; |
---|
930 | |
---|
931 | Int shift_1st = TRANSFORM_MATRIX_SHIFT + 1; //1 has been added to shift_1st at the expense of shift_2nd |
---|
932 | Int shift_2nd = (TRANSFORM_MATRIX_SHIFT + maxLog2TrDynamicRange - 1) - bitDepth; |
---|
933 | const TCoeff clipMinimum = -(1 << maxLog2TrDynamicRange); |
---|
934 | const TCoeff clipMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
935 | |
---|
936 | assert(shift_1st >= 0); |
---|
937 | assert(shift_2nd >= 0); |
---|
938 | |
---|
939 | TCoeff tmp[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
940 | |
---|
941 | switch (iHeight) |
---|
942 | { |
---|
943 | case 4: |
---|
944 | { |
---|
945 | if ((iWidth == 4) && useDST) // Check for DCT or DST |
---|
946 | { |
---|
947 | fastInverseDst( coeff, tmp, shift_1st, clipMinimum, clipMaximum); |
---|
948 | } |
---|
949 | else |
---|
950 | { |
---|
951 | partialButterflyInverse4 ( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); |
---|
952 | } |
---|
953 | } |
---|
954 | break; |
---|
955 | |
---|
956 | case 8: partialButterflyInverse8 ( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); break; |
---|
957 | case 16: partialButterflyInverse16( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); break; |
---|
958 | case 32: partialButterflyInverse32( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); break; |
---|
959 | |
---|
960 | default: |
---|
961 | assert(0); exit (1); break; |
---|
962 | } |
---|
963 | |
---|
964 | switch (iWidth) |
---|
965 | { |
---|
966 | // Clipping here is not in the standard, but is used to protect the "Pel" data type into which the inverse-transformed samples will be copied |
---|
967 | case 4: |
---|
968 | { |
---|
969 | if ((iHeight == 4) && useDST) // Check for DCT or DST |
---|
970 | { |
---|
971 | fastInverseDst( tmp, block, shift_2nd, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max() ); |
---|
972 | } |
---|
973 | else |
---|
974 | { |
---|
975 | partialButterflyInverse4 ( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); |
---|
976 | } |
---|
977 | } |
---|
978 | break; |
---|
979 | |
---|
980 | case 8: partialButterflyInverse8 ( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); break; |
---|
981 | case 16: partialButterflyInverse16( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); break; |
---|
982 | case 32: partialButterflyInverse32( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); break; |
---|
983 | |
---|
984 | default: |
---|
985 | assert(0); exit (1); break; |
---|
986 | } |
---|
987 | } |
---|
988 | |
---|
989 | |
---|
990 | // To minimize the distortion only. No rate is considered. |
---|
991 | Void TComTrQuant::signBitHidingHDQ( TCoeff* pQCoef, TCoeff* pCoef, TCoeff* deltaU, const TUEntropyCodingParameters &codingParameters, const Int maxLog2TrDynamicRange ) |
---|
992 | { |
---|
993 | const UInt width = codingParameters.widthInGroups << MLS_CG_LOG2_WIDTH; |
---|
994 | const UInt height = codingParameters.heightInGroups << MLS_CG_LOG2_HEIGHT; |
---|
995 | const UInt groupSize = 1 << MLS_CG_SIZE; |
---|
996 | |
---|
997 | const TCoeff entropyCodingMinimum = -(1 << maxLog2TrDynamicRange); |
---|
998 | const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
999 | |
---|
1000 | Int lastCG = -1; |
---|
1001 | Int absSum = 0 ; |
---|
1002 | Int n ; |
---|
1003 | |
---|
1004 | for( Int subSet = (width*height-1) >> MLS_CG_SIZE; subSet >= 0; subSet-- ) |
---|
1005 | { |
---|
1006 | Int subPos = subSet << MLS_CG_SIZE; |
---|
1007 | Int firstNZPosInCG=groupSize , lastNZPosInCG=-1 ; |
---|
1008 | absSum = 0 ; |
---|
1009 | |
---|
1010 | for(n = groupSize-1; n >= 0; --n ) |
---|
1011 | { |
---|
1012 | if( pQCoef[ codingParameters.scan[ n + subPos ]] ) |
---|
1013 | { |
---|
1014 | lastNZPosInCG = n; |
---|
1015 | break; |
---|
1016 | } |
---|
1017 | } |
---|
1018 | |
---|
1019 | for(n = 0; n <groupSize; n++ ) |
---|
1020 | { |
---|
1021 | if( pQCoef[ codingParameters.scan[ n + subPos ]] ) |
---|
1022 | { |
---|
1023 | firstNZPosInCG = n; |
---|
1024 | break; |
---|
1025 | } |
---|
1026 | } |
---|
1027 | |
---|
1028 | for(n = firstNZPosInCG; n <=lastNZPosInCG; n++ ) |
---|
1029 | { |
---|
1030 | absSum += Int(pQCoef[ codingParameters.scan[ n + subPos ]]); |
---|
1031 | } |
---|
1032 | |
---|
1033 | if(lastNZPosInCG>=0 && lastCG==-1) |
---|
1034 | { |
---|
1035 | lastCG = 1 ; |
---|
1036 | } |
---|
1037 | |
---|
1038 | if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD ) |
---|
1039 | { |
---|
1040 | UInt signbit = (pQCoef[codingParameters.scan[subPos+firstNZPosInCG]]>0?0:1) ; |
---|
1041 | if( signbit!=(absSum&0x1) ) //compare signbit with sum_parity |
---|
1042 | { |
---|
1043 | TCoeff curCost = std::numeric_limits<TCoeff>::max(); |
---|
1044 | TCoeff minCostInc = std::numeric_limits<TCoeff>::max(); |
---|
1045 | Int minPos =-1, finalChange=0, curChange=0; |
---|
1046 | |
---|
1047 | for( n = (lastCG==1?lastNZPosInCG:groupSize-1) ; n >= 0; --n ) |
---|
1048 | { |
---|
1049 | UInt blkPos = codingParameters.scan[ n+subPos ]; |
---|
1050 | if(pQCoef[ blkPos ] != 0 ) |
---|
1051 | { |
---|
1052 | if(deltaU[blkPos]>0) |
---|
1053 | { |
---|
1054 | curCost = - deltaU[blkPos]; |
---|
1055 | curChange=1 ; |
---|
1056 | } |
---|
1057 | else |
---|
1058 | { |
---|
1059 | //curChange =-1; |
---|
1060 | if(n==firstNZPosInCG && abs(pQCoef[blkPos])==1) |
---|
1061 | { |
---|
1062 | curCost = std::numeric_limits<TCoeff>::max(); |
---|
1063 | } |
---|
1064 | else |
---|
1065 | { |
---|
1066 | curCost = deltaU[blkPos]; |
---|
1067 | curChange =-1; |
---|
1068 | } |
---|
1069 | } |
---|
1070 | } |
---|
1071 | else |
---|
1072 | { |
---|
1073 | if(n<firstNZPosInCG) |
---|
1074 | { |
---|
1075 | UInt thisSignBit = (pCoef[blkPos]>=0?0:1); |
---|
1076 | if(thisSignBit != signbit ) |
---|
1077 | { |
---|
1078 | curCost = std::numeric_limits<TCoeff>::max(); |
---|
1079 | } |
---|
1080 | else |
---|
1081 | { |
---|
1082 | curCost = - (deltaU[blkPos]) ; |
---|
1083 | curChange = 1 ; |
---|
1084 | } |
---|
1085 | } |
---|
1086 | else |
---|
1087 | { |
---|
1088 | curCost = - (deltaU[blkPos]) ; |
---|
1089 | curChange = 1 ; |
---|
1090 | } |
---|
1091 | } |
---|
1092 | |
---|
1093 | if( curCost<minCostInc) |
---|
1094 | { |
---|
1095 | minCostInc = curCost ; |
---|
1096 | finalChange = curChange ; |
---|
1097 | minPos = blkPos ; |
---|
1098 | } |
---|
1099 | } //CG loop |
---|
1100 | |
---|
1101 | if(pQCoef[minPos] == entropyCodingMaximum || pQCoef[minPos] == entropyCodingMinimum) |
---|
1102 | { |
---|
1103 | finalChange = -1; |
---|
1104 | } |
---|
1105 | |
---|
1106 | if(pCoef[minPos]>=0) |
---|
1107 | { |
---|
1108 | pQCoef[minPos] += finalChange ; |
---|
1109 | } |
---|
1110 | else |
---|
1111 | { |
---|
1112 | pQCoef[minPos] -= finalChange ; |
---|
1113 | } |
---|
1114 | } // Hide |
---|
1115 | } |
---|
1116 | if(lastCG==1) |
---|
1117 | { |
---|
1118 | lastCG=0 ; |
---|
1119 | } |
---|
1120 | } // TU loop |
---|
1121 | |
---|
1122 | return; |
---|
1123 | } |
---|
1124 | |
---|
1125 | |
---|
1126 | Void TComTrQuant::xQuant( TComTU &rTu, |
---|
1127 | TCoeff * pSrc, |
---|
1128 | TCoeff * pDes, |
---|
1129 | #if ADAPTIVE_QP_SELECTION |
---|
1130 | TCoeff *pArlDes, |
---|
1131 | #endif |
---|
1132 | TCoeff &uiAbsSum, |
---|
1133 | const ComponentID compID, |
---|
1134 | const QpParam &cQP ) |
---|
1135 | { |
---|
1136 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1137 | const UInt uiWidth = rect.width; |
---|
1138 | const UInt uiHeight = rect.height; |
---|
1139 | TComDataCU* pcCU = rTu.getCU(); |
---|
1140 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1141 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getBitDepth(toChannelType(compID)); |
---|
1142 | |
---|
1143 | TCoeff* piCoef = pSrc; |
---|
1144 | TCoeff* piQCoef = pDes; |
---|
1145 | #if ADAPTIVE_QP_SELECTION |
---|
1146 | TCoeff* piArlCCoef = pArlDes; |
---|
1147 | #endif |
---|
1148 | |
---|
1149 | const Bool useTransformSkip = pcCU->getTransformSkip(uiAbsPartIdx, compID); |
---|
1150 | const Int maxLog2TrDynamicRange = pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)); |
---|
1151 | |
---|
1152 | Bool useRDOQ = useTransformSkip ? m_useRDOQTS : m_useRDOQ; |
---|
1153 | if ( useRDOQ && (isLuma(compID) || RDOQ_CHROMA) ) |
---|
1154 | { |
---|
1155 | #if T0196_SELECTIVE_RDOQ |
---|
1156 | if ( !m_useSelectiveRDOQ || xNeedRDOQ( rTu, piCoef, compID, cQP ) ) |
---|
1157 | { |
---|
1158 | #endif |
---|
1159 | #if ADAPTIVE_QP_SELECTION |
---|
1160 | xRateDistOptQuant( rTu, piCoef, pDes, pArlDes, uiAbsSum, compID, cQP ); |
---|
1161 | #else |
---|
1162 | xRateDistOptQuant( rTu, piCoef, pDes, uiAbsSum, compID, cQP ); |
---|
1163 | #endif |
---|
1164 | #if T0196_SELECTIVE_RDOQ |
---|
1165 | } |
---|
1166 | else |
---|
1167 | { |
---|
1168 | memset( pDes, 0, sizeof( TCoeff ) * uiWidth *uiHeight ); |
---|
1169 | uiAbsSum = 0; |
---|
1170 | } |
---|
1171 | #endif |
---|
1172 | } |
---|
1173 | else |
---|
1174 | { |
---|
1175 | TUEntropyCodingParameters codingParameters; |
---|
1176 | getTUEntropyCodingParameters(codingParameters, rTu, compID); |
---|
1177 | |
---|
1178 | const TCoeff entropyCodingMinimum = -(1 << maxLog2TrDynamicRange); |
---|
1179 | const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
1180 | |
---|
1181 | TCoeff deltaU[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
1182 | |
---|
1183 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
1184 | |
---|
1185 | Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
1186 | assert(scalingListType < SCALING_LIST_NUM); |
---|
1187 | Int *piQuantCoeff = getQuantCoeff(scalingListType, cQP.rem, uiLog2TrSize-2); |
---|
1188 | |
---|
1189 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0)); |
---|
1190 | const Int defaultQuantisationCoefficient = g_quantScales[cQP.rem]; |
---|
1191 | |
---|
1192 | /* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be |
---|
1193 | * implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the |
---|
1194 | * uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller) |
---|
1195 | * Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result |
---|
1196 | */ |
---|
1197 | |
---|
1198 | // Represents scaling through forward transform |
---|
1199 | Int iTransformShift = getTransformShift(channelBitDepth, uiLog2TrSize, maxLog2TrDynamicRange); |
---|
1200 | if (useTransformSkip && pcCU->getSlice()->getSPS()->getSpsRangeExtension().getExtendedPrecisionProcessingFlag()) |
---|
1201 | { |
---|
1202 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
1203 | } |
---|
1204 | |
---|
1205 | const Int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; |
---|
1206 | // QBits will be OK for any internal bit depth as the reduction in transform shift is balanced by an increase in Qp_per due to QpBDOffset |
---|
1207 | |
---|
1208 | #if ADAPTIVE_QP_SELECTION |
---|
1209 | Int iQBitsC = MAX_INT; |
---|
1210 | Int iAddC = MAX_INT; |
---|
1211 | |
---|
1212 | if (m_bUseAdaptQpSelect) |
---|
1213 | { |
---|
1214 | iQBitsC = iQBits - ARL_C_PRECISION; |
---|
1215 | iAddC = 1 << (iQBitsC-1); |
---|
1216 | } |
---|
1217 | #endif |
---|
1218 | |
---|
1219 | const Int iAdd = (pcCU->getSlice()->getSliceType()==I_SLICE ? 171 : 85) << (iQBits-9); |
---|
1220 | const Int qBits8 = iQBits - 8; |
---|
1221 | |
---|
1222 | for( Int uiBlockPos = 0; uiBlockPos < uiWidth*uiHeight; uiBlockPos++ ) |
---|
1223 | { |
---|
1224 | const TCoeff iLevel = piCoef[uiBlockPos]; |
---|
1225 | const TCoeff iSign = (iLevel < 0 ? -1: 1); |
---|
1226 | |
---|
1227 | const Int64 tmpLevel = (Int64)abs(iLevel) * (enableScalingLists ? piQuantCoeff[uiBlockPos] : defaultQuantisationCoefficient); |
---|
1228 | |
---|
1229 | #if ADAPTIVE_QP_SELECTION |
---|
1230 | if( m_bUseAdaptQpSelect ) |
---|
1231 | { |
---|
1232 | piArlCCoef[uiBlockPos] = (TCoeff)((tmpLevel + iAddC ) >> iQBitsC); |
---|
1233 | } |
---|
1234 | #endif |
---|
1235 | |
---|
1236 | const TCoeff quantisedMagnitude = TCoeff((tmpLevel + iAdd ) >> iQBits); |
---|
1237 | deltaU[uiBlockPos] = (TCoeff)((tmpLevel - (quantisedMagnitude<<iQBits) )>> qBits8); |
---|
1238 | |
---|
1239 | uiAbsSum += quantisedMagnitude; |
---|
1240 | const TCoeff quantisedCoefficient = quantisedMagnitude * iSign; |
---|
1241 | |
---|
1242 | piQCoef[uiBlockPos] = Clip3<TCoeff>( entropyCodingMinimum, entropyCodingMaximum, quantisedCoefficient ); |
---|
1243 | } // for n |
---|
1244 | |
---|
1245 | if( pcCU->getSlice()->getPPS()->getSignHideFlag() ) |
---|
1246 | { |
---|
1247 | if(uiAbsSum >= 2) //this prevents TUs with only one coefficient of value 1 from being tested |
---|
1248 | { |
---|
1249 | signBitHidingHDQ( piQCoef, piCoef, deltaU, codingParameters, maxLog2TrDynamicRange ) ; |
---|
1250 | } |
---|
1251 | } |
---|
1252 | } //if RDOQ |
---|
1253 | //return; |
---|
1254 | } |
---|
1255 | |
---|
1256 | #if T0196_SELECTIVE_RDOQ |
---|
1257 | Bool TComTrQuant::xNeedRDOQ( TComTU &rTu, TCoeff * pSrc, const ComponentID compID, const QpParam &cQP ) |
---|
1258 | { |
---|
1259 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1260 | const UInt uiWidth = rect.width; |
---|
1261 | const UInt uiHeight = rect.height; |
---|
1262 | TComDataCU* pcCU = rTu.getCU(); |
---|
1263 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1264 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getBitDepth(toChannelType(compID)); |
---|
1265 | |
---|
1266 | TCoeff* piCoef = pSrc; |
---|
1267 | |
---|
1268 | const Bool useTransformSkip = pcCU->getTransformSkip(uiAbsPartIdx, compID); |
---|
1269 | const Int maxLog2TrDynamicRange = pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)); |
---|
1270 | |
---|
1271 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
1272 | |
---|
1273 | Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
1274 | assert(scalingListType < SCALING_LIST_NUM); |
---|
1275 | Int *piQuantCoeff = getQuantCoeff(scalingListType, cQP.rem, uiLog2TrSize-2); |
---|
1276 | |
---|
1277 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0)); |
---|
1278 | const Int defaultQuantisationCoefficient = g_quantScales[cQP.rem]; |
---|
1279 | |
---|
1280 | /* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be |
---|
1281 | * implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the |
---|
1282 | * uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller) |
---|
1283 | * Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result |
---|
1284 | */ |
---|
1285 | |
---|
1286 | // Represents scaling through forward transform |
---|
1287 | Int iTransformShift = getTransformShift(channelBitDepth, uiLog2TrSize, maxLog2TrDynamicRange); |
---|
1288 | if (useTransformSkip && pcCU->getSlice()->getSPS()->getSpsRangeExtension().getExtendedPrecisionProcessingFlag()) |
---|
1289 | { |
---|
1290 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
1291 | } |
---|
1292 | |
---|
1293 | const Int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; |
---|
1294 | // QBits will be OK for any internal bit depth as the reduction in transform shift is balanced by an increase in Qp_per due to QpBDOffset |
---|
1295 | |
---|
1296 | // iAdd is different from the iAdd used in normal quantization |
---|
1297 | const Int iAdd = (compID == COMPONENT_Y ? 171 : 256) << (iQBits-9); |
---|
1298 | |
---|
1299 | for( Int uiBlockPos = 0; uiBlockPos < uiWidth*uiHeight; uiBlockPos++ ) |
---|
1300 | { |
---|
1301 | const TCoeff iLevel = piCoef[uiBlockPos]; |
---|
1302 | const Int64 tmpLevel = (Int64)abs(iLevel) * (enableScalingLists ? piQuantCoeff[uiBlockPos] : defaultQuantisationCoefficient); |
---|
1303 | const TCoeff quantisedMagnitude = TCoeff((tmpLevel + iAdd ) >> iQBits); |
---|
1304 | |
---|
1305 | if ( quantisedMagnitude != 0 ) |
---|
1306 | { |
---|
1307 | return true; |
---|
1308 | } |
---|
1309 | } // for n |
---|
1310 | return false; |
---|
1311 | } |
---|
1312 | #endif |
---|
1313 | |
---|
1314 | Void TComTrQuant::xDeQuant( TComTU &rTu, |
---|
1315 | const TCoeff * pSrc, |
---|
1316 | TCoeff * pDes, |
---|
1317 | const ComponentID compID, |
---|
1318 | const QpParam &cQP ) |
---|
1319 | { |
---|
1320 | assert(compID<MAX_NUM_COMPONENT); |
---|
1321 | |
---|
1322 | TComDataCU *pcCU = rTu.getCU(); |
---|
1323 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1324 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1325 | const UInt uiWidth = rect.width; |
---|
1326 | const UInt uiHeight = rect.height; |
---|
1327 | const TCoeff *const piQCoef = pSrc; |
---|
1328 | TCoeff *const piCoef = pDes; |
---|
1329 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
1330 | const UInt numSamplesInBlock = uiWidth*uiHeight; |
---|
1331 | const Int maxLog2TrDynamicRange = pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)); |
---|
1332 | const TCoeff transformMinimum = -(1 << maxLog2TrDynamicRange); |
---|
1333 | const TCoeff transformMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
1334 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0)); |
---|
1335 | const Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
1336 | #if O0043_BEST_EFFORT_DECODING |
---|
1337 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getStreamBitDepth(toChannelType(compID)); |
---|
1338 | #else |
---|
1339 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getBitDepth(toChannelType(compID)); |
---|
1340 | #endif |
---|
1341 | |
---|
1342 | assert (scalingListType < SCALING_LIST_NUM); |
---|
1343 | assert ( uiWidth <= m_uiMaxTrSize ); |
---|
1344 | |
---|
1345 | // Represents scaling through forward transform |
---|
1346 | const Bool bClipTransformShiftTo0 = (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0) && pcCU->getSlice()->getSPS()->getSpsRangeExtension().getExtendedPrecisionProcessingFlag(); |
---|
1347 | const Int originalTransformShift = getTransformShift(channelBitDepth, uiLog2TrSize, maxLog2TrDynamicRange); |
---|
1348 | const Int iTransformShift = bClipTransformShiftTo0 ? std::max<Int>(0, originalTransformShift) : originalTransformShift; |
---|
1349 | |
---|
1350 | const Int QP_per = cQP.per; |
---|
1351 | const Int QP_rem = cQP.rem; |
---|
1352 | |
---|
1353 | const Int rightShift = (IQUANT_SHIFT - (iTransformShift + QP_per)) + (enableScalingLists ? LOG2_SCALING_LIST_NEUTRAL_VALUE : 0); |
---|
1354 | |
---|
1355 | if(enableScalingLists) |
---|
1356 | { |
---|
1357 | //from the dequantisation equation: |
---|
1358 | //iCoeffQ = ((Intermediate_Int(clipQCoef) * piDequantCoef[deQuantIdx]) + iAdd ) >> rightShift |
---|
1359 | //(sizeof(Intermediate_Int) * 8) = inputBitDepth + dequantCoefBits - rightShift |
---|
1360 | const UInt dequantCoefBits = 1 + IQUANT_SHIFT + SCALING_LIST_BITS; |
---|
1361 | const UInt targetInputBitDepth = std::min<UInt>((maxLog2TrDynamicRange + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - dequantCoefBits)); |
---|
1362 | |
---|
1363 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
1364 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
1365 | |
---|
1366 | Int *piDequantCoef = getDequantCoeff(scalingListType,QP_rem,uiLog2TrSize-2); |
---|
1367 | |
---|
1368 | if(rightShift > 0) |
---|
1369 | { |
---|
1370 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
1371 | |
---|
1372 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1373 | { |
---|
1374 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1375 | const Intermediate_Int iCoeffQ = ((Intermediate_Int(clipQCoef) * piDequantCoef[n]) + iAdd ) >> rightShift; |
---|
1376 | |
---|
1377 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1378 | } |
---|
1379 | } |
---|
1380 | else |
---|
1381 | { |
---|
1382 | const Int leftShift = -rightShift; |
---|
1383 | |
---|
1384 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1385 | { |
---|
1386 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1387 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * piDequantCoef[n]) << leftShift; |
---|
1388 | |
---|
1389 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1390 | } |
---|
1391 | } |
---|
1392 | } |
---|
1393 | else |
---|
1394 | { |
---|
1395 | const Int scale = g_invQuantScales[QP_rem]; |
---|
1396 | const Int scaleBits = (IQUANT_SHIFT + 1) ; |
---|
1397 | |
---|
1398 | //from the dequantisation equation: |
---|
1399 | //iCoeffQ = Intermediate_Int((Int64(clipQCoef) * scale + iAdd) >> rightShift); |
---|
1400 | //(sizeof(Intermediate_Int) * 8) = inputBitDepth + scaleBits - rightShift |
---|
1401 | const UInt targetInputBitDepth = std::min<UInt>((maxLog2TrDynamicRange + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - scaleBits)); |
---|
1402 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
1403 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
1404 | |
---|
1405 | if (rightShift > 0) |
---|
1406 | { |
---|
1407 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
1408 | |
---|
1409 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1410 | { |
---|
1411 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1412 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale + iAdd) >> rightShift; |
---|
1413 | |
---|
1414 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1415 | } |
---|
1416 | } |
---|
1417 | else |
---|
1418 | { |
---|
1419 | const Int leftShift = -rightShift; |
---|
1420 | |
---|
1421 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1422 | { |
---|
1423 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1424 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale) << leftShift; |
---|
1425 | |
---|
1426 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1427 | } |
---|
1428 | } |
---|
1429 | } |
---|
1430 | } |
---|
1431 | |
---|
1432 | |
---|
1433 | Void TComTrQuant::init( UInt uiMaxTrSize, |
---|
1434 | Bool bUseRDOQ, |
---|
1435 | Bool bUseRDOQTS, |
---|
1436 | #if T0196_SELECTIVE_RDOQ |
---|
1437 | Bool useSelectiveRDOQ, |
---|
1438 | #endif |
---|
1439 | Bool bEnc, |
---|
1440 | Bool useTransformSkipFast |
---|
1441 | #if ADAPTIVE_QP_SELECTION |
---|
1442 | , Bool bUseAdaptQpSelect |
---|
1443 | #endif |
---|
1444 | ) |
---|
1445 | { |
---|
1446 | m_uiMaxTrSize = uiMaxTrSize; |
---|
1447 | m_bEnc = bEnc; |
---|
1448 | m_useRDOQ = bUseRDOQ; |
---|
1449 | m_useRDOQTS = bUseRDOQTS; |
---|
1450 | #if T0196_SELECTIVE_RDOQ |
---|
1451 | m_useSelectiveRDOQ = useSelectiveRDOQ; |
---|
1452 | #endif |
---|
1453 | #if ADAPTIVE_QP_SELECTION |
---|
1454 | m_bUseAdaptQpSelect = bUseAdaptQpSelect; |
---|
1455 | #endif |
---|
1456 | m_useTransformSkipFast = useTransformSkipFast; |
---|
1457 | } |
---|
1458 | |
---|
1459 | |
---|
1460 | Void TComTrQuant::transformNxN( TComTU & rTu, |
---|
1461 | const ComponentID compID, |
---|
1462 | Pel * pcResidual, |
---|
1463 | const UInt uiStride, |
---|
1464 | TCoeff * rpcCoeff, |
---|
1465 | #if ADAPTIVE_QP_SELECTION |
---|
1466 | TCoeff * pcArlCoeff, |
---|
1467 | #endif |
---|
1468 | TCoeff & uiAbsSum, |
---|
1469 | const QpParam & cQP |
---|
1470 | ) |
---|
1471 | { |
---|
1472 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1473 | const UInt uiWidth = rect.width; |
---|
1474 | const UInt uiHeight = rect.height; |
---|
1475 | TComDataCU* pcCU = rTu.getCU(); |
---|
1476 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1477 | const UInt uiOrgTrDepth = rTu.GetTransformDepthRel(); |
---|
1478 | |
---|
1479 | uiAbsSum=0; |
---|
1480 | |
---|
1481 | RDPCMMode rdpcmMode = RDPCM_OFF; |
---|
1482 | rdpcmNxN( rTu, compID, pcResidual, uiStride, cQP, rpcCoeff, uiAbsSum, rdpcmMode ); |
---|
1483 | |
---|
1484 | if (rdpcmMode == RDPCM_OFF) |
---|
1485 | { |
---|
1486 | uiAbsSum = 0; |
---|
1487 | //transform and quantise |
---|
1488 | if(pcCU->getCUTransquantBypass(uiAbsPartIdx)) |
---|
1489 | { |
---|
1490 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(compID); |
---|
1491 | const UInt uiSizeMinus1 = (uiWidth * uiHeight) - 1; |
---|
1492 | |
---|
1493 | for (UInt y = 0, coefficientIndex = 0; y<uiHeight; y++) |
---|
1494 | { |
---|
1495 | for (UInt x = 0; x<uiWidth; x++, coefficientIndex++) |
---|
1496 | { |
---|
1497 | const Pel currentSample = pcResidual[(y * uiStride) + x]; |
---|
1498 | |
---|
1499 | rpcCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] = currentSample; |
---|
1500 | uiAbsSum += TCoeff(abs(currentSample)); |
---|
1501 | } |
---|
1502 | } |
---|
1503 | } |
---|
1504 | else |
---|
1505 | { |
---|
1506 | #if DEBUG_TRANSFORM_AND_QUANTISE |
---|
1507 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at input to transform\n"; |
---|
1508 | printBlock(pcResidual, uiWidth, uiHeight, uiStride); |
---|
1509 | #endif |
---|
1510 | |
---|
1511 | assert( (pcCU->getSlice()->getSPS()->getMaxTrSize() >= uiWidth) ); |
---|
1512 | |
---|
1513 | if(pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0) |
---|
1514 | { |
---|
1515 | xTransformSkip( pcResidual, uiStride, m_plTempCoeff, rTu, compID ); |
---|
1516 | } |
---|
1517 | else |
---|
1518 | { |
---|
1519 | const Int channelBitDepth=pcCU->getSlice()->getSPS()->getBitDepth(toChannelType(compID)); |
---|
1520 | xT( channelBitDepth, rTu.useDST(compID), pcResidual, uiStride, m_plTempCoeff, uiWidth, uiHeight, pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)) ); |
---|
1521 | } |
---|
1522 | |
---|
1523 | #if DEBUG_TRANSFORM_AND_QUANTISE |
---|
1524 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU between transform and quantiser\n"; |
---|
1525 | printBlock(m_plTempCoeff, uiWidth, uiHeight, uiWidth); |
---|
1526 | #endif |
---|
1527 | |
---|
1528 | xQuant( rTu, m_plTempCoeff, rpcCoeff, |
---|
1529 | |
---|
1530 | #if ADAPTIVE_QP_SELECTION |
---|
1531 | pcArlCoeff, |
---|
1532 | #endif |
---|
1533 | uiAbsSum, compID, cQP ); |
---|
1534 | |
---|
1535 | #if DEBUG_TRANSFORM_AND_QUANTISE |
---|
1536 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at output of quantiser\n"; |
---|
1537 | printBlock(rpcCoeff, uiWidth, uiHeight, uiWidth); |
---|
1538 | #endif |
---|
1539 | } |
---|
1540 | } |
---|
1541 | |
---|
1542 | //set the CBF |
---|
1543 | pcCU->setCbfPartRange((((uiAbsSum > 0) ? 1 : 0) << uiOrgTrDepth), compID, uiAbsPartIdx, rTu.GetAbsPartIdxNumParts(compID)); |
---|
1544 | } |
---|
1545 | |
---|
1546 | |
---|
1547 | Void TComTrQuant::invTransformNxN( TComTU &rTu, |
---|
1548 | const ComponentID compID, |
---|
1549 | Pel *pcResidual, |
---|
1550 | const UInt uiStride, |
---|
1551 | TCoeff * pcCoeff, |
---|
1552 | const QpParam &cQP |
---|
1553 | DEBUG_STRING_FN_DECLAREP(psDebug)) |
---|
1554 | { |
---|
1555 | TComDataCU* pcCU=rTu.getCU(); |
---|
1556 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1557 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1558 | const UInt uiWidth = rect.width; |
---|
1559 | const UInt uiHeight = rect.height; |
---|
1560 | |
---|
1561 | if (uiWidth != uiHeight) //for intra, the TU will have been split above this level, so this condition won't be true, hence this only affects inter |
---|
1562 | { |
---|
1563 | //------------------------------------------------ |
---|
1564 | |
---|
1565 | //recurse deeper |
---|
1566 | |
---|
1567 | TComTURecurse subTURecurse(rTu, false, TComTU::VERTICAL_SPLIT, true, compID); |
---|
1568 | |
---|
1569 | do |
---|
1570 | { |
---|
1571 | //------------------ |
---|
1572 | |
---|
1573 | const UInt lineOffset = subTURecurse.GetSectionNumber() * subTURecurse.getRect(compID).height; |
---|
1574 | |
---|
1575 | Pel *subTUResidual = pcResidual + (lineOffset * uiStride); |
---|
1576 | TCoeff *subTUCoefficients = pcCoeff + (lineOffset * subTURecurse.getRect(compID).width); |
---|
1577 | |
---|
1578 | invTransformNxN(subTURecurse, compID, subTUResidual, uiStride, subTUCoefficients, cQP DEBUG_STRING_PASS_INTO(psDebug)); |
---|
1579 | |
---|
1580 | //------------------ |
---|
1581 | |
---|
1582 | } while (subTURecurse.nextSection(rTu)); |
---|
1583 | |
---|
1584 | //------------------------------------------------ |
---|
1585 | |
---|
1586 | return; |
---|
1587 | } |
---|
1588 | |
---|
1589 | #if DEBUG_STRING |
---|
1590 | if (psDebug) |
---|
1591 | { |
---|
1592 | std::stringstream ss(stringstream::out); |
---|
1593 | printBlockToStream(ss, (compID==0)?"###InvTran ip Ch0: " : ((compID==1)?"###InvTran ip Ch1: ":"###InvTran ip Ch2: "), pcCoeff, uiWidth, uiHeight, uiWidth); |
---|
1594 | DEBUG_STRING_APPEND((*psDebug), ss.str()) |
---|
1595 | } |
---|
1596 | #endif |
---|
1597 | |
---|
1598 | if(pcCU->getCUTransquantBypass(uiAbsPartIdx)) |
---|
1599 | { |
---|
1600 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(compID); |
---|
1601 | const UInt uiSizeMinus1 = (uiWidth * uiHeight) - 1; |
---|
1602 | |
---|
1603 | for (UInt y = 0, coefficientIndex = 0; y<uiHeight; y++) |
---|
1604 | { |
---|
1605 | for (UInt x = 0; x<uiWidth; x++, coefficientIndex++) |
---|
1606 | { |
---|
1607 | pcResidual[(y * uiStride) + x] = Pel(pcCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex]); |
---|
1608 | } |
---|
1609 | } |
---|
1610 | } |
---|
1611 | else |
---|
1612 | { |
---|
1613 | #if DEBUG_TRANSFORM_AND_QUANTISE |
---|
1614 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at input to dequantiser\n"; |
---|
1615 | printBlock(pcCoeff, uiWidth, uiHeight, uiWidth); |
---|
1616 | #endif |
---|
1617 | |
---|
1618 | xDeQuant(rTu, pcCoeff, m_plTempCoeff, compID, cQP); |
---|
1619 | |
---|
1620 | #if DEBUG_TRANSFORM_AND_QUANTISE |
---|
1621 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU between dequantiser and inverse-transform\n"; |
---|
1622 | printBlock(m_plTempCoeff, uiWidth, uiHeight, uiWidth); |
---|
1623 | #endif |
---|
1624 | |
---|
1625 | #if DEBUG_STRING |
---|
1626 | if (psDebug) |
---|
1627 | { |
---|
1628 | std::stringstream ss(stringstream::out); |
---|
1629 | printBlockToStream(ss, "###InvTran deq: ", m_plTempCoeff, uiWidth, uiHeight, uiWidth); |
---|
1630 | (*psDebug)+=ss.str(); |
---|
1631 | } |
---|
1632 | #endif |
---|
1633 | |
---|
1634 | if(pcCU->getTransformSkip(uiAbsPartIdx, compID)) |
---|
1635 | { |
---|
1636 | xITransformSkip( m_plTempCoeff, pcResidual, uiStride, rTu, compID ); |
---|
1637 | |
---|
1638 | #if DEBUG_STRING |
---|
1639 | if (psDebug) |
---|
1640 | { |
---|
1641 | std::stringstream ss(stringstream::out); |
---|
1642 | printBlockToStream(ss, "###InvTran resi: ", pcResidual, uiWidth, uiHeight, uiStride); |
---|
1643 | (*psDebug)+=ss.str(); |
---|
1644 | (*psDebug)+="(<- was a Transform-skipped block)\n"; |
---|
1645 | } |
---|
1646 | #endif |
---|
1647 | } |
---|
1648 | else |
---|
1649 | { |
---|
1650 | #if O0043_BEST_EFFORT_DECODING |
---|
1651 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getStreamBitDepth(toChannelType(compID)); |
---|
1652 | #else |
---|
1653 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getBitDepth(toChannelType(compID)); |
---|
1654 | #endif |
---|
1655 | xIT( channelBitDepth, rTu.useDST(compID), m_plTempCoeff, pcResidual, uiStride, uiWidth, uiHeight, pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)) ); |
---|
1656 | |
---|
1657 | #if DEBUG_STRING |
---|
1658 | if (psDebug) |
---|
1659 | { |
---|
1660 | std::stringstream ss(stringstream::out); |
---|
1661 | printBlockToStream(ss, "###InvTran resi: ", pcResidual, uiWidth, uiHeight, uiStride); |
---|
1662 | (*psDebug)+=ss.str(); |
---|
1663 | (*psDebug)+="(<- was a Transformed block)\n"; |
---|
1664 | } |
---|
1665 | #endif |
---|
1666 | } |
---|
1667 | |
---|
1668 | #if DEBUG_TRANSFORM_AND_QUANTISE |
---|
1669 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at output of inverse-transform\n"; |
---|
1670 | printBlock(pcResidual, uiWidth, uiHeight, uiStride); |
---|
1671 | g_debugCounter++; |
---|
1672 | #endif |
---|
1673 | } |
---|
1674 | |
---|
1675 | invRdpcmNxN( rTu, compID, pcResidual, uiStride ); |
---|
1676 | } |
---|
1677 | |
---|
1678 | Void TComTrQuant::invRecurTransformNxN( const ComponentID compID, |
---|
1679 | TComYuv *pResidual, |
---|
1680 | TComTU &rTu) |
---|
1681 | { |
---|
1682 | if (!rTu.ProcessComponentSection(compID)) |
---|
1683 | { |
---|
1684 | return; |
---|
1685 | } |
---|
1686 | |
---|
1687 | TComDataCU* pcCU = rTu.getCU(); |
---|
1688 | UInt absPartIdxTU = rTu.GetAbsPartIdxTU(); |
---|
1689 | UInt uiTrMode=rTu.GetTransformDepthRel(); |
---|
1690 | if( (pcCU->getCbf(absPartIdxTU, compID, uiTrMode) == 0) && (isLuma(compID) || !pcCU->getSlice()->getPPS()->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag()) ) |
---|
1691 | { |
---|
1692 | return; |
---|
1693 | } |
---|
1694 | |
---|
1695 | if( uiTrMode == pcCU->getTransformIdx( absPartIdxTU ) ) |
---|
1696 | { |
---|
1697 | const TComRectangle &tuRect = rTu.getRect(compID); |
---|
1698 | const Int uiStride = pResidual->getStride( compID ); |
---|
1699 | Pel *rpcResidual = pResidual->getAddr( compID ); |
---|
1700 | UInt uiAddr = (tuRect.x0 + uiStride*tuRect.y0); |
---|
1701 | Pel *pResi = rpcResidual + uiAddr; |
---|
1702 | TCoeff *pcCoeff = pcCU->getCoeff(compID) + rTu.getCoefficientOffset(compID); |
---|
1703 | |
---|
1704 | const QpParam cQP(*pcCU, compID); |
---|
1705 | |
---|
1706 | if(pcCU->getCbf(absPartIdxTU, compID, uiTrMode) != 0) |
---|
1707 | { |
---|
1708 | DEBUG_STRING_NEW(sTemp) |
---|
1709 | #if DEBUG_STRING |
---|
1710 | std::string *psDebug=((DebugOptionList::DebugString_InvTran.getInt()&(pcCU->isIntra(absPartIdxTU)?1:(pcCU->isInter(absPartIdxTU)?2:4)))!=0) ? &sTemp : 0; |
---|
1711 | #endif |
---|
1712 | |
---|
1713 | invTransformNxN( rTu, compID, pResi, uiStride, pcCoeff, cQP DEBUG_STRING_PASS_INTO(psDebug) ); |
---|
1714 | |
---|
1715 | #if DEBUG_STRING |
---|
1716 | if (psDebug != 0) |
---|
1717 | { |
---|
1718 | std::cout << (*psDebug); |
---|
1719 | } |
---|
1720 | #endif |
---|
1721 | } |
---|
1722 | |
---|
1723 | if (isChroma(compID) && (pcCU->getCrossComponentPredictionAlpha(absPartIdxTU, compID) != 0)) |
---|
1724 | { |
---|
1725 | const Pel *piResiLuma = pResidual->getAddr( COMPONENT_Y ); |
---|
1726 | const Int strideLuma = pResidual->getStride( COMPONENT_Y ); |
---|
1727 | const Int tuWidth = rTu.getRect( compID ).width; |
---|
1728 | const Int tuHeight = rTu.getRect( compID ).height; |
---|
1729 | |
---|
1730 | if(pcCU->getCbf(absPartIdxTU, COMPONENT_Y, uiTrMode) != 0) |
---|
1731 | { |
---|
1732 | pResi = rpcResidual + uiAddr; |
---|
1733 | const Pel *pResiLuma = piResiLuma + uiAddr; |
---|
1734 | |
---|
1735 | crossComponentPrediction( rTu, compID, pResiLuma, pResi, pResi, tuWidth, tuHeight, strideLuma, uiStride, uiStride, true ); |
---|
1736 | } |
---|
1737 | } |
---|
1738 | } |
---|
1739 | else |
---|
1740 | { |
---|
1741 | TComTURecurse tuRecurseChild(rTu, false); |
---|
1742 | do |
---|
1743 | { |
---|
1744 | invRecurTransformNxN( compID, pResidual, tuRecurseChild ); |
---|
1745 | } while (tuRecurseChild.nextSection(rTu)); |
---|
1746 | } |
---|
1747 | } |
---|
1748 | |
---|
1749 | Void TComTrQuant::applyForwardRDPCM( TComTU& rTu, const ComponentID compID, Pel* pcResidual, const UInt uiStride, const QpParam& cQP, TCoeff* pcCoeff, TCoeff &uiAbsSum, const RDPCMMode mode ) |
---|
1750 | { |
---|
1751 | TComDataCU *pcCU=rTu.getCU(); |
---|
1752 | const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); |
---|
1753 | |
---|
1754 | const Bool bLossless = pcCU->getCUTransquantBypass( uiAbsPartIdx ); |
---|
1755 | const UInt uiWidth = rTu.getRect(compID).width; |
---|
1756 | const UInt uiHeight = rTu.getRect(compID).height; |
---|
1757 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(compID); |
---|
1758 | const UInt uiSizeMinus1 = (uiWidth * uiHeight) - 1; |
---|
1759 | |
---|
1760 | UInt uiX = 0; |
---|
1761 | UInt uiY = 0; |
---|
1762 | |
---|
1763 | UInt &majorAxis = (mode == RDPCM_VER) ? uiX : uiY; |
---|
1764 | UInt &minorAxis = (mode == RDPCM_VER) ? uiY : uiX; |
---|
1765 | const UInt majorAxisLimit = (mode == RDPCM_VER) ? uiWidth : uiHeight; |
---|
1766 | const UInt minorAxisLimit = (mode == RDPCM_VER) ? uiHeight : uiWidth; |
---|
1767 | |
---|
1768 | const Bool bUseHalfRoundingPoint = (mode != RDPCM_OFF); |
---|
1769 | |
---|
1770 | uiAbsSum = 0; |
---|
1771 | |
---|
1772 | for ( majorAxis = 0; majorAxis < majorAxisLimit; majorAxis++ ) |
---|
1773 | { |
---|
1774 | TCoeff accumulatorValue = 0; // 32-bit accumulator |
---|
1775 | for ( minorAxis = 0; minorAxis < minorAxisLimit; minorAxis++ ) |
---|
1776 | { |
---|
1777 | const UInt sampleIndex = (uiY * uiWidth) + uiX; |
---|
1778 | const UInt coefficientIndex = (rotateResidual ? (uiSizeMinus1-sampleIndex) : sampleIndex); |
---|
1779 | const Pel currentSample = pcResidual[(uiY * uiStride) + uiX]; |
---|
1780 | const TCoeff encoderSideDelta = TCoeff(currentSample) - accumulatorValue; |
---|
1781 | |
---|
1782 | Pel reconstructedDelta; |
---|
1783 | if ( bLossless ) |
---|
1784 | { |
---|
1785 | pcCoeff[coefficientIndex] = encoderSideDelta; |
---|
1786 | reconstructedDelta = (Pel) encoderSideDelta; |
---|
1787 | } |
---|
1788 | else |
---|
1789 | { |
---|
1790 | transformSkipQuantOneSample(rTu, compID, encoderSideDelta, pcCoeff, coefficientIndex, cQP, bUseHalfRoundingPoint); |
---|
1791 | invTrSkipDeQuantOneSample (rTu, compID, pcCoeff[coefficientIndex], reconstructedDelta, cQP, coefficientIndex); |
---|
1792 | } |
---|
1793 | |
---|
1794 | uiAbsSum += abs(pcCoeff[coefficientIndex]); |
---|
1795 | |
---|
1796 | if (mode != RDPCM_OFF) |
---|
1797 | { |
---|
1798 | accumulatorValue += reconstructedDelta; |
---|
1799 | } |
---|
1800 | } |
---|
1801 | } |
---|
1802 | } |
---|
1803 | |
---|
1804 | Void TComTrQuant::rdpcmNxN ( TComTU& rTu, const ComponentID compID, Pel* pcResidual, const UInt uiStride, const QpParam& cQP, TCoeff* pcCoeff, TCoeff &uiAbsSum, RDPCMMode& rdpcmMode ) |
---|
1805 | { |
---|
1806 | TComDataCU *pcCU=rTu.getCU(); |
---|
1807 | const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); |
---|
1808 | |
---|
1809 | if (!pcCU->isRDPCMEnabled(uiAbsPartIdx) || ((pcCU->getTransformSkip(uiAbsPartIdx, compID) == 0) && !pcCU->getCUTransquantBypass(uiAbsPartIdx))) |
---|
1810 | { |
---|
1811 | rdpcmMode = RDPCM_OFF; |
---|
1812 | } |
---|
1813 | else if ( pcCU->isIntra( uiAbsPartIdx ) ) |
---|
1814 | { |
---|
1815 | const ChromaFormat chFmt = pcCU->getPic()->getPicYuvOrg()->getChromaFormat(); |
---|
1816 | const ChannelType chType = toChannelType(compID); |
---|
1817 | const UInt uiChPredMode = pcCU->getIntraDir( chType, uiAbsPartIdx ); |
---|
1818 | const TComSPS *sps=pcCU->getSlice()->getSPS(); |
---|
1819 | const UInt partsPerMinCU = 1<<(2*(sps->getMaxTotalCUDepth() - sps->getLog2DiffMaxMinCodingBlockSize())); |
---|
1820 | const UInt uiChCodedMode = (uiChPredMode==DM_CHROMA_IDX && isChroma(compID)) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, chFmt, partsPerMinCU)) : uiChPredMode; |
---|
1821 | const UInt uiChFinalMode = ((chFmt == CHROMA_422) && isChroma(compID)) ? g_chroma422IntraAngleMappingTable[uiChCodedMode] : uiChCodedMode; |
---|
1822 | |
---|
1823 | if (uiChFinalMode == VER_IDX || uiChFinalMode == HOR_IDX) |
---|
1824 | { |
---|
1825 | rdpcmMode = (uiChFinalMode == VER_IDX) ? RDPCM_VER : RDPCM_HOR; |
---|
1826 | applyForwardRDPCM( rTu, compID, pcResidual, uiStride, cQP, pcCoeff, uiAbsSum, rdpcmMode ); |
---|
1827 | } |
---|
1828 | else |
---|
1829 | { |
---|
1830 | rdpcmMode = RDPCM_OFF; |
---|
1831 | } |
---|
1832 | } |
---|
1833 | else // not intra, need to select the best mode |
---|
1834 | { |
---|
1835 | const UInt uiWidth = rTu.getRect(compID).width; |
---|
1836 | const UInt uiHeight = rTu.getRect(compID).height; |
---|
1837 | |
---|
1838 | RDPCMMode bestMode = NUMBER_OF_RDPCM_MODES; |
---|
1839 | TCoeff bestAbsSum = std::numeric_limits<TCoeff>::max(); |
---|
1840 | TCoeff bestCoefficients[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
1841 | |
---|
1842 | for (UInt modeIndex = 0; modeIndex < NUMBER_OF_RDPCM_MODES; modeIndex++) |
---|
1843 | { |
---|
1844 | const RDPCMMode mode = RDPCMMode(modeIndex); |
---|
1845 | |
---|
1846 | TCoeff currAbsSum = 0; |
---|
1847 | |
---|
1848 | applyForwardRDPCM( rTu, compID, pcResidual, uiStride, cQP, pcCoeff, currAbsSum, mode ); |
---|
1849 | |
---|
1850 | if (currAbsSum < bestAbsSum) |
---|
1851 | { |
---|
1852 | bestMode = mode; |
---|
1853 | bestAbsSum = currAbsSum; |
---|
1854 | if (mode != RDPCM_OFF) |
---|
1855 | { |
---|
1856 | memcpy(bestCoefficients, pcCoeff, (uiWidth * uiHeight * sizeof(TCoeff))); |
---|
1857 | } |
---|
1858 | } |
---|
1859 | } |
---|
1860 | |
---|
1861 | rdpcmMode = bestMode; |
---|
1862 | uiAbsSum = bestAbsSum; |
---|
1863 | |
---|
1864 | if (rdpcmMode != RDPCM_OFF) //the TU is re-transformed and quantised if DPCM_OFF is returned, so there is no need to preserve it here |
---|
1865 | { |
---|
1866 | memcpy(pcCoeff, bestCoefficients, (uiWidth * uiHeight * sizeof(TCoeff))); |
---|
1867 | } |
---|
1868 | } |
---|
1869 | |
---|
1870 | pcCU->setExplicitRdpcmModePartRange(rdpcmMode, compID, uiAbsPartIdx, rTu.GetAbsPartIdxNumParts(compID)); |
---|
1871 | } |
---|
1872 | |
---|
1873 | Void TComTrQuant::invRdpcmNxN( TComTU& rTu, const ComponentID compID, Pel* pcResidual, const UInt uiStride ) |
---|
1874 | { |
---|
1875 | TComDataCU *pcCU=rTu.getCU(); |
---|
1876 | const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); |
---|
1877 | |
---|
1878 | if (pcCU->isRDPCMEnabled( uiAbsPartIdx ) && ((pcCU->getTransformSkip(uiAbsPartIdx, compID ) != 0) || pcCU->getCUTransquantBypass(uiAbsPartIdx))) |
---|
1879 | { |
---|
1880 | const UInt uiWidth = rTu.getRect(compID).width; |
---|
1881 | const UInt uiHeight = rTu.getRect(compID).height; |
---|
1882 | |
---|
1883 | RDPCMMode rdpcmMode = RDPCM_OFF; |
---|
1884 | |
---|
1885 | if ( pcCU->isIntra( uiAbsPartIdx ) ) |
---|
1886 | { |
---|
1887 | const ChromaFormat chFmt = pcCU->getPic()->getPicYuvRec()->getChromaFormat(); |
---|
1888 | const ChannelType chType = toChannelType(compID); |
---|
1889 | const UInt uiChPredMode = pcCU->getIntraDir( chType, uiAbsPartIdx ); |
---|
1890 | const TComSPS *sps=pcCU->getSlice()->getSPS(); |
---|
1891 | const UInt partsPerMinCU = 1<<(2*(sps->getMaxTotalCUDepth() - sps->getLog2DiffMaxMinCodingBlockSize())); |
---|
1892 | const UInt uiChCodedMode = (uiChPredMode==DM_CHROMA_IDX && isChroma(compID)) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, chFmt, partsPerMinCU)) : uiChPredMode; |
---|
1893 | const UInt uiChFinalMode = ((chFmt == CHROMA_422) && isChroma(compID)) ? g_chroma422IntraAngleMappingTable[uiChCodedMode] : uiChCodedMode; |
---|
1894 | |
---|
1895 | if (uiChFinalMode == VER_IDX || uiChFinalMode == HOR_IDX) |
---|
1896 | { |
---|
1897 | rdpcmMode = (uiChFinalMode == VER_IDX) ? RDPCM_VER : RDPCM_HOR; |
---|
1898 | } |
---|
1899 | } |
---|
1900 | else // not intra case |
---|
1901 | { |
---|
1902 | rdpcmMode = RDPCMMode(pcCU->getExplicitRdpcmMode( compID, uiAbsPartIdx )); |
---|
1903 | } |
---|
1904 | |
---|
1905 | const TCoeff pelMin=(TCoeff) std::numeric_limits<Pel>::min(); |
---|
1906 | const TCoeff pelMax=(TCoeff) std::numeric_limits<Pel>::max(); |
---|
1907 | if (rdpcmMode == RDPCM_VER) |
---|
1908 | { |
---|
1909 | for( UInt uiX = 0; uiX < uiWidth; uiX++ ) |
---|
1910 | { |
---|
1911 | Pel *pcCurResidual = pcResidual+uiX; |
---|
1912 | TCoeff accumulator = *pcCurResidual; // 32-bit accumulator |
---|
1913 | pcCurResidual+=uiStride; |
---|
1914 | for( UInt uiY = 1; uiY < uiHeight; uiY++, pcCurResidual+=uiStride ) |
---|
1915 | { |
---|
1916 | accumulator += *(pcCurResidual); |
---|
1917 | *pcCurResidual = (Pel)Clip3<TCoeff>(pelMin, pelMax, accumulator); |
---|
1918 | } |
---|
1919 | } |
---|
1920 | } |
---|
1921 | else if (rdpcmMode == RDPCM_HOR) |
---|
1922 | { |
---|
1923 | for( UInt uiY = 0; uiY < uiHeight; uiY++ ) |
---|
1924 | { |
---|
1925 | Pel *pcCurResidual = pcResidual+uiY*uiStride; |
---|
1926 | TCoeff accumulator = *pcCurResidual; |
---|
1927 | pcCurResidual++; |
---|
1928 | for( UInt uiX = 1; uiX < uiWidth; uiX++, pcCurResidual++ ) |
---|
1929 | { |
---|
1930 | accumulator += *(pcCurResidual); |
---|
1931 | *pcCurResidual = (Pel)Clip3<TCoeff>(pelMin, pelMax, accumulator); |
---|
1932 | } |
---|
1933 | } |
---|
1934 | } |
---|
1935 | } |
---|
1936 | } |
---|
1937 | |
---|
1938 | // ------------------------------------------------------------------------------------------------ |
---|
1939 | // Logical transform |
---|
1940 | // ------------------------------------------------------------------------------------------------ |
---|
1941 | |
---|
1942 | /** Wrapper function between HM interface and core NxN forward transform (2D) |
---|
1943 | * \param channelBitDepth bit depth of channel |
---|
1944 | * \param useDST |
---|
1945 | * \param piBlkResi input data (residual) |
---|
1946 | * \param uiStride stride of input residual data |
---|
1947 | * \param psCoeff output data (transform coefficients) |
---|
1948 | * \param iWidth transform width |
---|
1949 | * \param iHeight transform height |
---|
1950 | * \param maxLog2TrDynamicRange |
---|
1951 | */ |
---|
1952 | Void TComTrQuant::xT( const Int channelBitDepth, Bool useDST, Pel* piBlkResi, UInt uiStride, TCoeff* psCoeff, Int iWidth, Int iHeight, const Int maxLog2TrDynamicRange ) |
---|
1953 | { |
---|
1954 | #if MATRIX_MULT |
---|
1955 | if( iWidth == iHeight) |
---|
1956 | { |
---|
1957 | xTr(channelBitDepth, piBlkResi, psCoeff, uiStride, (UInt)iWidth, useDST, maxLog2TrDynamicRange); |
---|
1958 | return; |
---|
1959 | } |
---|
1960 | #endif |
---|
1961 | |
---|
1962 | TCoeff block[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
1963 | TCoeff coeff[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
1964 | |
---|
1965 | for (Int y = 0; y < iHeight; y++) |
---|
1966 | { |
---|
1967 | for (Int x = 0; x < iWidth; x++) |
---|
1968 | { |
---|
1969 | block[(y * iWidth) + x] = piBlkResi[(y * uiStride) + x]; |
---|
1970 | } |
---|
1971 | } |
---|
1972 | |
---|
1973 | xTrMxN( channelBitDepth, block, coeff, iWidth, iHeight, useDST, maxLog2TrDynamicRange ); |
---|
1974 | |
---|
1975 | memcpy(psCoeff, coeff, (iWidth * iHeight * sizeof(TCoeff))); |
---|
1976 | } |
---|
1977 | |
---|
1978 | /** Wrapper function between HM interface and core NxN inverse transform (2D) |
---|
1979 | * \param channelBitDepth bit depth of channel |
---|
1980 | * \param useDST |
---|
1981 | * \param plCoef input data (transform coefficients) |
---|
1982 | * \param pResidual output data (residual) |
---|
1983 | * \param uiStride stride of input residual data |
---|
1984 | * \param iWidth transform width |
---|
1985 | * \param iHeight transform height |
---|
1986 | * \param maxLog2TrDynamicRange |
---|
1987 | */ |
---|
1988 | Void TComTrQuant::xIT( const Int channelBitDepth, Bool useDST, TCoeff* plCoef, Pel* pResidual, UInt uiStride, Int iWidth, Int iHeight, const Int maxLog2TrDynamicRange ) |
---|
1989 | { |
---|
1990 | #if MATRIX_MULT |
---|
1991 | if( iWidth == iHeight ) |
---|
1992 | { |
---|
1993 | xITr(channelBitDepth, plCoef, pResidual, uiStride, (UInt)iWidth, useDST, maxLog2TrDynamicRange); |
---|
1994 | return; |
---|
1995 | } |
---|
1996 | #endif |
---|
1997 | |
---|
1998 | TCoeff block[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
1999 | TCoeff coeff[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2000 | |
---|
2001 | memcpy(coeff, plCoef, (iWidth * iHeight * sizeof(TCoeff))); |
---|
2002 | |
---|
2003 | xITrMxN( channelBitDepth, coeff, block, iWidth, iHeight, useDST, maxLog2TrDynamicRange ); |
---|
2004 | |
---|
2005 | for (Int y = 0; y < iHeight; y++) |
---|
2006 | { |
---|
2007 | for (Int x = 0; x < iWidth; x++) |
---|
2008 | { |
---|
2009 | pResidual[(y * uiStride) + x] = Pel(block[(y * iWidth) + x]); |
---|
2010 | } |
---|
2011 | } |
---|
2012 | } |
---|
2013 | |
---|
2014 | /** Wrapper function between HM interface and core 4x4 transform skipping |
---|
2015 | * \param piBlkResi input data (residual) |
---|
2016 | * \param uiStride stride of input residual data |
---|
2017 | * \param psCoeff output data (transform coefficients) |
---|
2018 | * \param rTu reference to transform data |
---|
2019 | * \param component colour component |
---|
2020 | */ |
---|
2021 | Void TComTrQuant::xTransformSkip( Pel* piBlkResi, UInt uiStride, TCoeff* psCoeff, TComTU &rTu, const ComponentID component ) |
---|
2022 | { |
---|
2023 | const TComRectangle &rect = rTu.getRect(component); |
---|
2024 | const Int width = rect.width; |
---|
2025 | const Int height = rect.height; |
---|
2026 | const Int maxLog2TrDynamicRange = rTu.getCU()->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(component)); |
---|
2027 | const Int channelBitDepth = rTu.getCU()->getSlice()->getSPS()->getBitDepth(toChannelType(component)); |
---|
2028 | |
---|
2029 | Int iTransformShift = getTransformShift(channelBitDepth, rTu.GetEquivalentLog2TrSize(component), maxLog2TrDynamicRange); |
---|
2030 | if (rTu.getCU()->getSlice()->getSPS()->getSpsRangeExtension().getExtendedPrecisionProcessingFlag()) |
---|
2031 | { |
---|
2032 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
2033 | } |
---|
2034 | |
---|
2035 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(component); |
---|
2036 | const UInt uiSizeMinus1 = (width * height) - 1; |
---|
2037 | |
---|
2038 | if (iTransformShift >= 0) |
---|
2039 | { |
---|
2040 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
2041 | { |
---|
2042 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
2043 | { |
---|
2044 | psCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] = TCoeff(piBlkResi[(y * uiStride) + x]) << iTransformShift; |
---|
2045 | } |
---|
2046 | } |
---|
2047 | } |
---|
2048 | else //for very high bit depths |
---|
2049 | { |
---|
2050 | iTransformShift = -iTransformShift; |
---|
2051 | const TCoeff offset = 1 << (iTransformShift - 1); |
---|
2052 | |
---|
2053 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
2054 | { |
---|
2055 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
2056 | { |
---|
2057 | psCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] = (TCoeff(piBlkResi[(y * uiStride) + x]) + offset) >> iTransformShift; |
---|
2058 | } |
---|
2059 | } |
---|
2060 | } |
---|
2061 | } |
---|
2062 | |
---|
2063 | /** Wrapper function between HM interface and core NxN transform skipping |
---|
2064 | * \param plCoef input data (coefficients) |
---|
2065 | * \param pResidual output data (residual) |
---|
2066 | * \param uiStride stride of input residual data |
---|
2067 | * \param rTu reference to transform data |
---|
2068 | * \param component colour component ID |
---|
2069 | */ |
---|
2070 | Void TComTrQuant::xITransformSkip( TCoeff* plCoef, Pel* pResidual, UInt uiStride, TComTU &rTu, const ComponentID component ) |
---|
2071 | { |
---|
2072 | const TComRectangle &rect = rTu.getRect(component); |
---|
2073 | const Int width = rect.width; |
---|
2074 | const Int height = rect.height; |
---|
2075 | const Int maxLog2TrDynamicRange = rTu.getCU()->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(component)); |
---|
2076 | #if O0043_BEST_EFFORT_DECODING |
---|
2077 | const Int channelBitDepth = rTu.getCU()->getSlice()->getSPS()->getStreamBitDepth(toChannelType(component)); |
---|
2078 | #else |
---|
2079 | const Int channelBitDepth = rTu.getCU()->getSlice()->getSPS()->getBitDepth(toChannelType(component)); |
---|
2080 | #endif |
---|
2081 | |
---|
2082 | Int iTransformShift = getTransformShift(channelBitDepth, rTu.GetEquivalentLog2TrSize(component), maxLog2TrDynamicRange); |
---|
2083 | if (rTu.getCU()->getSlice()->getSPS()->getSpsRangeExtension().getExtendedPrecisionProcessingFlag()) |
---|
2084 | { |
---|
2085 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
2086 | } |
---|
2087 | |
---|
2088 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(component); |
---|
2089 | const UInt uiSizeMinus1 = (width * height) - 1; |
---|
2090 | |
---|
2091 | if (iTransformShift >= 0) |
---|
2092 | { |
---|
2093 | const TCoeff offset = iTransformShift==0 ? 0 : (1 << (iTransformShift - 1)); |
---|
2094 | |
---|
2095 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
2096 | { |
---|
2097 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
2098 | { |
---|
2099 | pResidual[(y * uiStride) + x] = Pel((plCoef[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] + offset) >> iTransformShift); |
---|
2100 | } |
---|
2101 | } |
---|
2102 | } |
---|
2103 | else //for very high bit depths |
---|
2104 | { |
---|
2105 | iTransformShift = -iTransformShift; |
---|
2106 | |
---|
2107 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
2108 | { |
---|
2109 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
2110 | { |
---|
2111 | pResidual[(y * uiStride) + x] = Pel(plCoef[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] << iTransformShift); |
---|
2112 | } |
---|
2113 | } |
---|
2114 | } |
---|
2115 | } |
---|
2116 | |
---|
2117 | /** RDOQ with CABAC |
---|
2118 | * \param rTu reference to transform data |
---|
2119 | * \param plSrcCoeff pointer to input buffer |
---|
2120 | * \param piDstCoeff reference to pointer to output buffer |
---|
2121 | * \param piArlDstCoeff |
---|
2122 | * \param uiAbsSum reference to absolute sum of quantized transform coefficient |
---|
2123 | * \param compID colour component ID |
---|
2124 | * \param cQP reference to quantization parameters |
---|
2125 | |
---|
2126 | * Rate distortion optimized quantization for entropy |
---|
2127 | * coding engines using probability models like CABAC |
---|
2128 | */ |
---|
2129 | Void TComTrQuant::xRateDistOptQuant ( TComTU &rTu, |
---|
2130 | TCoeff * plSrcCoeff, |
---|
2131 | TCoeff * piDstCoeff, |
---|
2132 | #if ADAPTIVE_QP_SELECTION |
---|
2133 | TCoeff * piArlDstCoeff, |
---|
2134 | #endif |
---|
2135 | TCoeff &uiAbsSum, |
---|
2136 | const ComponentID compID, |
---|
2137 | const QpParam &cQP ) |
---|
2138 | { |
---|
2139 | const TComRectangle & rect = rTu.getRect(compID); |
---|
2140 | const UInt uiWidth = rect.width; |
---|
2141 | const UInt uiHeight = rect.height; |
---|
2142 | TComDataCU * pcCU = rTu.getCU(); |
---|
2143 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
2144 | const ChannelType channelType = toChannelType(compID); |
---|
2145 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
2146 | |
---|
2147 | const Bool extendedPrecision = pcCU->getSlice()->getSPS()->getSpsRangeExtension().getExtendedPrecisionProcessingFlag(); |
---|
2148 | const Int maxLog2TrDynamicRange = pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)); |
---|
2149 | const Int channelBitDepth = rTu.getCU()->getSlice()->getSPS()->getBitDepth(channelType); |
---|
2150 | |
---|
2151 | /* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be |
---|
2152 | * implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the |
---|
2153 | * uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller) |
---|
2154 | * Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result |
---|
2155 | */ |
---|
2156 | |
---|
2157 | // Represents scaling through forward transform |
---|
2158 | Int iTransformShift = getTransformShift(channelBitDepth, uiLog2TrSize, maxLog2TrDynamicRange); |
---|
2159 | if ((pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0) && extendedPrecision) |
---|
2160 | { |
---|
2161 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
2162 | } |
---|
2163 | |
---|
2164 | const Bool bUseGolombRiceParameterAdaptation = pcCU->getSlice()->getSPS()->getSpsRangeExtension().getPersistentRiceAdaptationEnabledFlag(); |
---|
2165 | const UInt initialGolombRiceParameter = m_pcEstBitsSbac->golombRiceAdaptationStatistics[rTu.getGolombRiceStatisticsIndex(compID)] / RExt__GOLOMB_RICE_INCREMENT_DIVISOR; |
---|
2166 | UInt uiGoRiceParam = initialGolombRiceParameter; |
---|
2167 | Double d64BlockUncodedCost = 0; |
---|
2168 | const UInt uiLog2BlockWidth = g_aucConvertToBit[ uiWidth ] + 2; |
---|
2169 | const UInt uiLog2BlockHeight = g_aucConvertToBit[ uiHeight ] + 2; |
---|
2170 | const UInt uiMaxNumCoeff = uiWidth * uiHeight; |
---|
2171 | assert(compID<MAX_NUM_COMPONENT); |
---|
2172 | |
---|
2173 | Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
2174 | assert(scalingListType < SCALING_LIST_NUM); |
---|
2175 | |
---|
2176 | #if ADAPTIVE_QP_SELECTION |
---|
2177 | memset(piArlDstCoeff, 0, sizeof(TCoeff) * uiMaxNumCoeff); |
---|
2178 | #endif |
---|
2179 | |
---|
2180 | Double pdCostCoeff [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2181 | Double pdCostSig [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2182 | Double pdCostCoeff0[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2183 | memset( pdCostCoeff, 0, sizeof(Double) * uiMaxNumCoeff ); |
---|
2184 | memset( pdCostSig, 0, sizeof(Double) * uiMaxNumCoeff ); |
---|
2185 | Int rateIncUp [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2186 | Int rateIncDown [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2187 | Int sigRateDelta[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2188 | TCoeff deltaU [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2189 | memset( rateIncUp, 0, sizeof(Int ) * uiMaxNumCoeff ); |
---|
2190 | memset( rateIncDown, 0, sizeof(Int ) * uiMaxNumCoeff ); |
---|
2191 | memset( sigRateDelta, 0, sizeof(Int ) * uiMaxNumCoeff ); |
---|
2192 | memset( deltaU, 0, sizeof(TCoeff) * uiMaxNumCoeff ); |
---|
2193 | |
---|
2194 | const Int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits |
---|
2195 | const Double *const pdErrScale = getErrScaleCoeff(scalingListType, (uiLog2TrSize-2), cQP.rem); |
---|
2196 | const Int *const piQCoef = getQuantCoeff(scalingListType, cQP.rem, (uiLog2TrSize-2)); |
---|
2197 | |
---|
2198 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0)); |
---|
2199 | const Int defaultQuantisationCoefficient = g_quantScales[cQP.rem]; |
---|
2200 | const Double defaultErrorScale = getErrScaleCoeffNoScalingList(scalingListType, (uiLog2TrSize-2), cQP.rem); |
---|
2201 | |
---|
2202 | const TCoeff entropyCodingMinimum = -(1 << maxLog2TrDynamicRange); |
---|
2203 | const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
2204 | |
---|
2205 | #if ADAPTIVE_QP_SELECTION |
---|
2206 | Int iQBitsC = iQBits - ARL_C_PRECISION; |
---|
2207 | Int iAddC = 1 << (iQBitsC-1); |
---|
2208 | #endif |
---|
2209 | |
---|
2210 | TUEntropyCodingParameters codingParameters; |
---|
2211 | getTUEntropyCodingParameters(codingParameters, rTu, compID); |
---|
2212 | const UInt uiCGSize = (1 << MLS_CG_SIZE); |
---|
2213 | |
---|
2214 | Double pdCostCoeffGroupSig[ MLS_GRP_NUM ]; |
---|
2215 | UInt uiSigCoeffGroupFlag[ MLS_GRP_NUM ]; |
---|
2216 | Int iCGLastScanPos = -1; |
---|
2217 | |
---|
2218 | UInt uiCtxSet = 0; |
---|
2219 | Int c1 = 1; |
---|
2220 | Int c2 = 0; |
---|
2221 | Double d64BaseCost = 0; |
---|
2222 | Int iLastScanPos = -1; |
---|
2223 | |
---|
2224 | UInt c1Idx = 0; |
---|
2225 | UInt c2Idx = 0; |
---|
2226 | Int baseLevel; |
---|
2227 | |
---|
2228 | memset( pdCostCoeffGroupSig, 0, sizeof(Double) * MLS_GRP_NUM ); |
---|
2229 | memset( uiSigCoeffGroupFlag, 0, sizeof(UInt) * MLS_GRP_NUM ); |
---|
2230 | |
---|
2231 | UInt uiCGNum = uiWidth * uiHeight >> MLS_CG_SIZE; |
---|
2232 | Int iScanPos; |
---|
2233 | coeffGroupRDStats rdStats; |
---|
2234 | |
---|
2235 | const UInt significanceMapContextOffset = getSignificanceMapContextOffset(compID); |
---|
2236 | |
---|
2237 | for (Int iCGScanPos = uiCGNum-1; iCGScanPos >= 0; iCGScanPos--) |
---|
2238 | { |
---|
2239 | UInt uiCGBlkPos = codingParameters.scanCG[ iCGScanPos ]; |
---|
2240 | UInt uiCGPosY = uiCGBlkPos / codingParameters.widthInGroups; |
---|
2241 | UInt uiCGPosX = uiCGBlkPos - (uiCGPosY * codingParameters.widthInGroups); |
---|
2242 | |
---|
2243 | memset( &rdStats, 0, sizeof (coeffGroupRDStats)); |
---|
2244 | |
---|
2245 | const Int patternSigCtx = TComTrQuant::calcPatternSigCtx(uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups); |
---|
2246 | |
---|
2247 | for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) |
---|
2248 | { |
---|
2249 | iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; |
---|
2250 | //===== quantization ===== |
---|
2251 | UInt uiBlkPos = codingParameters.scan[iScanPos]; |
---|
2252 | // set coeff |
---|
2253 | |
---|
2254 | const Int quantisationCoefficient = (enableScalingLists) ? piQCoef [uiBlkPos] : defaultQuantisationCoefficient; |
---|
2255 | const Double errorScale = (enableScalingLists) ? pdErrScale[uiBlkPos] : defaultErrorScale; |
---|
2256 | |
---|
2257 | const Int64 tmpLevel = Int64(abs(plSrcCoeff[ uiBlkPos ])) * quantisationCoefficient; |
---|
2258 | |
---|
2259 | const Intermediate_Int lLevelDouble = (Intermediate_Int)min<Int64>(tmpLevel, std::numeric_limits<Intermediate_Int>::max() - (Intermediate_Int(1) << (iQBits - 1))); |
---|
2260 | |
---|
2261 | #if ADAPTIVE_QP_SELECTION |
---|
2262 | if( m_bUseAdaptQpSelect ) |
---|
2263 | { |
---|
2264 | piArlDstCoeff[uiBlkPos] = (TCoeff)(( lLevelDouble + iAddC) >> iQBitsC ); |
---|
2265 | } |
---|
2266 | #endif |
---|
2267 | const UInt uiMaxAbsLevel = std::min<UInt>(UInt(entropyCodingMaximum), UInt((lLevelDouble + (Intermediate_Int(1) << (iQBits - 1))) >> iQBits)); |
---|
2268 | |
---|
2269 | const Double dErr = Double( lLevelDouble ); |
---|
2270 | pdCostCoeff0[ iScanPos ] = dErr * dErr * errorScale; |
---|
2271 | d64BlockUncodedCost += pdCostCoeff0[ iScanPos ]; |
---|
2272 | piDstCoeff[ uiBlkPos ] = uiMaxAbsLevel; |
---|
2273 | |
---|
2274 | if ( uiMaxAbsLevel > 0 && iLastScanPos < 0 ) |
---|
2275 | { |
---|
2276 | iLastScanPos = iScanPos; |
---|
2277 | uiCtxSet = getContextSetIndex(compID, (iScanPos >> MLS_CG_SIZE), 0); |
---|
2278 | iCGLastScanPos = iCGScanPos; |
---|
2279 | } |
---|
2280 | |
---|
2281 | if ( iLastScanPos >= 0 ) |
---|
2282 | { |
---|
2283 | //===== coefficient level estimation ===== |
---|
2284 | UInt uiLevel; |
---|
2285 | UInt uiOneCtx = (NUM_ONE_FLAG_CTX_PER_SET * uiCtxSet) + c1; |
---|
2286 | UInt uiAbsCtx = (NUM_ABS_FLAG_CTX_PER_SET * uiCtxSet) + c2; |
---|
2287 | |
---|
2288 | if( iScanPos == iLastScanPos ) |
---|
2289 | { |
---|
2290 | uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ], |
---|
2291 | lLevelDouble, uiMaxAbsLevel, significanceMapContextOffset, uiOneCtx, uiAbsCtx, uiGoRiceParam, |
---|
2292 | c1Idx, c2Idx, iQBits, errorScale, 1, extendedPrecision, maxLog2TrDynamicRange |
---|
2293 | ); |
---|
2294 | } |
---|
2295 | else |
---|
2296 | { |
---|
2297 | UShort uiCtxSig = significanceMapContextOffset + getSigCtxInc( patternSigCtx, codingParameters, iScanPos, uiLog2BlockWidth, uiLog2BlockHeight, channelType ); |
---|
2298 | |
---|
2299 | uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ], |
---|
2300 | lLevelDouble, uiMaxAbsLevel, uiCtxSig, uiOneCtx, uiAbsCtx, uiGoRiceParam, |
---|
2301 | c1Idx, c2Idx, iQBits, errorScale, 0, extendedPrecision, maxLog2TrDynamicRange |
---|
2302 | ); |
---|
2303 | |
---|
2304 | sigRateDelta[ uiBlkPos ] = m_pcEstBitsSbac->significantBits[ uiCtxSig ][ 1 ] - m_pcEstBitsSbac->significantBits[ uiCtxSig ][ 0 ]; |
---|
2305 | } |
---|
2306 | |
---|
2307 | deltaU[ uiBlkPos ] = TCoeff((lLevelDouble - (Intermediate_Int(uiLevel) << iQBits)) >> (iQBits-8)); |
---|
2308 | |
---|
2309 | if( uiLevel > 0 ) |
---|
2310 | { |
---|
2311 | Int rateNow = xGetICRate( uiLevel, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, extendedPrecision, maxLog2TrDynamicRange ); |
---|
2312 | rateIncUp [ uiBlkPos ] = xGetICRate( uiLevel+1, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, extendedPrecision, maxLog2TrDynamicRange ) - rateNow; |
---|
2313 | rateIncDown [ uiBlkPos ] = xGetICRate( uiLevel-1, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, extendedPrecision, maxLog2TrDynamicRange ) - rateNow; |
---|
2314 | } |
---|
2315 | else // uiLevel == 0 |
---|
2316 | { |
---|
2317 | rateIncUp [ uiBlkPos ] = m_pcEstBitsSbac->m_greaterOneBits[ uiOneCtx ][ 0 ]; |
---|
2318 | } |
---|
2319 | piDstCoeff[ uiBlkPos ] = uiLevel; |
---|
2320 | d64BaseCost += pdCostCoeff [ iScanPos ]; |
---|
2321 | |
---|
2322 | baseLevel = (c1Idx < C1FLAG_NUMBER) ? (2 + (c2Idx < C2FLAG_NUMBER)) : 1; |
---|
2323 | if( uiLevel >= baseLevel ) |
---|
2324 | { |
---|
2325 | if (uiLevel > 3*(1<<uiGoRiceParam)) |
---|
2326 | { |
---|
2327 | uiGoRiceParam = bUseGolombRiceParameterAdaptation ? (uiGoRiceParam + 1) : (std::min<UInt>((uiGoRiceParam + 1), 4)); |
---|
2328 | } |
---|
2329 | } |
---|
2330 | if ( uiLevel >= 1) |
---|
2331 | { |
---|
2332 | c1Idx ++; |
---|
2333 | } |
---|
2334 | |
---|
2335 | //===== update bin model ===== |
---|
2336 | if( uiLevel > 1 ) |
---|
2337 | { |
---|
2338 | c1 = 0; |
---|
2339 | c2 += (c2 < 2); |
---|
2340 | c2Idx ++; |
---|
2341 | } |
---|
2342 | else if( (c1 < 3) && (c1 > 0) && uiLevel) |
---|
2343 | { |
---|
2344 | c1++; |
---|
2345 | } |
---|
2346 | |
---|
2347 | //===== context set update ===== |
---|
2348 | if( ( iScanPos % uiCGSize == 0 ) && ( iScanPos > 0 ) ) |
---|
2349 | { |
---|
2350 | uiCtxSet = getContextSetIndex(compID, ((iScanPos - 1) >> MLS_CG_SIZE), (c1 == 0)); //(iScanPos - 1) because we do this **before** entering the final group |
---|
2351 | c1 = 1; |
---|
2352 | c2 = 0; |
---|
2353 | c1Idx = 0; |
---|
2354 | c2Idx = 0; |
---|
2355 | uiGoRiceParam = initialGolombRiceParameter; |
---|
2356 | } |
---|
2357 | } |
---|
2358 | else |
---|
2359 | { |
---|
2360 | d64BaseCost += pdCostCoeff0[ iScanPos ]; |
---|
2361 | } |
---|
2362 | rdStats.d64SigCost += pdCostSig[ iScanPos ]; |
---|
2363 | if (iScanPosinCG == 0 ) |
---|
2364 | { |
---|
2365 | rdStats.d64SigCost_0 = pdCostSig[ iScanPos ]; |
---|
2366 | } |
---|
2367 | if (piDstCoeff[ uiBlkPos ] ) |
---|
2368 | { |
---|
2369 | uiSigCoeffGroupFlag[ uiCGBlkPos ] = 1; |
---|
2370 | rdStats.d64CodedLevelandDist += pdCostCoeff[ iScanPos ] - pdCostSig[ iScanPos ]; |
---|
2371 | rdStats.d64UncodedDist += pdCostCoeff0[ iScanPos ]; |
---|
2372 | if ( iScanPosinCG != 0 ) |
---|
2373 | { |
---|
2374 | rdStats.iNNZbeforePos0++; |
---|
2375 | } |
---|
2376 | } |
---|
2377 | } //end for (iScanPosinCG) |
---|
2378 | |
---|
2379 | if (iCGLastScanPos >= 0) |
---|
2380 | { |
---|
2381 | if( iCGScanPos ) |
---|
2382 | { |
---|
2383 | if (uiSigCoeffGroupFlag[ uiCGBlkPos ] == 0) |
---|
2384 | { |
---|
2385 | UInt uiCtxSig = getSigCoeffGroupCtxInc( uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups ); |
---|
2386 | d64BaseCost += xGetRateSigCoeffGroup(0, uiCtxSig) - rdStats.d64SigCost;; |
---|
2387 | pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(0, uiCtxSig); |
---|
2388 | } |
---|
2389 | else |
---|
2390 | { |
---|
2391 | if (iCGScanPos < iCGLastScanPos) //skip the last coefficient group, which will be handled together with last position below. |
---|
2392 | { |
---|
2393 | if ( rdStats.iNNZbeforePos0 == 0 ) |
---|
2394 | { |
---|
2395 | d64BaseCost -= rdStats.d64SigCost_0; |
---|
2396 | rdStats.d64SigCost -= rdStats.d64SigCost_0; |
---|
2397 | } |
---|
2398 | // rd-cost if SigCoeffGroupFlag = 0, initialization |
---|
2399 | Double d64CostZeroCG = d64BaseCost; |
---|
2400 | |
---|
2401 | // add SigCoeffGroupFlag cost to total cost |
---|
2402 | UInt uiCtxSig = getSigCoeffGroupCtxInc( uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups ); |
---|
2403 | |
---|
2404 | if (iCGScanPos < iCGLastScanPos) |
---|
2405 | { |
---|
2406 | d64BaseCost += xGetRateSigCoeffGroup(1, uiCtxSig); |
---|
2407 | d64CostZeroCG += xGetRateSigCoeffGroup(0, uiCtxSig); |
---|
2408 | pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(1, uiCtxSig); |
---|
2409 | } |
---|
2410 | |
---|
2411 | // try to convert the current coeff group from non-zero to all-zero |
---|
2412 | d64CostZeroCG += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels |
---|
2413 | d64CostZeroCG -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels |
---|
2414 | d64CostZeroCG -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels |
---|
2415 | |
---|
2416 | // if we can save cost, change this block to all-zero block |
---|
2417 | if ( d64CostZeroCG < d64BaseCost ) |
---|
2418 | { |
---|
2419 | uiSigCoeffGroupFlag[ uiCGBlkPos ] = 0; |
---|
2420 | d64BaseCost = d64CostZeroCG; |
---|
2421 | if (iCGScanPos < iCGLastScanPos) |
---|
2422 | { |
---|
2423 | pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(0, uiCtxSig); |
---|
2424 | } |
---|
2425 | // reset coeffs to 0 in this block |
---|
2426 | for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) |
---|
2427 | { |
---|
2428 | iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; |
---|
2429 | UInt uiBlkPos = codingParameters.scan[ iScanPos ]; |
---|
2430 | |
---|
2431 | if (piDstCoeff[ uiBlkPos ]) |
---|
2432 | { |
---|
2433 | piDstCoeff [ uiBlkPos ] = 0; |
---|
2434 | pdCostCoeff[ iScanPos ] = pdCostCoeff0[ iScanPos ]; |
---|
2435 | pdCostSig [ iScanPos ] = 0; |
---|
2436 | } |
---|
2437 | } |
---|
2438 | } // end if ( d64CostAllZeros < d64BaseCost ) |
---|
2439 | } |
---|
2440 | } // end if if (uiSigCoeffGroupFlag[ uiCGBlkPos ] == 0) |
---|
2441 | } |
---|
2442 | else |
---|
2443 | { |
---|
2444 | uiSigCoeffGroupFlag[ uiCGBlkPos ] = 1; |
---|
2445 | } |
---|
2446 | } |
---|
2447 | } //end for (iCGScanPos) |
---|
2448 | |
---|
2449 | //===== estimate last position ===== |
---|
2450 | if ( iLastScanPos < 0 ) |
---|
2451 | { |
---|
2452 | return; |
---|
2453 | } |
---|
2454 | |
---|
2455 | Double d64BestCost = 0; |
---|
2456 | Int ui16CtxCbf = 0; |
---|
2457 | Int iBestLastIdxP1 = 0; |
---|
2458 | if( !pcCU->isIntra( uiAbsPartIdx ) && isLuma(compID) && pcCU->getTransformIdx( uiAbsPartIdx ) == 0 ) |
---|
2459 | { |
---|
2460 | ui16CtxCbf = 0; |
---|
2461 | d64BestCost = d64BlockUncodedCost + xGetICost( m_pcEstBitsSbac->blockRootCbpBits[ ui16CtxCbf ][ 0 ] ); |
---|
2462 | d64BaseCost += xGetICost( m_pcEstBitsSbac->blockRootCbpBits[ ui16CtxCbf ][ 1 ] ); |
---|
2463 | } |
---|
2464 | else |
---|
2465 | { |
---|
2466 | ui16CtxCbf = pcCU->getCtxQtCbf( rTu, channelType ); |
---|
2467 | ui16CtxCbf += getCBFContextOffset(compID); |
---|
2468 | d64BestCost = d64BlockUncodedCost + xGetICost( m_pcEstBitsSbac->blockCbpBits[ ui16CtxCbf ][ 0 ] ); |
---|
2469 | d64BaseCost += xGetICost( m_pcEstBitsSbac->blockCbpBits[ ui16CtxCbf ][ 1 ] ); |
---|
2470 | } |
---|
2471 | |
---|
2472 | |
---|
2473 | Bool bFoundLast = false; |
---|
2474 | for (Int iCGScanPos = iCGLastScanPos; iCGScanPos >= 0; iCGScanPos--) |
---|
2475 | { |
---|
2476 | UInt uiCGBlkPos = codingParameters.scanCG[ iCGScanPos ]; |
---|
2477 | |
---|
2478 | d64BaseCost -= pdCostCoeffGroupSig [ iCGScanPos ]; |
---|
2479 | if (uiSigCoeffGroupFlag[ uiCGBlkPos ]) |
---|
2480 | { |
---|
2481 | for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) |
---|
2482 | { |
---|
2483 | iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; |
---|
2484 | |
---|
2485 | if (iScanPos > iLastScanPos) |
---|
2486 | { |
---|
2487 | continue; |
---|
2488 | } |
---|
2489 | UInt uiBlkPos = codingParameters.scan[iScanPos]; |
---|
2490 | |
---|
2491 | if( piDstCoeff[ uiBlkPos ] ) |
---|
2492 | { |
---|
2493 | UInt uiPosY = uiBlkPos >> uiLog2BlockWidth; |
---|
2494 | UInt uiPosX = uiBlkPos - ( uiPosY << uiLog2BlockWidth ); |
---|
2495 | |
---|
2496 | Double d64CostLast= codingParameters.scanType == SCAN_VER ? xGetRateLast( uiPosY, uiPosX, compID ) : xGetRateLast( uiPosX, uiPosY, compID ); |
---|
2497 | Double totalCost = d64BaseCost + d64CostLast - pdCostSig[ iScanPos ]; |
---|
2498 | |
---|
2499 | if( totalCost < d64BestCost ) |
---|
2500 | { |
---|
2501 | iBestLastIdxP1 = iScanPos + 1; |
---|
2502 | d64BestCost = totalCost; |
---|
2503 | } |
---|
2504 | if( piDstCoeff[ uiBlkPos ] > 1 ) |
---|
2505 | { |
---|
2506 | bFoundLast = true; |
---|
2507 | break; |
---|
2508 | } |
---|
2509 | d64BaseCost -= pdCostCoeff[ iScanPos ]; |
---|
2510 | d64BaseCost += pdCostCoeff0[ iScanPos ]; |
---|
2511 | } |
---|
2512 | else |
---|
2513 | { |
---|
2514 | d64BaseCost -= pdCostSig[ iScanPos ]; |
---|
2515 | } |
---|
2516 | } //end for |
---|
2517 | if (bFoundLast) |
---|
2518 | { |
---|
2519 | break; |
---|
2520 | } |
---|
2521 | } // end if (uiSigCoeffGroupFlag[ uiCGBlkPos ]) |
---|
2522 | } // end for |
---|
2523 | |
---|
2524 | |
---|
2525 | for ( Int scanPos = 0; scanPos < iBestLastIdxP1; scanPos++ ) |
---|
2526 | { |
---|
2527 | Int blkPos = codingParameters.scan[ scanPos ]; |
---|
2528 | TCoeff level = piDstCoeff[ blkPos ]; |
---|
2529 | uiAbsSum += level; |
---|
2530 | piDstCoeff[ blkPos ] = ( plSrcCoeff[ blkPos ] < 0 ) ? -level : level; |
---|
2531 | } |
---|
2532 | |
---|
2533 | //===== clean uncoded coefficients ===== |
---|
2534 | for ( Int scanPos = iBestLastIdxP1; scanPos <= iLastScanPos; scanPos++ ) |
---|
2535 | { |
---|
2536 | piDstCoeff[ codingParameters.scan[ scanPos ] ] = 0; |
---|
2537 | } |
---|
2538 | |
---|
2539 | |
---|
2540 | if( pcCU->getSlice()->getPPS()->getSignHideFlag() && uiAbsSum>=2) |
---|
2541 | { |
---|
2542 | const Double inverseQuantScale = Double(g_invQuantScales[cQP.rem]); |
---|
2543 | Int64 rdFactor = (Int64)(inverseQuantScale * inverseQuantScale * (1 << (2 * cQP.per)) |
---|
2544 | / m_dLambda / 16 / (1 << (2 * DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth - 8))) |
---|
2545 | + 0.5); |
---|
2546 | |
---|
2547 | Int lastCG = -1; |
---|
2548 | Int absSum = 0 ; |
---|
2549 | Int n ; |
---|
2550 | |
---|
2551 | for( Int subSet = (uiWidth*uiHeight-1) >> MLS_CG_SIZE; subSet >= 0; subSet-- ) |
---|
2552 | { |
---|
2553 | Int subPos = subSet << MLS_CG_SIZE; |
---|
2554 | Int firstNZPosInCG=uiCGSize , lastNZPosInCG=-1 ; |
---|
2555 | absSum = 0 ; |
---|
2556 | |
---|
2557 | for(n = uiCGSize-1; n >= 0; --n ) |
---|
2558 | { |
---|
2559 | if( piDstCoeff[ codingParameters.scan[ n + subPos ]] ) |
---|
2560 | { |
---|
2561 | lastNZPosInCG = n; |
---|
2562 | break; |
---|
2563 | } |
---|
2564 | } |
---|
2565 | |
---|
2566 | for(n = 0; n <uiCGSize; n++ ) |
---|
2567 | { |
---|
2568 | if( piDstCoeff[ codingParameters.scan[ n + subPos ]] ) |
---|
2569 | { |
---|
2570 | firstNZPosInCG = n; |
---|
2571 | break; |
---|
2572 | } |
---|
2573 | } |
---|
2574 | |
---|
2575 | for(n = firstNZPosInCG; n <=lastNZPosInCG; n++ ) |
---|
2576 | { |
---|
2577 | absSum += Int(piDstCoeff[ codingParameters.scan[ n + subPos ]]); |
---|
2578 | } |
---|
2579 | |
---|
2580 | if(lastNZPosInCG>=0 && lastCG==-1) |
---|
2581 | { |
---|
2582 | lastCG = 1; |
---|
2583 | } |
---|
2584 | |
---|
2585 | if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD ) |
---|
2586 | { |
---|
2587 | UInt signbit = (piDstCoeff[codingParameters.scan[subPos+firstNZPosInCG]]>0?0:1); |
---|
2588 | if( signbit!=(absSum&0x1) ) // hide but need tune |
---|
2589 | { |
---|
2590 | // calculate the cost |
---|
2591 | Int64 minCostInc = std::numeric_limits<Int64>::max(), curCost = std::numeric_limits<Int64>::max(); |
---|
2592 | Int minPos = -1, finalChange = 0, curChange = 0; |
---|
2593 | |
---|
2594 | for( n = (lastCG==1?lastNZPosInCG:uiCGSize-1) ; n >= 0; --n ) |
---|
2595 | { |
---|
2596 | UInt uiBlkPos = codingParameters.scan[ n + subPos ]; |
---|
2597 | if(piDstCoeff[ uiBlkPos ] != 0 ) |
---|
2598 | { |
---|
2599 | Int64 costUp = rdFactor * ( - deltaU[uiBlkPos] ) + rateIncUp[uiBlkPos]; |
---|
2600 | Int64 costDown = rdFactor * ( deltaU[uiBlkPos] ) + rateIncDown[uiBlkPos] |
---|
2601 | - ((abs(piDstCoeff[uiBlkPos]) == 1) ? sigRateDelta[uiBlkPos] : 0); |
---|
2602 | |
---|
2603 | if(lastCG==1 && lastNZPosInCG==n && abs(piDstCoeff[uiBlkPos])==1) |
---|
2604 | { |
---|
2605 | costDown -= (4<<15); |
---|
2606 | } |
---|
2607 | |
---|
2608 | if(costUp<costDown) |
---|
2609 | { |
---|
2610 | curCost = costUp; |
---|
2611 | curChange = 1; |
---|
2612 | } |
---|
2613 | else |
---|
2614 | { |
---|
2615 | curChange = -1; |
---|
2616 | if(n==firstNZPosInCG && abs(piDstCoeff[uiBlkPos])==1) |
---|
2617 | { |
---|
2618 | curCost = std::numeric_limits<Int64>::max(); |
---|
2619 | } |
---|
2620 | else |
---|
2621 | { |
---|
2622 | curCost = costDown; |
---|
2623 | } |
---|
2624 | } |
---|
2625 | } |
---|
2626 | else |
---|
2627 | { |
---|
2628 | curCost = rdFactor * ( - (abs(deltaU[uiBlkPos])) ) + (1<<15) + rateIncUp[uiBlkPos] + sigRateDelta[uiBlkPos] ; |
---|
2629 | curChange = 1 ; |
---|
2630 | |
---|
2631 | if(n<firstNZPosInCG) |
---|
2632 | { |
---|
2633 | UInt thissignbit = (plSrcCoeff[uiBlkPos]>=0?0:1); |
---|
2634 | if(thissignbit != signbit ) |
---|
2635 | { |
---|
2636 | curCost = std::numeric_limits<Int64>::max(); |
---|
2637 | } |
---|
2638 | } |
---|
2639 | } |
---|
2640 | |
---|
2641 | if( curCost<minCostInc) |
---|
2642 | { |
---|
2643 | minCostInc = curCost; |
---|
2644 | finalChange = curChange; |
---|
2645 | minPos = uiBlkPos; |
---|
2646 | } |
---|
2647 | } |
---|
2648 | |
---|
2649 | if(piDstCoeff[minPos] == entropyCodingMaximum || piDstCoeff[minPos] == entropyCodingMinimum) |
---|
2650 | { |
---|
2651 | finalChange = -1; |
---|
2652 | } |
---|
2653 | |
---|
2654 | if(plSrcCoeff[minPos]>=0) |
---|
2655 | { |
---|
2656 | piDstCoeff[minPos] += finalChange ; |
---|
2657 | } |
---|
2658 | else |
---|
2659 | { |
---|
2660 | piDstCoeff[minPos] -= finalChange ; |
---|
2661 | } |
---|
2662 | } |
---|
2663 | } |
---|
2664 | |
---|
2665 | if(lastCG==1) |
---|
2666 | { |
---|
2667 | lastCG=0 ; |
---|
2668 | } |
---|
2669 | } |
---|
2670 | } |
---|
2671 | } |
---|
2672 | |
---|
2673 | |
---|
2674 | /** Pattern decision for context derivation process of significant_coeff_flag |
---|
2675 | * \param sigCoeffGroupFlag pointer to prior coded significant coeff group |
---|
2676 | * \param uiCGPosX column of current coefficient group |
---|
2677 | * \param uiCGPosY row of current coefficient group |
---|
2678 | * \param widthInGroups width of the block |
---|
2679 | * \param heightInGroups height of the block |
---|
2680 | * \returns pattern for current coefficient group |
---|
2681 | */ |
---|
2682 | Int TComTrQuant::calcPatternSigCtx( const UInt* sigCoeffGroupFlag, UInt uiCGPosX, UInt uiCGPosY, UInt widthInGroups, UInt heightInGroups ) |
---|
2683 | { |
---|
2684 | if ((widthInGroups <= 1) && (heightInGroups <= 1)) |
---|
2685 | { |
---|
2686 | return 0; |
---|
2687 | } |
---|
2688 | |
---|
2689 | const Bool rightAvailable = uiCGPosX < (widthInGroups - 1); |
---|
2690 | const Bool belowAvailable = uiCGPosY < (heightInGroups - 1); |
---|
2691 | |
---|
2692 | UInt sigRight = 0; |
---|
2693 | UInt sigLower = 0; |
---|
2694 | |
---|
2695 | if (rightAvailable) |
---|
2696 | { |
---|
2697 | sigRight = ((sigCoeffGroupFlag[ (uiCGPosY * widthInGroups) + uiCGPosX + 1 ] != 0) ? 1 : 0); |
---|
2698 | } |
---|
2699 | if (belowAvailable) |
---|
2700 | { |
---|
2701 | sigLower = ((sigCoeffGroupFlag[ (uiCGPosY + 1) * widthInGroups + uiCGPosX ] != 0) ? 1 : 0); |
---|
2702 | } |
---|
2703 | |
---|
2704 | return sigRight + (sigLower << 1); |
---|
2705 | } |
---|
2706 | |
---|
2707 | |
---|
2708 | /** Context derivation process of coeff_abs_significant_flag |
---|
2709 | * \param patternSigCtx pattern for current coefficient group |
---|
2710 | * \param codingParameters coding parameters for the TU (includes the scan) |
---|
2711 | * \param scanPosition current position in scan order |
---|
2712 | * \param log2BlockWidth log2 width of the block |
---|
2713 | * \param log2BlockHeight log2 height of the block |
---|
2714 | * \param chanType channel type (CHANNEL_TYPE_LUMA/CHROMA) |
---|
2715 | * \returns ctxInc for current scan position |
---|
2716 | */ |
---|
2717 | Int TComTrQuant::getSigCtxInc ( Int patternSigCtx, |
---|
2718 | const TUEntropyCodingParameters &codingParameters, |
---|
2719 | const Int scanPosition, |
---|
2720 | const Int log2BlockWidth, |
---|
2721 | const Int log2BlockHeight, |
---|
2722 | const ChannelType chanType) |
---|
2723 | { |
---|
2724 | if (codingParameters.firstSignificanceMapContext == significanceMapContextSetStart[chanType][CONTEXT_TYPE_SINGLE]) |
---|
2725 | { |
---|
2726 | //single context mode |
---|
2727 | return significanceMapContextSetStart[chanType][CONTEXT_TYPE_SINGLE]; |
---|
2728 | } |
---|
2729 | |
---|
2730 | const UInt rasterPosition = codingParameters.scan[scanPosition]; |
---|
2731 | const UInt posY = rasterPosition >> log2BlockWidth; |
---|
2732 | const UInt posX = rasterPosition - (posY << log2BlockWidth); |
---|
2733 | |
---|
2734 | if ((posX + posY) == 0) |
---|
2735 | { |
---|
2736 | return 0; //special case for the DC context variable |
---|
2737 | } |
---|
2738 | |
---|
2739 | Int offset = MAX_INT; |
---|
2740 | |
---|
2741 | if ((log2BlockWidth == 2) && (log2BlockHeight == 2)) //4x4 |
---|
2742 | { |
---|
2743 | offset = ctxIndMap4x4[ (4 * posY) + posX ]; |
---|
2744 | } |
---|
2745 | else |
---|
2746 | { |
---|
2747 | Int cnt = 0; |
---|
2748 | |
---|
2749 | switch (patternSigCtx) |
---|
2750 | { |
---|
2751 | //------------------ |
---|
2752 | |
---|
2753 | case 0: //neither neighbouring group is significant |
---|
2754 | { |
---|
2755 | const Int posXinSubset = posX & ((1 << MLS_CG_LOG2_WIDTH) - 1); |
---|
2756 | const Int posYinSubset = posY & ((1 << MLS_CG_LOG2_HEIGHT) - 1); |
---|
2757 | const Int posTotalInSubset = posXinSubset + posYinSubset; |
---|
2758 | |
---|
2759 | //first N coefficients in scan order use 2; the next few use 1; the rest use 0. |
---|
2760 | const UInt context1Threshold = NEIGHBOURHOOD_00_CONTEXT_1_THRESHOLD_4x4; |
---|
2761 | const UInt context2Threshold = NEIGHBOURHOOD_00_CONTEXT_2_THRESHOLD_4x4; |
---|
2762 | |
---|
2763 | cnt = (posTotalInSubset >= context1Threshold) ? 0 : ((posTotalInSubset >= context2Threshold) ? 1 : 2); |
---|
2764 | } |
---|
2765 | break; |
---|
2766 | |
---|
2767 | //------------------ |
---|
2768 | |
---|
2769 | case 1: //right group is significant, below is not |
---|
2770 | { |
---|
2771 | const Int posYinSubset = posY & ((1 << MLS_CG_LOG2_HEIGHT) - 1); |
---|
2772 | const Int groupHeight = 1 << MLS_CG_LOG2_HEIGHT; |
---|
2773 | |
---|
2774 | cnt = (posYinSubset >= (groupHeight >> 1)) ? 0 : ((posYinSubset >= (groupHeight >> 2)) ? 1 : 2); //top quarter uses 2; second-from-top quarter uses 1; bottom half uses 0 |
---|
2775 | } |
---|
2776 | break; |
---|
2777 | |
---|
2778 | //------------------ |
---|
2779 | |
---|
2780 | case 2: //below group is significant, right is not |
---|
2781 | { |
---|
2782 | const Int posXinSubset = posX & ((1 << MLS_CG_LOG2_WIDTH) - 1); |
---|
2783 | const Int groupWidth = 1 << MLS_CG_LOG2_WIDTH; |
---|
2784 | |
---|
2785 | cnt = (posXinSubset >= (groupWidth >> 1)) ? 0 : ((posXinSubset >= (groupWidth >> 2)) ? 1 : 2); //left quarter uses 2; second-from-left quarter uses 1; right half uses 0 |
---|
2786 | } |
---|
2787 | break; |
---|
2788 | |
---|
2789 | //------------------ |
---|
2790 | |
---|
2791 | case 3: //both neighbouring groups are significant |
---|
2792 | { |
---|
2793 | cnt = 2; |
---|
2794 | } |
---|
2795 | break; |
---|
2796 | |
---|
2797 | //------------------ |
---|
2798 | |
---|
2799 | default: |
---|
2800 | std::cerr << "ERROR: Invalid patternSigCtx \"" << Int(patternSigCtx) << "\" in getSigCtxInc" << std::endl; |
---|
2801 | exit(1); |
---|
2802 | break; |
---|
2803 | } |
---|
2804 | |
---|
2805 | //------------------------------------------------ |
---|
2806 | |
---|
2807 | const Bool notFirstGroup = ((posX >> MLS_CG_LOG2_WIDTH) + (posY >> MLS_CG_LOG2_HEIGHT)) > 0; |
---|
2808 | |
---|
2809 | offset = (notFirstGroup ? notFirstGroupNeighbourhoodContextOffset[chanType] : 0) + cnt; |
---|
2810 | } |
---|
2811 | |
---|
2812 | return codingParameters.firstSignificanceMapContext + offset; |
---|
2813 | } |
---|
2814 | |
---|
2815 | |
---|
2816 | /** Get the best level in RD sense |
---|
2817 | * |
---|
2818 | * \returns best quantized transform level for given scan position |
---|
2819 | * |
---|
2820 | * This method calculates the best quantized transform level for a given scan position. |
---|
2821 | */ |
---|
2822 | __inline UInt TComTrQuant::xGetCodedLevel ( Double& rd64CodedCost, //< reference to coded cost |
---|
2823 | Double& rd64CodedCost0, //< reference to cost when coefficient is 0 |
---|
2824 | Double& rd64CodedCostSig, //< rd64CodedCostSig reference to cost of significant coefficient |
---|
2825 | Intermediate_Int lLevelDouble, //< reference to unscaled quantized level |
---|
2826 | UInt uiMaxAbsLevel, //< scaled quantized level |
---|
2827 | UShort ui16CtxNumSig, //< current ctxInc for coeff_abs_significant_flag |
---|
2828 | UShort ui16CtxNumOne, //< current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) |
---|
2829 | UShort ui16CtxNumAbs, //< current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) |
---|
2830 | UShort ui16AbsGoRice, //< current Rice parameter for coeff_abs_level_minus3 |
---|
2831 | UInt c1Idx, //< |
---|
2832 | UInt c2Idx, //< |
---|
2833 | Int iQBits, //< quantization step size |
---|
2834 | Double errorScale, //< |
---|
2835 | Bool bLast, //< indicates if the coefficient is the last significant |
---|
2836 | Bool useLimitedPrefixLength, //< |
---|
2837 | const Int maxLog2TrDynamicRange //< |
---|
2838 | ) const |
---|
2839 | { |
---|
2840 | Double dCurrCostSig = 0; |
---|
2841 | UInt uiBestAbsLevel = 0; |
---|
2842 | |
---|
2843 | if( !bLast && uiMaxAbsLevel < 3 ) |
---|
2844 | { |
---|
2845 | rd64CodedCostSig = xGetRateSigCoef( 0, ui16CtxNumSig ); |
---|
2846 | rd64CodedCost = rd64CodedCost0 + rd64CodedCostSig; |
---|
2847 | if( uiMaxAbsLevel == 0 ) |
---|
2848 | { |
---|
2849 | return uiBestAbsLevel; |
---|
2850 | } |
---|
2851 | } |
---|
2852 | else |
---|
2853 | { |
---|
2854 | rd64CodedCost = MAX_DOUBLE; |
---|
2855 | } |
---|
2856 | |
---|
2857 | if( !bLast ) |
---|
2858 | { |
---|
2859 | dCurrCostSig = xGetRateSigCoef( 1, ui16CtxNumSig ); |
---|
2860 | } |
---|
2861 | |
---|
2862 | UInt uiMinAbsLevel = ( uiMaxAbsLevel > 1 ? uiMaxAbsLevel - 1 : 1 ); |
---|
2863 | for( Int uiAbsLevel = uiMaxAbsLevel; uiAbsLevel >= uiMinAbsLevel ; uiAbsLevel-- ) |
---|
2864 | { |
---|
2865 | Double dErr = Double( lLevelDouble - ( Intermediate_Int(uiAbsLevel) << iQBits ) ); |
---|
2866 | Double dCurrCost = dErr * dErr * errorScale + xGetICost( xGetICRate( uiAbsLevel, ui16CtxNumOne, ui16CtxNumAbs, ui16AbsGoRice, c1Idx, c2Idx, useLimitedPrefixLength, maxLog2TrDynamicRange ) ); |
---|
2867 | dCurrCost += dCurrCostSig; |
---|
2868 | |
---|
2869 | if( dCurrCost < rd64CodedCost ) |
---|
2870 | { |
---|
2871 | uiBestAbsLevel = uiAbsLevel; |
---|
2872 | rd64CodedCost = dCurrCost; |
---|
2873 | rd64CodedCostSig = dCurrCostSig; |
---|
2874 | } |
---|
2875 | } |
---|
2876 | |
---|
2877 | return uiBestAbsLevel; |
---|
2878 | } |
---|
2879 | |
---|
2880 | /** Calculates the cost for specific absolute transform level |
---|
2881 | * \param uiAbsLevel scaled quantized level |
---|
2882 | * \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) |
---|
2883 | * \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) |
---|
2884 | * \param ui16AbsGoRice Rice parameter for coeff_abs_level_minus3 |
---|
2885 | * \param c1Idx |
---|
2886 | * \param c2Idx |
---|
2887 | * \param useLimitedPrefixLength |
---|
2888 | * \param maxLog2TrDynamicRange |
---|
2889 | * \returns cost of given absolute transform level |
---|
2890 | */ |
---|
2891 | __inline Int TComTrQuant::xGetICRate ( const UInt uiAbsLevel, |
---|
2892 | const UShort ui16CtxNumOne, |
---|
2893 | const UShort ui16CtxNumAbs, |
---|
2894 | const UShort ui16AbsGoRice, |
---|
2895 | const UInt c1Idx, |
---|
2896 | const UInt c2Idx, |
---|
2897 | const Bool useLimitedPrefixLength, |
---|
2898 | const Int maxLog2TrDynamicRange |
---|
2899 | ) const |
---|
2900 | { |
---|
2901 | Int iRate = Int(xGetIEPRate()); // cost of sign bit |
---|
2902 | UInt baseLevel = (c1Idx < C1FLAG_NUMBER) ? (2 + (c2Idx < C2FLAG_NUMBER)) : 1; |
---|
2903 | |
---|
2904 | if ( uiAbsLevel >= baseLevel ) |
---|
2905 | { |
---|
2906 | UInt symbol = uiAbsLevel - baseLevel; |
---|
2907 | UInt length; |
---|
2908 | if (symbol < (COEF_REMAIN_BIN_REDUCTION << ui16AbsGoRice)) |
---|
2909 | { |
---|
2910 | length = symbol>>ui16AbsGoRice; |
---|
2911 | iRate += (length+1+ui16AbsGoRice)<< 15; |
---|
2912 | } |
---|
2913 | else if (useLimitedPrefixLength) |
---|
2914 | { |
---|
2915 | const UInt maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange)); |
---|
2916 | |
---|
2917 | UInt prefixLength = 0; |
---|
2918 | UInt suffix = (symbol >> ui16AbsGoRice) - COEF_REMAIN_BIN_REDUCTION; |
---|
2919 | |
---|
2920 | while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2))) |
---|
2921 | { |
---|
2922 | prefixLength++; |
---|
2923 | } |
---|
2924 | |
---|
2925 | const UInt suffixLength = (prefixLength == maximumPrefixLength) ? (maxLog2TrDynamicRange - ui16AbsGoRice) : (prefixLength + 1/*separator*/); |
---|
2926 | |
---|
2927 | iRate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ui16AbsGoRice) << 15; |
---|
2928 | } |
---|
2929 | else |
---|
2930 | { |
---|
2931 | length = ui16AbsGoRice; |
---|
2932 | symbol = symbol - ( COEF_REMAIN_BIN_REDUCTION << ui16AbsGoRice); |
---|
2933 | while (symbol >= (1<<length)) |
---|
2934 | { |
---|
2935 | symbol -= (1<<(length++)); |
---|
2936 | } |
---|
2937 | iRate += (COEF_REMAIN_BIN_REDUCTION+length+1-ui16AbsGoRice+length)<< 15; |
---|
2938 | } |
---|
2939 | |
---|
2940 | if (c1Idx < C1FLAG_NUMBER) |
---|
2941 | { |
---|
2942 | iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 1 ]; |
---|
2943 | |
---|
2944 | if (c2Idx < C2FLAG_NUMBER) |
---|
2945 | { |
---|
2946 | iRate += m_pcEstBitsSbac->m_levelAbsBits[ ui16CtxNumAbs ][ 1 ]; |
---|
2947 | } |
---|
2948 | } |
---|
2949 | } |
---|
2950 | else if( uiAbsLevel == 1 ) |
---|
2951 | { |
---|
2952 | iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 0 ]; |
---|
2953 | } |
---|
2954 | else if( uiAbsLevel == 2 ) |
---|
2955 | { |
---|
2956 | iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 1 ]; |
---|
2957 | iRate += m_pcEstBitsSbac->m_levelAbsBits[ ui16CtxNumAbs ][ 0 ]; |
---|
2958 | } |
---|
2959 | else |
---|
2960 | { |
---|
2961 | iRate = 0; |
---|
2962 | } |
---|
2963 | |
---|
2964 | return iRate; |
---|
2965 | } |
---|
2966 | |
---|
2967 | __inline Double TComTrQuant::xGetRateSigCoeffGroup ( UShort uiSignificanceCoeffGroup, |
---|
2968 | UShort ui16CtxNumSig ) const |
---|
2969 | { |
---|
2970 | return xGetICost( m_pcEstBitsSbac->significantCoeffGroupBits[ ui16CtxNumSig ][ uiSignificanceCoeffGroup ] ); |
---|
2971 | } |
---|
2972 | |
---|
2973 | /** Calculates the cost of signaling the last significant coefficient in the block |
---|
2974 | * \param uiPosX X coordinate of the last significant coefficient |
---|
2975 | * \param uiPosY Y coordinate of the last significant coefficient |
---|
2976 | * \param component colour component ID |
---|
2977 | * \returns cost of last significant coefficient |
---|
2978 | */ |
---|
2979 | /* |
---|
2980 | * \param uiWidth width of the transform unit (TU) |
---|
2981 | */ |
---|
2982 | __inline Double TComTrQuant::xGetRateLast ( const UInt uiPosX, |
---|
2983 | const UInt uiPosY, |
---|
2984 | const ComponentID component ) const |
---|
2985 | { |
---|
2986 | UInt uiCtxX = g_uiGroupIdx[uiPosX]; |
---|
2987 | UInt uiCtxY = g_uiGroupIdx[uiPosY]; |
---|
2988 | |
---|
2989 | Double uiCost = m_pcEstBitsSbac->lastXBits[toChannelType(component)][ uiCtxX ] + m_pcEstBitsSbac->lastYBits[toChannelType(component)][ uiCtxY ]; |
---|
2990 | |
---|
2991 | if( uiCtxX > 3 ) |
---|
2992 | { |
---|
2993 | uiCost += xGetIEPRate() * ((uiCtxX-2)>>1); |
---|
2994 | } |
---|
2995 | if( uiCtxY > 3 ) |
---|
2996 | { |
---|
2997 | uiCost += xGetIEPRate() * ((uiCtxY-2)>>1); |
---|
2998 | } |
---|
2999 | return xGetICost( uiCost ); |
---|
3000 | } |
---|
3001 | |
---|
3002 | __inline Double TComTrQuant::xGetRateSigCoef ( UShort uiSignificance, |
---|
3003 | UShort ui16CtxNumSig ) const |
---|
3004 | { |
---|
3005 | return xGetICost( m_pcEstBitsSbac->significantBits[ ui16CtxNumSig ][ uiSignificance ] ); |
---|
3006 | } |
---|
3007 | |
---|
3008 | /** Get the cost for a specific rate |
---|
3009 | * \param dRate rate of a bit |
---|
3010 | * \returns cost at the specific rate |
---|
3011 | */ |
---|
3012 | __inline Double TComTrQuant::xGetICost ( Double dRate ) const |
---|
3013 | { |
---|
3014 | return m_dLambda * dRate; |
---|
3015 | } |
---|
3016 | |
---|
3017 | /** Get the cost of an equal probable bit |
---|
3018 | * \returns cost of equal probable bit |
---|
3019 | */ |
---|
3020 | __inline Double TComTrQuant::xGetIEPRate ( ) const |
---|
3021 | { |
---|
3022 | return 32768; |
---|
3023 | } |
---|
3024 | |
---|
3025 | /** Context derivation process of coeff_abs_significant_flag |
---|
3026 | * \param uiSigCoeffGroupFlag significance map of L1 |
---|
3027 | * \param uiCGPosX column of current scan position |
---|
3028 | * \param uiCGPosY row of current scan position |
---|
3029 | * \param widthInGroups width of the block |
---|
3030 | * \param heightInGroups height of the block |
---|
3031 | * \returns ctxInc for current scan position |
---|
3032 | */ |
---|
3033 | UInt TComTrQuant::getSigCoeffGroupCtxInc (const UInt* uiSigCoeffGroupFlag, |
---|
3034 | const UInt uiCGPosX, |
---|
3035 | const UInt uiCGPosY, |
---|
3036 | const UInt widthInGroups, |
---|
3037 | const UInt heightInGroups) |
---|
3038 | { |
---|
3039 | UInt sigRight = 0; |
---|
3040 | UInt sigLower = 0; |
---|
3041 | |
---|
3042 | if (uiCGPosX < (widthInGroups - 1)) |
---|
3043 | { |
---|
3044 | sigRight = ((uiSigCoeffGroupFlag[ (uiCGPosY * widthInGroups) + uiCGPosX + 1 ] != 0) ? 1 : 0); |
---|
3045 | } |
---|
3046 | if (uiCGPosY < (heightInGroups - 1)) |
---|
3047 | { |
---|
3048 | sigLower = ((uiSigCoeffGroupFlag[ (uiCGPosY + 1) * widthInGroups + uiCGPosX ] != 0) ? 1 : 0); |
---|
3049 | } |
---|
3050 | |
---|
3051 | return ((sigRight + sigLower) != 0) ? 1 : 0; |
---|
3052 | } |
---|
3053 | |
---|
3054 | |
---|
3055 | /** set quantized matrix coefficient for encode |
---|
3056 | * \param scalingList quantized matrix address |
---|
3057 | * \param format chroma format |
---|
3058 | * \param maxLog2TrDynamicRange |
---|
3059 | * \param bitDepths reference to bit depth array for all channels |
---|
3060 | */ |
---|
3061 | Void TComTrQuant::setScalingList(TComScalingList *scalingList, const Int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE], const BitDepths &bitDepths) |
---|
3062 | { |
---|
3063 | const Int minimumQp = 0; |
---|
3064 | const Int maximumQp = SCALING_LIST_REM_NUM; |
---|
3065 | |
---|
3066 | for(UInt size = 0; size < SCALING_LIST_SIZE_NUM; size++) |
---|
3067 | { |
---|
3068 | for(UInt list = 0; list < SCALING_LIST_NUM; list++) |
---|
3069 | { |
---|
3070 | for(Int qp = minimumQp; qp < maximumQp; qp++) |
---|
3071 | { |
---|
3072 | xSetScalingListEnc(scalingList,list,size,qp); |
---|
3073 | xSetScalingListDec(*scalingList,list,size,qp); |
---|
3074 | setErrScaleCoeff(list,size,qp,maxLog2TrDynamicRange, bitDepths); |
---|
3075 | } |
---|
3076 | } |
---|
3077 | } |
---|
3078 | } |
---|
3079 | /** set quantized matrix coefficient for decode |
---|
3080 | * \param scalingList quantized matrix address |
---|
3081 | * \param format chroma format |
---|
3082 | */ |
---|
3083 | Void TComTrQuant::setScalingListDec(const TComScalingList &scalingList) |
---|
3084 | { |
---|
3085 | const Int minimumQp = 0; |
---|
3086 | const Int maximumQp = SCALING_LIST_REM_NUM; |
---|
3087 | |
---|
3088 | for(UInt size = 0; size < SCALING_LIST_SIZE_NUM; size++) |
---|
3089 | { |
---|
3090 | for(UInt list = 0; list < SCALING_LIST_NUM; list++) |
---|
3091 | { |
---|
3092 | for(Int qp = minimumQp; qp < maximumQp; qp++) |
---|
3093 | { |
---|
3094 | xSetScalingListDec(scalingList,list,size,qp); |
---|
3095 | } |
---|
3096 | } |
---|
3097 | } |
---|
3098 | } |
---|
3099 | /** set error scale coefficients |
---|
3100 | * \param list list ID |
---|
3101 | * \param size |
---|
3102 | * \param qp quantization parameter |
---|
3103 | * \param maxLog2TrDynamicRange |
---|
3104 | * \param bitDepths reference to bit depth array for all channels |
---|
3105 | */ |
---|
3106 | Void TComTrQuant::setErrScaleCoeff(UInt list, UInt size, Int qp, const Int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE], const BitDepths &bitDepths) |
---|
3107 | { |
---|
3108 | const UInt uiLog2TrSize = g_aucConvertToBit[ g_scalingListSizeX[size] ] + 2; |
---|
3109 | const ChannelType channelType = ((list == 0) || (list == MAX_NUM_COMPONENT)) ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA; |
---|
3110 | |
---|
3111 | const Int channelBitDepth = bitDepths.recon[channelType]; |
---|
3112 | const Int iTransformShift = getTransformShift(channelBitDepth, uiLog2TrSize, maxLog2TrDynamicRange[channelType]); // Represents scaling through forward transform |
---|
3113 | |
---|
3114 | UInt i,uiMaxNumCoeff = g_scalingListSize[size]; |
---|
3115 | Int *piQuantcoeff; |
---|
3116 | Double *pdErrScale; |
---|
3117 | piQuantcoeff = getQuantCoeff(list, qp,size); |
---|
3118 | pdErrScale = getErrScaleCoeff(list, size, qp); |
---|
3119 | |
---|
3120 | Double dErrScale = (Double)(1<<SCALE_BITS); // Compensate for scaling of bitcount in Lagrange cost function |
---|
3121 | dErrScale = dErrScale*pow(2.0,(-2.0*iTransformShift)); // Compensate for scaling through forward transform |
---|
3122 | |
---|
3123 | for(i=0;i<uiMaxNumCoeff;i++) |
---|
3124 | { |
---|
3125 | pdErrScale[i] = dErrScale / piQuantcoeff[i] / piQuantcoeff[i] / (1 << DISTORTION_PRECISION_ADJUSTMENT(2 * (bitDepths.recon[channelType] - 8))); |
---|
3126 | } |
---|
3127 | |
---|
3128 | getErrScaleCoeffNoScalingList(list, size, qp) = dErrScale / g_quantScales[qp] / g_quantScales[qp] / (1 << DISTORTION_PRECISION_ADJUSTMENT(2 * (bitDepths.recon[channelType] - 8))); |
---|
3129 | } |
---|
3130 | |
---|
3131 | /** set quantized matrix coefficient for encode |
---|
3132 | * \param scalingList quantized matrix address |
---|
3133 | * \param listId List index |
---|
3134 | * \param sizeId size index |
---|
3135 | * \param qp Quantization parameter |
---|
3136 | * \param format chroma format |
---|
3137 | */ |
---|
3138 | Void TComTrQuant::xSetScalingListEnc(TComScalingList *scalingList, UInt listId, UInt sizeId, Int qp) |
---|
3139 | { |
---|
3140 | UInt width = g_scalingListSizeX[sizeId]; |
---|
3141 | UInt height = g_scalingListSizeX[sizeId]; |
---|
3142 | UInt ratio = g_scalingListSizeX[sizeId]/min(MAX_MATRIX_SIZE_NUM,(Int)g_scalingListSizeX[sizeId]); |
---|
3143 | Int *quantcoeff; |
---|
3144 | Int *coeff = scalingList->getScalingListAddress(sizeId,listId); |
---|
3145 | quantcoeff = getQuantCoeff(listId, qp, sizeId); |
---|
3146 | |
---|
3147 | Int quantScales = g_quantScales[qp]; |
---|
3148 | |
---|
3149 | processScalingListEnc(coeff, |
---|
3150 | quantcoeff, |
---|
3151 | (quantScales << LOG2_SCALING_LIST_NEUTRAL_VALUE), |
---|
3152 | height, width, ratio, |
---|
3153 | min(MAX_MATRIX_SIZE_NUM, (Int)g_scalingListSizeX[sizeId]), |
---|
3154 | scalingList->getScalingListDC(sizeId,listId)); |
---|
3155 | } |
---|
3156 | |
---|
3157 | /** set quantized matrix coefficient for decode |
---|
3158 | * \param scalingList quantaized matrix address |
---|
3159 | * \param listId List index |
---|
3160 | * \param sizeId size index |
---|
3161 | * \param qp Quantization parameter |
---|
3162 | * \param format chroma format |
---|
3163 | */ |
---|
3164 | Void TComTrQuant::xSetScalingListDec(const TComScalingList &scalingList, UInt listId, UInt sizeId, Int qp) |
---|
3165 | { |
---|
3166 | UInt width = g_scalingListSizeX[sizeId]; |
---|
3167 | UInt height = g_scalingListSizeX[sizeId]; |
---|
3168 | UInt ratio = g_scalingListSizeX[sizeId]/min(MAX_MATRIX_SIZE_NUM,(Int)g_scalingListSizeX[sizeId]); |
---|
3169 | Int *dequantcoeff; |
---|
3170 | const Int *coeff = scalingList.getScalingListAddress(sizeId,listId); |
---|
3171 | |
---|
3172 | dequantcoeff = getDequantCoeff(listId, qp, sizeId); |
---|
3173 | |
---|
3174 | Int invQuantScale = g_invQuantScales[qp]; |
---|
3175 | |
---|
3176 | processScalingListDec(coeff, |
---|
3177 | dequantcoeff, |
---|
3178 | invQuantScale, |
---|
3179 | height, width, ratio, |
---|
3180 | min(MAX_MATRIX_SIZE_NUM, (Int)g_scalingListSizeX[sizeId]), |
---|
3181 | scalingList.getScalingListDC(sizeId,listId)); |
---|
3182 | } |
---|
3183 | |
---|
3184 | /** set flat matrix value to quantized coefficient |
---|
3185 | */ |
---|
3186 | Void TComTrQuant::setFlatScalingList(const Int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE], const BitDepths &bitDepths) |
---|
3187 | { |
---|
3188 | const Int minimumQp = 0; |
---|
3189 | const Int maximumQp = SCALING_LIST_REM_NUM; |
---|
3190 | |
---|
3191 | for(UInt size = 0; size < SCALING_LIST_SIZE_NUM; size++) |
---|
3192 | { |
---|
3193 | for(UInt list = 0; list < SCALING_LIST_NUM; list++) |
---|
3194 | { |
---|
3195 | for(Int qp = minimumQp; qp < maximumQp; qp++) |
---|
3196 | { |
---|
3197 | xsetFlatScalingList(list,size,qp); |
---|
3198 | setErrScaleCoeff(list,size,qp,maxLog2TrDynamicRange, bitDepths); |
---|
3199 | } |
---|
3200 | } |
---|
3201 | } |
---|
3202 | } |
---|
3203 | |
---|
3204 | /** set flat matrix value to quantized coefficient |
---|
3205 | * \param list List ID |
---|
3206 | * \param size size index |
---|
3207 | * \param qp Quantization parameter |
---|
3208 | * \param format chroma format |
---|
3209 | */ |
---|
3210 | Void TComTrQuant::xsetFlatScalingList(UInt list, UInt size, Int qp) |
---|
3211 | { |
---|
3212 | UInt i,num = g_scalingListSize[size]; |
---|
3213 | Int *quantcoeff; |
---|
3214 | Int *dequantcoeff; |
---|
3215 | |
---|
3216 | Int quantScales = g_quantScales [qp]; |
---|
3217 | Int invQuantScales = g_invQuantScales[qp] << 4; |
---|
3218 | |
---|
3219 | quantcoeff = getQuantCoeff(list, qp, size); |
---|
3220 | dequantcoeff = getDequantCoeff(list, qp, size); |
---|
3221 | |
---|
3222 | for(i=0;i<num;i++) |
---|
3223 | { |
---|
3224 | *quantcoeff++ = quantScales; |
---|
3225 | *dequantcoeff++ = invQuantScales; |
---|
3226 | } |
---|
3227 | } |
---|
3228 | |
---|
3229 | /** set quantized matrix coefficient for encode |
---|
3230 | * \param coeff quantaized matrix address |
---|
3231 | * \param quantcoeff quantaized matrix address |
---|
3232 | * \param quantScales Q(QP%6) |
---|
3233 | * \param height height |
---|
3234 | * \param width width |
---|
3235 | * \param ratio ratio for upscale |
---|
3236 | * \param sizuNum matrix size |
---|
3237 | * \param dc dc parameter |
---|
3238 | */ |
---|
3239 | Void TComTrQuant::processScalingListEnc( Int *coeff, Int *quantcoeff, Int quantScales, UInt height, UInt width, UInt ratio, Int sizuNum, UInt dc) |
---|
3240 | { |
---|
3241 | for(UInt j=0;j<height;j++) |
---|
3242 | { |
---|
3243 | for(UInt i=0;i<width;i++) |
---|
3244 | { |
---|
3245 | quantcoeff[j*width + i] = quantScales / coeff[sizuNum * (j / ratio) + i / ratio]; |
---|
3246 | } |
---|
3247 | } |
---|
3248 | |
---|
3249 | if(ratio > 1) |
---|
3250 | { |
---|
3251 | quantcoeff[0] = quantScales / dc; |
---|
3252 | } |
---|
3253 | } |
---|
3254 | |
---|
3255 | /** set quantized matrix coefficient for decode |
---|
3256 | * \param coeff quantaized matrix address |
---|
3257 | * \param dequantcoeff quantaized matrix address |
---|
3258 | * \param invQuantScales IQ(QP%6)) |
---|
3259 | * \param height height |
---|
3260 | * \param width width |
---|
3261 | * \param ratio ratio for upscale |
---|
3262 | * \param sizuNum matrix size |
---|
3263 | * \param dc dc parameter |
---|
3264 | */ |
---|
3265 | Void TComTrQuant::processScalingListDec( const Int *coeff, Int *dequantcoeff, Int invQuantScales, UInt height, UInt width, UInt ratio, Int sizuNum, UInt dc) |
---|
3266 | { |
---|
3267 | for(UInt j=0;j<height;j++) |
---|
3268 | { |
---|
3269 | for(UInt i=0;i<width;i++) |
---|
3270 | { |
---|
3271 | dequantcoeff[j*width + i] = invQuantScales * coeff[sizuNum * (j / ratio) + i / ratio]; |
---|
3272 | } |
---|
3273 | } |
---|
3274 | |
---|
3275 | if(ratio > 1) |
---|
3276 | { |
---|
3277 | dequantcoeff[0] = invQuantScales * dc; |
---|
3278 | } |
---|
3279 | } |
---|
3280 | |
---|
3281 | /** initialization process of scaling list array |
---|
3282 | */ |
---|
3283 | Void TComTrQuant::initScalingList() |
---|
3284 | { |
---|
3285 | for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) |
---|
3286 | { |
---|
3287 | for(UInt qp = 0; qp < SCALING_LIST_REM_NUM; qp++) |
---|
3288 | { |
---|
3289 | for(UInt listId = 0; listId < SCALING_LIST_NUM; listId++) |
---|
3290 | { |
---|
3291 | m_quantCoef [sizeId][listId][qp] = new Int [g_scalingListSize[sizeId]]; |
---|
3292 | m_dequantCoef [sizeId][listId][qp] = new Int [g_scalingListSize[sizeId]]; |
---|
3293 | m_errScale [sizeId][listId][qp] = new Double [g_scalingListSize[sizeId]]; |
---|
3294 | } // listID loop |
---|
3295 | } |
---|
3296 | } |
---|
3297 | } |
---|
3298 | |
---|
3299 | /** destroy quantization matrix array |
---|
3300 | */ |
---|
3301 | Void TComTrQuant::destroyScalingList() |
---|
3302 | { |
---|
3303 | for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) |
---|
3304 | { |
---|
3305 | for(UInt listId = 0; listId < SCALING_LIST_NUM; listId++) |
---|
3306 | { |
---|
3307 | for(UInt qp = 0; qp < SCALING_LIST_REM_NUM; qp++) |
---|
3308 | { |
---|
3309 | if(m_quantCoef[sizeId][listId][qp]) |
---|
3310 | { |
---|
3311 | delete [] m_quantCoef[sizeId][listId][qp]; |
---|
3312 | } |
---|
3313 | if(m_dequantCoef[sizeId][listId][qp]) |
---|
3314 | { |
---|
3315 | delete [] m_dequantCoef[sizeId][listId][qp]; |
---|
3316 | } |
---|
3317 | if(m_errScale[sizeId][listId][qp]) |
---|
3318 | { |
---|
3319 | delete [] m_errScale[sizeId][listId][qp]; |
---|
3320 | } |
---|
3321 | } |
---|
3322 | } |
---|
3323 | } |
---|
3324 | } |
---|
3325 | |
---|
3326 | Void TComTrQuant::transformSkipQuantOneSample(TComTU &rTu, const ComponentID compID, const TCoeff resiDiff, TCoeff* pcCoeff, const UInt uiPos, const QpParam &cQP, const Bool bUseHalfRoundingPoint) |
---|
3327 | { |
---|
3328 | TComDataCU *pcCU = rTu.getCU(); |
---|
3329 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
3330 | const TComRectangle &rect = rTu.getRect(compID); |
---|
3331 | const UInt uiWidth = rect.width; |
---|
3332 | const UInt uiHeight = rect.height; |
---|
3333 | const Int maxLog2TrDynamicRange = pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)); |
---|
3334 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getBitDepth(toChannelType(compID)); |
---|
3335 | const Int iTransformShift = getTransformShift(channelBitDepth, rTu.GetEquivalentLog2TrSize(compID), maxLog2TrDynamicRange); |
---|
3336 | const Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
3337 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, true); |
---|
3338 | const Int defaultQuantisationCoefficient = g_quantScales[cQP.rem]; |
---|
3339 | |
---|
3340 | assert( scalingListType < SCALING_LIST_NUM ); |
---|
3341 | const Int *const piQuantCoeff = getQuantCoeff( scalingListType, cQP.rem, (rTu.GetEquivalentLog2TrSize(compID)-2) ); |
---|
3342 | |
---|
3343 | |
---|
3344 | /* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be |
---|
3345 | * implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the |
---|
3346 | * uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller) |
---|
3347 | * Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result |
---|
3348 | */ |
---|
3349 | |
---|
3350 | const Int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; |
---|
3351 | // QBits will be OK for any internal bit depth as the reduction in transform shift is balanced by an increase in Qp_per due to QpBDOffset |
---|
3352 | |
---|
3353 | const Int iAdd = ( bUseHalfRoundingPoint ? 256 : (pcCU->getSlice()->getSliceType() == I_SLICE ? 171 : 85) ) << (iQBits - 9); |
---|
3354 | |
---|
3355 | TCoeff transformedCoefficient; |
---|
3356 | |
---|
3357 | // transform-skip |
---|
3358 | if (iTransformShift >= 0) |
---|
3359 | { |
---|
3360 | transformedCoefficient = resiDiff << iTransformShift; |
---|
3361 | } |
---|
3362 | else // for very high bit depths |
---|
3363 | { |
---|
3364 | const Int iTrShiftNeg = -iTransformShift; |
---|
3365 | const Int offset = 1 << (iTrShiftNeg - 1); |
---|
3366 | transformedCoefficient = ( resiDiff + offset ) >> iTrShiftNeg; |
---|
3367 | } |
---|
3368 | |
---|
3369 | // quantization |
---|
3370 | const TCoeff iSign = (transformedCoefficient < 0 ? -1: 1); |
---|
3371 | |
---|
3372 | const Int quantisationCoefficient = enableScalingLists ? piQuantCoeff[uiPos] : defaultQuantisationCoefficient; |
---|
3373 | |
---|
3374 | const Int64 tmpLevel = (Int64)abs(transformedCoefficient) * quantisationCoefficient; |
---|
3375 | |
---|
3376 | const TCoeff quantisedCoefficient = (TCoeff((tmpLevel + iAdd ) >> iQBits)) * iSign; |
---|
3377 | |
---|
3378 | const TCoeff entropyCodingMinimum = -(1 << maxLog2TrDynamicRange); |
---|
3379 | const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
3380 | pcCoeff[ uiPos ] = Clip3<TCoeff>( entropyCodingMinimum, entropyCodingMaximum, quantisedCoefficient ); |
---|
3381 | } |
---|
3382 | |
---|
3383 | |
---|
3384 | Void TComTrQuant::invTrSkipDeQuantOneSample( TComTU &rTu, ComponentID compID, TCoeff inSample, Pel &reconSample, const QpParam &cQP, UInt uiPos ) |
---|
3385 | { |
---|
3386 | TComDataCU *pcCU = rTu.getCU(); |
---|
3387 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
3388 | const TComRectangle &rect = rTu.getRect(compID); |
---|
3389 | const UInt uiWidth = rect.width; |
---|
3390 | const UInt uiHeight = rect.height; |
---|
3391 | const Int QP_per = cQP.per; |
---|
3392 | const Int QP_rem = cQP.rem; |
---|
3393 | const Int maxLog2TrDynamicRange = pcCU->getSlice()->getSPS()->getMaxLog2TrDynamicRange(toChannelType(compID)); |
---|
3394 | #if O0043_BEST_EFFORT_DECODING |
---|
3395 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getStreamBitDepth(toChannelType(compID)); |
---|
3396 | #else |
---|
3397 | const Int channelBitDepth = pcCU->getSlice()->getSPS()->getBitDepth(toChannelType(compID)); |
---|
3398 | #endif |
---|
3399 | const Int iTransformShift = getTransformShift(channelBitDepth, rTu.GetEquivalentLog2TrSize(compID), maxLog2TrDynamicRange); |
---|
3400 | const Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
3401 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, true); |
---|
3402 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
3403 | |
---|
3404 | assert( scalingListType < SCALING_LIST_NUM ); |
---|
3405 | |
---|
3406 | const Int rightShift = (IQUANT_SHIFT - (iTransformShift + QP_per)) + (enableScalingLists ? LOG2_SCALING_LIST_NEUTRAL_VALUE : 0); |
---|
3407 | |
---|
3408 | const TCoeff transformMinimum = -(1 << maxLog2TrDynamicRange); |
---|
3409 | const TCoeff transformMaximum = (1 << maxLog2TrDynamicRange) - 1; |
---|
3410 | |
---|
3411 | // Dequantisation |
---|
3412 | |
---|
3413 | TCoeff dequantisedSample; |
---|
3414 | |
---|
3415 | if(enableScalingLists) |
---|
3416 | { |
---|
3417 | const UInt dequantCoefBits = 1 + IQUANT_SHIFT + SCALING_LIST_BITS; |
---|
3418 | const UInt targetInputBitDepth = std::min<UInt>((maxLog2TrDynamicRange + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - dequantCoefBits)); |
---|
3419 | |
---|
3420 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
3421 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
3422 | |
---|
3423 | Int *piDequantCoef = getDequantCoeff(scalingListType,QP_rem,uiLog2TrSize-2); |
---|
3424 | |
---|
3425 | if(rightShift > 0) |
---|
3426 | { |
---|
3427 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
3428 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3429 | const Intermediate_Int iCoeffQ = ((Intermediate_Int(clipQCoef) * piDequantCoef[uiPos]) + iAdd ) >> rightShift; |
---|
3430 | |
---|
3431 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3432 | } |
---|
3433 | else |
---|
3434 | { |
---|
3435 | const Int leftShift = -rightShift; |
---|
3436 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3437 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * piDequantCoef[uiPos]) << leftShift; |
---|
3438 | |
---|
3439 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3440 | } |
---|
3441 | } |
---|
3442 | else |
---|
3443 | { |
---|
3444 | const Int scale = g_invQuantScales[QP_rem]; |
---|
3445 | const Int scaleBits = (IQUANT_SHIFT + 1) ; |
---|
3446 | |
---|
3447 | const UInt targetInputBitDepth = std::min<UInt>((maxLog2TrDynamicRange + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - scaleBits)); |
---|
3448 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
3449 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
3450 | |
---|
3451 | if (rightShift > 0) |
---|
3452 | { |
---|
3453 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
3454 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3455 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale + iAdd) >> rightShift; |
---|
3456 | |
---|
3457 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3458 | } |
---|
3459 | else |
---|
3460 | { |
---|
3461 | const Int leftShift = -rightShift; |
---|
3462 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3463 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale) << leftShift; |
---|
3464 | |
---|
3465 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3466 | } |
---|
3467 | } |
---|
3468 | |
---|
3469 | // Inverse transform-skip |
---|
3470 | |
---|
3471 | if (iTransformShift >= 0) |
---|
3472 | { |
---|
3473 | const TCoeff offset = iTransformShift==0 ? 0 : (1 << (iTransformShift - 1)); |
---|
3474 | reconSample = Pel(( dequantisedSample + offset ) >> iTransformShift); |
---|
3475 | } |
---|
3476 | else //for very high bit depths |
---|
3477 | { |
---|
3478 | const Int iTrShiftNeg = -iTransformShift; |
---|
3479 | reconSample = Pel(dequantisedSample << iTrShiftNeg); |
---|
3480 | } |
---|
3481 | } |
---|
3482 | |
---|
3483 | |
---|
3484 | Void TComTrQuant::crossComponentPrediction( TComTU & rTu, |
---|
3485 | const ComponentID compID, |
---|
3486 | const Pel * piResiL, |
---|
3487 | const Pel * piResiC, |
---|
3488 | Pel * piResiT, |
---|
3489 | const Int width, |
---|
3490 | const Int height, |
---|
3491 | const Int strideL, |
---|
3492 | const Int strideC, |
---|
3493 | const Int strideT, |
---|
3494 | const Bool reverse ) |
---|
3495 | { |
---|
3496 | const Pel *pResiL = piResiL; |
---|
3497 | const Pel *pResiC = piResiC; |
---|
3498 | Pel *pResiT = piResiT; |
---|
3499 | |
---|
3500 | TComDataCU *pCU = rTu.getCU(); |
---|
3501 | const Int alpha = pCU->getCrossComponentPredictionAlpha( rTu.GetAbsPartIdxTU( compID ), compID ); |
---|
3502 | const Int diffBitDepth = pCU->getSlice()->getSPS()->getDifferentialLumaChromaBitDepth(); |
---|
3503 | |
---|
3504 | for( Int y = 0; y < height; y++ ) |
---|
3505 | { |
---|
3506 | if (reverse) |
---|
3507 | { |
---|
3508 | // A constraint is to be added to the HEVC Standard to limit the size of pResiL and pResiC at this point. |
---|
3509 | // The likely form of the constraint is to either restrict the values to CoeffMin to CoeffMax, |
---|
3510 | // or to be representable in a bitDepthY+4 or bitDepthC+4 signed integer. |
---|
3511 | // The result of the constraint is that for 8/10/12bit profiles, the input values |
---|
3512 | // can be represented within a 16-bit Pel-type. |
---|
3513 | #if RExt__HIGH_BIT_DEPTH_SUPPORT |
---|
3514 | for( Int x = 0; x < width; x++ ) |
---|
3515 | { |
---|
3516 | pResiT[x] = pResiC[x] + (( alpha * rightShift( pResiL[x], diffBitDepth) ) >> 3); |
---|
3517 | } |
---|
3518 | #else |
---|
3519 | const Int minPel=std::numeric_limits<Pel>::min(); |
---|
3520 | const Int maxPel=std::numeric_limits<Pel>::max(); |
---|
3521 | for( Int x = 0; x < width; x++ ) |
---|
3522 | { |
---|
3523 | pResiT[x] = Clip3<Int>(minPel, maxPel, pResiC[x] + (( alpha * rightShift<Int>(Int(pResiL[x]), diffBitDepth) ) >> 3)); |
---|
3524 | } |
---|
3525 | #endif |
---|
3526 | } |
---|
3527 | else |
---|
3528 | { |
---|
3529 | // Forward does not need clipping. Pel type should always be big enough. |
---|
3530 | for( Int x = 0; x < width; x++ ) |
---|
3531 | { |
---|
3532 | pResiT[x] = pResiC[x] - (( alpha * rightShift<Int>(Int(pResiL[x]), diffBitDepth) ) >> 3); |
---|
3533 | } |
---|
3534 | } |
---|
3535 | |
---|
3536 | pResiL += strideL; |
---|
3537 | pResiC += strideC; |
---|
3538 | pResiT += strideT; |
---|
3539 | } |
---|
3540 | } |
---|
3541 | |
---|
3542 | //! \} |
---|