source: 3DVCSoftware/branches/HTM-14.1-update-dev3-NTT/doc/software-manual.tex @ 1417

Last change on this file since 1417 was 1200, checked in by tech, 10 years ago

Update to HM-16.5.
Starting point for further re-activation of 3D-tools.

Includes:

active:

  • MV-HEVC
  • 3D-HLS (apart from DLT)
  • VSO

inactive:

  • remaining 3D-HEVC tools.
File size: 87.1 KB
Line 
1\documentclass[a4paper,11pt]{jctvcdoc}
2
3\usepackage{geometry}[2010/02/12]
4
5\usepackage{hyperref}
6\hypersetup{colorlinks=true}
7\usepackage{color,soul}
8
9\usepackage[position=bottom]{subfig}
10\captionsetup[subfloat]{position=top}
11\usepackage{multirow}
12\usepackage{dcolumn}
13\newcolumntype{.}{D{.}{.}{-1}}
14\usepackage{colortbl}
15\usepackage{makecell}
16\usepackage{longtable}
17\usepackage{array}
18\usepackage{algorithm2e}
19
20\usepackage[strings]{underscore}
21\usepackage{csquotes}
22\MakeOuterQuote{"}
23\EnableQuotes
24
25\newcommand\None{}
26\newcommand\NotSet{}
27\makeatletter
28\newcommand{\Option}[1]{\ifx\optOption\@empty\gdef\optOption{#1}\else\g@addto@macro\optOption{ \\ #1}\fi}
29\newcommand{\ShortOption}[1]{\ifx\optShortOption\@empty\gdef\optShortOption{#1}\else\g@addto@macro\optShortOption{ \\ #1}\fi}
30\newcommand{\Default}[1]{\ifx\optDefault\@empty\gdef\optDefault{#1}\else\g@addto@macro\optDefault{ \\ #1}\fi}
31\newcommand{\clearOptions}{\gdef\optOption{}\gdef\optShortOption{}\gdef\optDefault{}}
32\makeatother
33\newenvironment{OptionTable}[1]{%
34        \footnotesize
35        \def\arraystretch{1.8}
36        \clearOptions
37        \begin{longtable}{l<{\makecell[tl]{\optOption}}%
38                          >{\texttt\bgroup}l<{\makecell[tl]{\optShortOption}\egroup}%
39                          c<{\makecell[tc]{\optDefault}}%
40                          >{\def\arraystretch{1.0}}p{0.5\textwidth}<{\clearOptions}}
41        \caption{#1} \\
42        \hspace*{12em}&&\hspace*{8em}&\kill
43        \hline
44         \thead{Option} &
45         \egroup\thead{Shorthand}\bgroup &
46         \thead{Default} &
47         \thead{Description} \\
48        \hline
49        \endfirsthead
50        \caption[]{#1 (Continued)} \\
51        \hspace*{12em}&&\hspace*{8em}&\kill
52        \hline
53         \thead{Option} &
54         \egroup\thead{Shorthand}\bgroup &
55         \thead{Default} &
56         \thead{Description} \\
57        \hline
58        \endhead
59         \multicolumn{4}{r}{Continued...}\\
60         \hline
61        \endfoot
62         \hline
63        \endlastfoot
64}{%
65        \hline
66        \end{longtable}
67}
68
69\newenvironment{OptionTableNoShorthand}[2]{%
70        \footnotesize
71        \def\arraystretch{1.8}
72        \clearOptions
73        \begin{longtable}{l<{\makecell[tl]{\optOption}}%
74                          c<{\makecell[tc]{\optDefault}}%
75                          >{\def\arraystretch{1.0}}p{0.5\textwidth}<{\clearOptions}}
76        \caption{#1} \label{#2} \\
77        \hspace*{12em}&\hspace*{8em}&\kill
78        \hline
79         \thead{Option} &
80         \thead{Default} &
81         \thead{Description} \\
82        \hline
83        \endfirsthead
84        \caption[]{#1 (Continued)} \\
85        \hspace*{12em}&\hspace*{8em}&\kill
86        \hline
87         \thead{Option} &
88         \thead{Default} &
89         \thead{Description} \\
90        \hline
91        \endhead
92         \multicolumn{3}{r}{Continued...}\\
93         \hline
94        \endfoot
95         \hline
96        \endlastfoot
97}{%
98        \hline
99        \end{longtable}
100}
101
102\newenvironment{SEIListTable}[1]{%
103        \footnotesize
104        \def\arraystretch{1.8}
105        \clearOptions
106        \begin{longtable}{c<{\makecell[tl]{\optOption}}%
107                          l<{\makecell[tc]{\optDefault}}%
108                          >{\def\arraystretch{1.0}}p{0.3\textwidth}<{\clearOptions}}
109        \caption{#1} \\
110        \hspace*{12em}&\hspace*{8em}&\kill
111        \hline
112         \thead{SEI Number} &
113         \thead{SEI Name} &
114         \thead{Table number of encoder controls, if available} \\
115        \hline
116        \endfirsthead
117        \caption[]{#1 (Continued)} \\
118        \hspace*{12em}&\hspace*{8em}&\kill
119        \hline
120         \thead{SEI Number} &
121         \thead{SEI Name} &
122         \thead{Table number of encoder controls, if available} \\
123        \hline
124        \endhead
125         \multicolumn{3}{r}{Continued...}\\
126         \hline
127        \endfoot
128         \hline
129        \endlastfoot
130}{%
131        \hline
132        \end{longtable}
133}
134
135\newenvironment{MacroTable}[1]{%
136        \footnotesize
137        \def\arraystretch{1.3}
138        \clearOptions
139        \begin{longtable}{lcp{0.5\textwidth}}
140         \caption{#1} \\
141        %\hspace*{12em}&&\hspace*{8em}&\kill
142         \hline
143          \thead{Option} &
144          \thead{Default} &
145          \thead{Description} \\
146         \hline
147        \endfirsthead
148         \caption[]{#1 (Continued)} \\
149         \hline
150          \thead{Option} &
151          \thead{Default} &
152          \thead{Description} \\
153         \hline
154        \endhead
155         \multicolumn{3}{r}{Continued...}\\
156         \hline
157        \endfoot
158         \hline
159        \endlastfoot
160}{%
161        \end{longtable}
162}
163
164\title{HM Software Manual}
165\author{%
166        Frank Bossen
167        \email{frank@bossentech.com}
168        \and
169        David Flynn
170        \email{dflynn@blackberry.com}
171        \and
172  Karl Sharman
173        \email{karl.sharman@eu.sony.com}
174        \and
175        Karsten S\"uhring
176        \email{karsten.suehring@hhi.fraunhofer.de}
177}
178
179\jctvcmeeting{}
180\jctvcdocnum{Software Manual}
181\jctvcdocstatus{Software AHG working document}
182\jctvcdocpurpose{Information}
183\jctvcdocsource{AHG chairs}
184
185\begin{document}
186\maketitle
187\begin{abstract}
188This document is a user manual describing usage of reference software
189for the HEVC project. It applies to version 16.4
190of the software.
191\end{abstract}
192
193\tableofcontents
194\listoftables
195
196
197
198\section{General Information}
199Reference software is being made available to provide a reference
200implementation of the HEVC standard being developed by the Joint
201Collaborative Team on Video Coding (JCT-VC) regrouping experts from
202ITU-T SG 16 and ISO/IEC SC29 WG11. One of the main goals of the
203reference software is to provide a basis upon which to conduct
204experiments in order to determine which coding tools provide desired
205coding performance. It is not meant to be a particularly efficient
206implementation of anything, and one may notice its apparent
207unsuitability for a particular use. It should not be construed to be a
208reflection of how complex a production-quality implementation of a
209future HEVC standard would be.
210
211This document aims to provide guidance on the usage of the reference
212software. It is widely suspected to be incomplete and suggestions for
213improvements are welcome. Such suggestions and general inquiries may be
214sent to the general JCT-VC email reflector on
215\url{jct-vc@lists.rwth-aachen.de} (registration required).
216
217\subsection*{Bug reporting}
218Bugs should be reported on the issue tracker set up at
219\url{http://hevc.kw.bbc.co.uk/trac/}
220
221\section{Installation and compilation}
222The software may be retrieved from one of the following SVN servers
223(mirrored):
224\begin{itemize}
225\item \url{https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/}
226\item \url{svn://hevc.kw.bbc.co.uk/svn/jctvc-hm/}
227\end{itemize}
228
229Table~\ref{tab:project-files} enumerates various project files that are
230provided for development environments.
231
232\begin{table}[ht]
233\footnotesize
234\caption{Available project files}
235\label{tab:project-files}
236\centering
237\begin{tabular}{ll}
238\hline
239 \thead{Environment} &
240 \thead{Location of project file} \\
241% Environment          & Location of project file \\
242\hline
243MS Visual Studio 8   & build/HM_vc8.sln \\
244MS Visual Studio 9   & build/HM_vc9.sln \\
245MS Visual Studio 10  & build/HM_vc10.sln \\
246Xcode                & HM.xcodeproj \\
247Linux                & build/linux/makefile \\
248\hline
249\end{tabular}
250\end{table}
251
252For encoding large picture sizes (like UHDTV) it is strongly advised to build 64-bit
253binaries and to use a 64-bit OS. This will allow the software to use more than 2GB of RAM.
254
255%%%%
256%%%%
257%%%%
258\section{Using the encoder}
259\begin{verbatim}
260TAppEncoder     [--help] [-c config.cfg] [--parameter=value]
261\end{verbatim}
262
263\begin{table}[ht]
264\footnotesize
265\centering
266\begin{tabular}{lp{0.5\textwidth}}
267\hline
268 \thead{Option} &
269 \thead{Description} \\
270\hline
271\texttt{--help} & Prints parameter usage. \\
272\texttt{-c} & Defines configuration file to use.  Multiple configuration files
273     may be used with repeated --c options. \\
274\texttt{--}\emph{parameter}\texttt{=}\emph{value}
275    & Assigns value to a given parameter as further described below.
276      Some parameters are also supported by shorthand
277      "--\em{opt}~\emph{value}". These are shown in brackets after the parameter
278      name in the tables of this document\\
279\hline
280\end{tabular}
281\end{table}
282
283Sample configuration files are provided in the cfg/ folder.
284Parameters are defined by the last value encountered on the command line.
285Therefore if a setting is set via a configuration file, and then a subsequent
286command line parameter changes that same setting, the command line parameter
287value will be used.
288
289\subsection{GOP structure table}
290\label{sec:gop-structure}
291Defines the cyclic GOP structure that will be used repeatedly
292throughout the sequence. The table should contain GOPSize lines,
293named Frame1, Frame2, etc. The frames are listed in decoding
294order, so Frame1 is the first frame in decoding order, Frame2 is
295the second and so on. Among other things, the table specifies all
296reference pictures kept by the decoder for each frame. This
297includes pictures that are used for reference for the current
298picture as well as pictures that will be used for reference in
299the future. The encoder will not automatically calculate which
300pictures have to be kept for future references, they must
301be specified. Note that some specified reference frames for
302pictures encoded in the very first GOP after an IDR frame might
303not be available. This is handled automatically by the encoder,
304so the reference pictures can be given in the GOP structure table
305as if there were infinitely many identical GOPs before the
306current one. Each line in the table contains the parameters used
307for the corresponding frame, separated by whitespace:
308
309\begin{itemize}
310\item[]\textbf{Type}: Slice type, can be either I, P or B.
311
312\item[]\textbf{POC}: Display order of the frame within a GOP, ranging
313from 1 to GOPSize.
314
315\item[]\textbf{QPOffset}: QP offset is added to the QP parameter to set
316the final QP value to use for this frame.
317
318\item[]\textbf{QPFactor}: Weight used during rate distortion
319optimization. Higher values mean lower quality and less bits. Typical
320range is between
3210.3 and 1.
322
323\item[]\textbf{tcOffsetDiv2}: In-loop deblocking filter parameter tcOffsetDiv2
324is added to the base parameter LoopFilterTcOffset_div2 to set the final tc_offset_div2
325parameter for this picture signalled in the slice segment header. The final
326value of tc_offset_div2 shall be an integer number in the range $-6..6$.
327
328\item[]\textbf{betaOffsetDiv2}: In-loop deblocking filter parameter betaOffsetDiv2
329is added to the base parameter LoopFilterBetaOffset_div2 to set the final beta_offset_div2
330parameter for this picture signalled in the slice segment header. The final
331value of beta_offset_div2 shall be an integer number in the range $-6..6$.
332
333\item[]\textbf{temporal_id}: Temporal layer of the frame. A frame cannot
334predict from a frame with a higher temporal id. If a frame with higher
335temporal IDs is listed among a frame's reference pictures, it is
336not used, but is kept for possible use in future frames.
337
338\item[]\textbf{num_ref_pics_active}: Size of reference picture lists L0
339and L1, indicating how many reference pictures in each direction that
340are used during coding.
341
342\item[]\textbf{num_ref_pics}: The number of reference pictures kept for
343this frame.  This includes pictures that are used for reference for the
344current picture as well as pictures that will be used for reference in
345the future.
346
347\item[]\textbf{reference_pictures}: A space-separated list of
348num_ref_pics integers, specifying the POC of the reference pictures
349kept, relative the POC of the current frame. The picture list shall be
350ordered, first with negative numbers from largest to smallest, followed
351by positive numbers from smallest to largest (e.g. \verb|-1 -3 -5 1 3|).
352Note that any pictures not supplied in this list will be discarded and
353therefore not available as reference pictures later.
354
355\item[]\textbf{predict}: Defines the value of the syntax element
356inter_ref_pic_set_prediction_flag. A value of 0 indicates that the
357reference picture set is encoded without inter RPS prediction and the
358subsequent parameters deltaRIdx$-1$, deltaRPS, num_ref_idcs and
359Reference_idcs are ignored and do not need to be present. A value of 1
360indicates that the reference picture set is encoded with inter
361prediction RPS using the subsequent parameters deltaRIdx$-1$, deltaRPS,
362num_ref_idcs and Reference_idcs in the line. A value of 2 indicates that
363the reference picture set is encoded with inter RPS but only the
364deltaRIdx$-1$ parameters is needed. The deltaRPS, num_ref_idcs and
365Reference_idcs values are automatically derived by the encoder based on
366the POC and refPic values of the current line and the RPS pointed to by
367the deltaRIdx$-1$ parameters.
368
369\item[]\textbf{deltaRIdx$-1$}: The difference between the index of the
370curent RPS and the predictor RPS minus 1.
371
372\item[]\textbf{deltaRPS}: The difference between the POC of the
373predictor RPS and POC the current RPS.
374
375\item[]\textbf{num_ref_idcs}: The number of ref_idcs to encode for the
376current RPS.  The value is equal to the value of  num_ref_pics of the
377predictor RPS plus 1.
378
379\item[]\textbf{reference_idcs}: A space-separated list of num_ref_idcs
380integers, specifying the ref idcs of the inter RPS prediction. The value
381of ref_idcs may be 0, 1 or 2 indicating that the reference picture is a
382reference picture used by the current picture, a reference picture used
383for future picture or not a reference picture anymore, respectively. The
384first num_ref_pics of ref_idcs correspond to the Reference pictures in
385the predictor RPS. The last ref_idcs corresponds to the predictor
386picture.
387\end{itemize}
388
389For example, consider the coding structure of Figure~\ref{fig:gop-example}.
390This coding structure is of size 4. The pictures are listed in decoding
391order. Frame1 shall therefore describe picture with $\textrm{POC}=4$. It
392references picture 0, and therefore has $-4$ as a reference picture.
393Similarly, Frame2 has a POC of 2, and since it references pictures 0 and
3944, its reference pictures are listed as \verb|-2 2|. Frame3 is a special
395case: even though it only references pictures with POC 0 and 2, it also
396needs to include the picture with POC 4, which must be kept in order to
397be used as a reference picture in the future. The reference picture list
398for Frame3 therefore becomes \verb|-1 1 3|. Frame4 has a POC of 3 and
399its list of reference pictures is \verb|-1 1|.
400
401\begin{figure}[h]
402\caption{A GOP structure}
403\label{fig:gop-example}
404\centering
405\includegraphics[width=0.7\textwidth]{gop-structure-example}
406\end{figure}
407
408Inter RPS prediction may be used for Frame2, Frame3 and Frame4, hence
409the predict parameter is set to 1 for these frames. Frame2 uses Frame1
410as the predictor hence the deltaRIdx$-1$ is 0.  Similarly for Frame3 and
411Frame4 which use Frame2 and Frame3 as predictors, respectively. The
412deltaRPS is equal to the POC of the predictor minus the POC of the
413current picture, therefore the deltaRPS for Frame2 is $4 -2 = 2$, for
414Frame3 is $2 - 1 = 1$ and for Frame4 is $1 - 3 = -2$.
415
416In Frame2, reference pictures with POC 0 and 2 are used, so the
417reference idcs for Frame2 are \verb|1 1| indicating that the reference
418picture, $-4$, in Frame1 is still a reference picture in Frame2 and
419Frame1 is also a reference picture in Frame2. The reference idcs for
420Frame3 are \verb|1 1 1|. The first and second “1”s indicating that
421the reference pictures "$-2$ $2$" in Frame2 are still reference pictures in
422Frame3 and the last “1” indicating that Frame2 is also a reference
423picture in Frame3. In Frame 4, the reference idcs are \verb|0 1 1 0|.
424The first “0” indicates that the reference pictures “-1” in Frame 3 is
425no longer a reference picture in Frame4. The next two “1”s indicate that
426the reference pictures “$1$ $3$” are now reference pictures of Frame4.
427The final “0” indicates that Frame3 is not a reference picture.
428
429In order to specify this to the encoder, the parameters in
430Table~\ref{tab:gop-example} could be used.
431
432\begin{table}[ht]
433\footnotesize
434\caption{GOP structure example}
435\label{tab:gop-example}
436\centering
437\begin{tabular}{lrrrr}
438\hline
439 \thead{} &
440 \thead{Frame1} &
441 \thead{Frame2} &
442 \thead{Frame3} &
443 \thead{Frame4} \\
444\hline
445Type                &   P  &    B   &      B   &       B \\
446POC                 &   4  &    2   &      1   &       3 \\
447QPoffset            &   1  &    2   &      3   &       3 \\
448QPfactor            & 0.5  &  0.5   &    0.5   &     0.5 \\
449tcOffsetDiv2        &   0  &    1   &      2   &       2 \\ 
450betaOffsetDiv2      &   0  &    0   &      0   &       0 \\
451temporal_id         &   0  &    1   &      2   &       2 \\
452num_ref_pics_active &   1  &    1   &      1   &       1 \\
453num_ref_pics        &   1  &    2   &      3   &       2 \\
454reference_pictures  & $-$4 & $-$2 2 & $-$1 1 3 &  $-$1 1 \\
455predict             &   0  &    1   &      1   &       1 \\
456deltaRIdx$-$1       &      &    0   &      0   &       0 \\
457deltaRPS            &      &    2   &      1   &    $-$2 \\
458num_ref_idcs        &      &    2   &      3   &       4 \\
459reference_idcs      &      &  1 1   &  1 1 1   & 0 1 1 0 \\
460\hline
461\end{tabular}
462\end{table}
463
464Here, the frames used for prediction have been given higher
465quality by assigning a lower QP offset. Also, the non-reference
466frames have been marked as belonging to a higher temporal layer,
467to make it possible to decode only every other frame. Note: each
468line should contain information for one frame, so this
469configuration would be specified as:
470
471\begin{verbatim}
472Frame1: P 4 1 0.5 0 0 0 1 1 -4 0
473Frame2: B 2 2 0.5 1 0 1 1 2 -2 2 1 0 2 2 1 1
474Frame3: B 1 3 0.5 2 0 2 1 3 -1 1 3 1 0 1 3 1 1 1
475Frame4: B 3 3 0.5 2 0 2 1 2 -1 1 1 0 -2 4 0 1 1 0
476\end{verbatim}
477
478The values of deltaRIdx$-1$, deltaRPS, num_ref_idcs and reference
479idcs of Frame$K$ can be derived from the POC value of Frame$_K$ and
480the POC, num_ref_pics and reference_pictures values of Frame$_M$, where
481$K$ is the index of the RPS to be inter coded and the $M$ is the
482index of the reference RPS, as follows.
483
484\setlength{\algomargin}{2em}
485\begin{algorithm}[h]
486\SetKwData{deltaRIdx}{deltaRIdx}
487\SetKwData{deltaRPS}{deltaRPS}
488\SetKwData{numrefidcs}{num_ref_idcs}
489\SetKwData{numrefpics}{num_ref_pics}
490\SetKwData{referencepictures}{reference_pictures}
491\SetKwData{referenceidcs}{reference_idcs}
492\SetKwData{POC}{POC}
493
494$\deltaRIdx_K - 1  \leftarrow  K - M - 1$ \;
495$\deltaRPS_K       \leftarrow  \POC_M - \POC_K$ \;
496$\numrefidcs_K     \leftarrow  \numrefpics_M + 1$ \;
497
498\For{$j \leftarrow 0$ \KwTo $\numrefpics_M$}{
499        \For{$i \leftarrow 0$ \KwTo $\numrefidcs_K$}{
500                \eIf{$\referencepictures_{M,j} + \deltaRPS_K == \referencepictures_{K,i}$}{
501                        \lIf{$\referencepictures_{K,i}$ is used by the current frame}{
502                                $\referenceidcs_{K,j} = 1$} \;
503                        \lElse{$\referenceidcs_{K,j} = 2$} \;
504                }{
505                        $\referenceidcs_K[j] = 0$ \;
506                }
507        }
508}
509
510\tcc{$\referencepictures_{M,\numrefpics_M}$ does not exist and is assumed to be 0}
511\end{algorithm}
512
513Note: The above (automatic) generation of the inter RPS parameter
514values has been integrated into the encoder, and is activated by
515the value of predict $= 2$ followed by the value of deltaRIdx$-1$,
516only, as described above.
517
518
519
520%%%%
521%%%%
522%%%%
523\newgeometry{tmargin=1.6cm,lmargin=1cm,rmargin=1cm,bmargin=1in,nohead}
524\subsection{Encoder parameters}
525
526%%
527%% File, I/O and source parameters
528%%
529Shorthand alternatives for the parameter that can be used on the command line are shown in brackets after the parameter name.
530
531\begin{OptionTableNoShorthand}{File, I/O and source parameters.}{tab:fileIO}
532\Option{InputFile (-i)} &
533%\ShortOption{-i} &
534\Default{\NotSet} &
535Specifies the input video file.
536
537Video data must be in a raw 4:2:0, or 4:2:2 planar format, 4:4:4 planar format (Y$'$CbCr, RGB or GBR), or in a raw 4:0:0 format.
538
539Note: When the bit depth of samples is larger than 8, each sample is encoded in
5402 bytes (little endian, LSB-justified).
541\\
542
543\Option{BitstreamFile (-b)} &
544%\ShortOption{-b} &
545\Default{\NotSet} &
546Specifies the output coded bit stream file.
547\\
548
549\Option{ReconFile (-o)} &
550%\ShortOption{-o} &
551\Default{\NotSet} &
552Specifies the output locally reconstructed video file.
553\\
554
555\Option{SourceWidth (-wdt)}%
556\Option{SourceHeight (-hgt)} &
557%\ShortOption{-wdt}%
558%\ShortOption{-hgt} &
559\Default{0}%
560\Default{0} &
561Specifies the width and height of the input video in luma samples.
562\\
563
564\Option{InputBitDepth}
565 &
566%\ShortOption{\None} &
567\Default{8} &
568Specifies the bit depth of the input video.
569\\
570
571\Option{MSBExtendedBitDepth} &
572%\ShortOption{\None} &
573\Default{0} &
574Extends the input video by adding MSBs of value 0. When 0, no extension is applied and the InputBitDepth is used.
575
576The MSBExtendedBitDepth becomes the effective file InputBitDepth for subsequent processing.
577\\
578
579\Option{InternalBitDepth} &
580%\ShortOption{\None} &
581\Default{0} &
582Specifies the bit depth used for coding. When 0, the setting defaults to the
583value of the MSBExtendedBitDepth.
584
585If the input video is a different bit depth to InternalBitDepth, it is
586automatically converted by:
587\begin{displaymath}
588\left\lfloor
589 \frac{\mathrm{Pel} * 2^{\mathrm{InternalBitDepth}}}{
590     2^{\mathrm{MSBExtendedBitDepth}}}
591\right\rfloor
592\end{displaymath}
593
594Note: The effect of this option is as if the input video is externally
595converted to the MSBExtendedBitDepth and then to the InternalBitDepth
596and then coded with this value as InputBitDepth. The codec has no
597notion of different bit depths.
598\\
599
600\Option{OutputBitDepth} &
601%\ShortOption{\None} &
602\Default{0} &
603Specifies the bit depth of the output locally reconstructed video file.
604When 0, the setting defaults to the value of InternalBitDepth.
605Note: This option has no effect on the decoding process.
606\\
607
608\Option{InputBitDepthC}%
609\Option{MSBExtendedBitDepthC}%
610\Option{InternalBitDepthC}%
611\Option{OutputBitDepthC} &
612%\ShortOption{\None} &
613\Default{0}%
614\Default{0}%
615\Default{0}%
616\Default{0} &
617Specifies the various bit-depths for chroma components.  These only need
618to be specified if non-equal luma and chroma bit-depth processing is
619required. When 0, the setting defaults to the corresponding non-Chroma value.
620\\
621
622\Option{InputColourSpaceConvert} &
623%\ShortOption{\None} &
624\Default{\NotSet} &
625The colour space conversion to apply to input video. Permitted values are:
626\par
627\begin{tabular}{lp{0.3\textwidth}}
628  UNCHANGED & No colour space conversion is applied \\
629  YCbCrToYCrCb & Swap the second and third components \\
630  YCbCrtoYYY & Set the second and third components to the values in the first \\
631  RGBtoGBR & Reorder the three components \\
632\end{tabular}
633\par
634If no value is specified, no colour space conversion is applied. The list may eventually also include RGB to YCbCr or YCgCo conversions.
635\\
636
637\Option{SNRInternalColourSpace} &
638%\ShortOption{\None} &
639\Default{false} &
640When this is set true, then no colour space conversion is applied prior to PSNR calculation, otherwise the inverse of InputColourSpaceConvert is applied.
641\\
642
643\Option{OutputInternalColourSpace} &
644%\ShortOption{\None} &
645\Default{false} &
646When this is set true, then no colour space conversion is applied to the reconstructed video, otherwise the inverse of InputColourSpaceConvert is applied.
647\\
648
649\Option{InputChromaFormat} &
650%\ShortOption{\None} &
651\Default{420} &
652Specifies the chroma format used in the input file. Permitted values (depending on the profile) are 400, 420, 422 or 444.
653\\
654
655\Option{ChromaFormatIDC (-cf)} &
656%\ShortOption{-cf} &
657\Default{0} &
658Specifies the chroma format to use for processing. Permitted values (depending on the profile) are 400, 420, 422 or 444; the value of 0 indicates that the value of InputChromaFormat should be used instead.
659\\
660
661\Option{MSEBasedSequencePSNR} &
662%\ShortOption{\None} &
663\Default{false} &
664When 0, the PSNR output is a linear average of the frame PSNRs; when 1, additional PSNRs are output which are formed from the average MSE of all the frames. The latter is useful when coding near-losslessly, where occasional frames become lossless.
665\\
666
667\Option{PrintFrameMSE} &
668%\ShortOption{\None} &
669\Default{false} &
670When 1, the Mean Square Error (MSE) values of each frame will also be output alongside the default PSNR values.
671\\
672
673\Option{PrintSequenceMSE} &
674%\ShortOption{\None} &
675\Default{false} &
676When 1, the Mean Square Error (MSE) values of the entire sequence will also be output alongside the default PSNR values.
677\\
678
679\Option{CabacZeroWordPaddingEnabled} &
680%\ShortOption{\None} &
681\Default{false} &
682When 1, CABAC zero word padding will be enabled. This is currently not the default value for the setting.
683\\
684
685\Option{ConformanceWindowMode} &
686%\ShortOption{\None} &
687\Default{0} &
688Specifies how the parameters related to the conformance window are interpreted (cropping/padding).
689The following modes are available:
690\par
691\begin{tabular}{cp{0.43\textwidth}}
6920 & No cropping / padding \\
6931 & Automatic padding to the next minimum CU size \\
6942 & Padding according to parameters HorizontalPadding and VerticalPadding \\
6953 & Cropping according to parameters ConfWinLeft, ConfWinRight, ConfWinTop and ConfWinBottom \\
696\end{tabular}
697\\
698
699\Option{HorizontalPadding (-pdx)}%
700\Option{VerticalPadding (-pdy)} &
701%\ShortOption{-pdx}%
702%\ShortOption{-pdy} &
703\Default{0} &
704Specifies the horizontal and vertical padding to be applied to the input
705video in luma samples when ConformanceWindowMode is 2.  Must be a multiple of
706the chroma resolution (e.g. a multiple of two for 4:2:0).
707\\
708
709\Option{ConfWinLeft}%
710\Option{ConfWinRight}%
711\Option{ConfWinTop}%
712\Option{ConfWinBottom} &
713%\ShortOption{\None} &
714\Default{0} &
715Specifies the horizontal and vertical cropping to be applied to the
716input video in luma samples when ConformanceWindowMode is 3.
717Must be a multiple of the chroma resolution (e.g. a multiple of
718two for 4:2:0).
719\\
720
721\Option{FrameRate (-fr)} &
722%\ShortOption{-fr} &
723\Default{0} &
724Specifies the frame rate of the input video.
725
726Note: This option only affects the reported bit rates.
727\\
728
729\Option{FrameSkip (-fs)} &
730%\ShortOption{-fs} &
731\Default{0} &
732Specifies a number of frames to skip at beginning of input video file.
733\\
734
735\Option{FramesToBeEncoded (-f)} &
736%\ShortOption{-f} &
737\Default{0} &
738Specifies the number of frames to be encoded. When 0, all frames are coded.
739\\
740
741\Option{FieldCoding} &
742%\ShortOption{\None} &
743\Default{false} &
744When 1, indicates that field-based coding is to be applied.
745\\
746
747\Option{TopFieldFirst (-Tff)} &
748%\ShortOption{\None} &
749\Default{0} &
750Indicates the order of the fields packed into the input frame. When 1, the top field is temporally first.
751\\
752
753\end{OptionTableNoShorthand}
754
755%%
756%% profile, level and conformance options
757%%
758\begin{OptionTableNoShorthand}{Profile and level parameters}{tab:profile}
759\Option{Profile} &
760%\ShortOption{\None} &
761\Default{none} &
762Specifies the profile to which the encoded bitstream complies.
763
764Valid HEVC Ver. 1 values are: none, main, main10, main-still-picture
765
766Valid HEVC Ver. 2 (RExt) values are: main-RExt, high-throughput-RExt,
767monochrome, monochrome12, monochrome16, main12, main_422_10,
768main_422_12, main_444, main_444_10, main_444_12, main_444_16,
769main_intra, main_10_intra, main_12_intra, main_422_10_intra, main_422_12_intra,
770main_444_intra, main_444_10_intra, main_444_12_intra, main_444_16_intra.
771
772When main-RExt is specified, the constraint flags are either manually specified, or calculated via the other supplied settings.
773
774Compatibility flags are automatically determined according to the profile.
775NB: There is currently only limited validation that the encoder configuration complies with the profile, level and tier constraints.
776\\
777
778\Option{Level} &
779%\ShortOption{\None} &
780\Default{none} &
781Specifies the level to which the encoded bitstream complies.
782Valid values are: none, 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1, 6.2, 8.5
783
784NB: There is currently only limited validation that the encoder configuration complies with the profile, level and tier constraints.
785\\
786
787\Option{Tier} &
788%\ShortOption{\None} &
789\Default{main} &
790Specifies the level tier to which the encoded bitsream complies.
791Valid values are: main, high.
792
793NB: There is currently only limited validation that the encoder configuration complies with the profile, level and tier constraints.
794\\
795
796\Option{MaxBitDepthConstraint} &
797%\ShortOption{\None} &
798\Default{0} &
799For --profile=main-RExt, specifies the value to use to derive the general_max_bit_depth constraint flags for RExt profiles; when 0, use $\max(InternalBitDepth, InternalBitDepthC)$
800\\
801
802\Option{MaxChromaFormatConstraint} &
803%\ShortOption{\None} &
804\Default{0} &
805For --profile=main-RExt, specifies the chroma-format to use for the general profile constraints for RExt profiles; when 0, use the value of ChromaFormatIDC.
806\\
807
808\Option{IntraConstraintFlag} &
809%\ShortOption{\None} &
810\Default{false} &
811For --profile=main-RExt, specifies the value of general_intra_constraint_flag to use for RExt profiles.
812\\
813
814\Option{LowerBitRateConstraintFlag} &
815%\ShortOption{\None} &
816\Default{true} &
817Specifies the value of general_lower_bit_constraint_flag to use for RExt profiles.
818\\
819
820\Option{ProgressiveSource} &
821%\ShortOption{\None} &
822\Default{false} &
823Specifies the value of general_progressive_source_flag
824\\
825
826\Option{InterlacedSource} &
827%\ShortOption{\None} &
828\Default{false} &
829Specifies the value of general_interlaced_source_flag
830\\
831
832\Option{NonPackedSource} &
833%\ShortOption{\None} &
834\Default{false} &
835Specifies the value of general_non_packed_constraint_flag
836\\
837
838\Option{FrameOnly} &
839%\ShortOption{\None} &
840\Default{false} &
841Specifies the value of general_frame_only_constraint_flag
842\\
843
844\end{OptionTableNoShorthand}
845
846
847%%
848%% Unit definition parameters
849%%
850
851\begin{OptionTableNoShorthand}{Unit definition parameters}{tab:unit}
852\Option{MaxCUWidth} &
853%\ShortOption{\None} &
854\Default{64} &
855Defines the maximum CU width.
856\\
857
858\Option{MaxCUHeight} &
859%\ShortOption{\None} &
860\Default{64} &
861Defines the maximum CU height.
862\\
863
864\Option{MaxCUSize (-s)} &
865%\ShortOption{\None} &
866\Default{64} &
867Defines the maximum CU size.
868\\
869
870\Option{MaxPartitionDepth (-h)} &
871%\ShortOption{-h} &
872\Default{4} &
873Defines the depth of the CU tree.
874\\
875
876\Option{QuadtreeTULog2MaxSize} &
877%\ShortOption{\None} &
878\Default{6 \\ ($= \mathrm{log}_2(64)$)} &
879Defines the Maximum TU size in logarithm base 2.
880\\
881
882\Option{QuadtreeTULog2MinSize} &
883%\ShortOption{\None} &
884\Default{2 \\ ($= \mathrm{log}_2(4)$)} &
885Defines the Minimum TU size in logarithm base 2.
886\\
887
888\Option{QuadtreeTUMaxDepthIntra} &
889%\ShortOption{\None} &
890\Default{1} &
891Defines the depth of the TU tree for intra CUs.
892\\
893
894\Option{QuadtreeTUMaxDepthInter} &
895%\ShortOption{\None} &
896\Default{2} &
897Defines the depth of the TU tree for inter CUs.
898\\
899
900\end{OptionTableNoShorthand}
901
902
903%%
904%% Coding structure parameters
905%%
906
907\begin{OptionTableNoShorthand}{Coding structure parameters}{tab:coding-structure}
908\Option{IntraPeriod (-ip)} &
909%\ShortOption{-ip} &
910\Default{$-1$} &
911Specifies the intra frame period.
912A value of $-1$ implies an infinite period.
913\\
914
915\Option{DecodingRefreshType (-dr)} &
916%\ShortOption{-dr} &
917\Default{0} &
918Specifies the type of decoding refresh to apply at the intra frame period
919picture.
920\par
921\begin{tabular}{cp{0.45\textwidth}}
9220 & Applies an I picture (not a intra random access point). \\
9231 & Applies a CRA intra random access point (open GOP). \\
9242 & Applies an IDR intra random access point (closed GOP). \\
9253 & Use recovery point SEI messages to indicate random access. \\
926\end{tabular}
927\\
928
929\Option{GOPSize (-g)} &
930%\ShortOption{-g} &
931\Default{1} &
932Specifies the size of the cyclic GOP structure.
933\\
934
935\Option{Frame\emph{N}} &
936%\ShortOption{\None} &
937\Default{\NotSet} &
938Multiple options that define the cyclic GOP structure that will be used
939repeatedly throughout the sequence.  The table should contain GOPSize
940elements.
941\par
942See section~\ref{sec:gop-structure} for further details.
943\\
944\end{OptionTableNoShorthand}
945
946%%
947%% Motion estimation parameters
948%%
949
950\begin{OptionTableNoShorthand}{Motion estimation parameters}{tab:motion-estimation}
951\Option{FastSearch} &
952%\ShortOption{\None} &
953\Default{1} &
954Enables or disables the use of a fast motion search.
955\par
956\begin{tabular}{cp{0.45\textwidth}}
957 0 & Full search method \\
958 1 & Fast search method \\
959 2 & Previous motion vector fast search method \\
960\end{tabular}
961\\
962
963\Option{SearchRange (-sr)} &
964%\ShortOption{-sr} &
965\Default{96} &
966Specifies the search range used for motion estimation.
967
968Note: the search range is defined around a predictor. Motion vectors
969derived by the motion estimation may thus have values larger than the
970search range.
971\\
972
973\Option{BipredSearchRange} &
974%\ShortOption{\None} &
975\Default{4} &
976Specifies the search range used for bi-prediction refinement in motion
977estimation.
978\\
979
980\Option{HadamardME} &
981%\ShortOption{\None} &
982\Default{true} &
983Enables or disables the use of the Hadamard transform in fractional-pel motion
984estimation.
985\par
986\begin{tabular}{cp{0.45\textwidth}}
987 0 & SAD for cost estimation \\
988 1 & Hadamard for cost estimation \\
989\end{tabular}
990\\
991
992\Option{ASR} &
993%\ShortOption{\None} &
994\Default{false} &
995Enables or disables the use of adaptive search ranges, where the motion
996search range is dynamically adjusted according to the POC difference
997between the current and the reference pictures.
998\begin{displaymath}
999\resizebox{\hsize}{!}{$
1000\mathrm{SearchRange}’ = \mathrm{Round}\left(
1001                          \mathrm{SearchRange}
1002                          * \mathrm{ADAPT\_SR\_SCALE}
1003                          * \frac{\mathrm{abs}(
1004                                 \mathrm{POCcur} - \mathrm{POCref} )}{
1005                                 \mathrm{RateGOPSize}}\right)
1006$}
1007\end{displaymath}
1008\\
1009
1010\Option{MaxNumMergeCand} &
1011%\ShortOption{\None} &
1012\Default{5} &
1013Specifies the maximum number of merge candidates to use.
1014\\
1015
1016
1017\end{OptionTableNoShorthand}
1018
1019
1020%%
1021%% Mode decision parameters
1022%%
1023
1024\begin{OptionTableNoShorthand}{Mode decision parameters}{tab:mode-decision}
1025\Option{LambdaModifier$N$ (-LM$N$)} &
1026%\ShortOption{-LM$N$} &
1027\Default{1.0} &
1028Specifies a value that is multiplied with the Lagrange multiplier
1029$\lambda$, for use in the rate-distortion optimised cost calculation
1030when encoding temporal layer~$N$.
1031\par
1032$N$ may be in the range 0 (inclusive) to 7 (exclusive).
1033\\
1034
1035\Option{ECU} &
1036%\ShortOption{\None} &
1037\Default{false} &
1038Enables or disables the use of early CU determination.  When enabled, skipped CUs will not be split further.
1039\\
1040
1041\Option{CFM} &
1042%\ShortOption{\None} &
1043\Default{false} &
1044Enables or disables the use of Cbf-based fast encoder mode.  When enabled, once a 2Nx2N CU has been evaluated, if the RootCbf is 0, further PU splits will not be evaluated.
1045\\
1046
1047\Option{ESD} &
1048%\ShortOption{\None} &
1049\Default{false} &
1050Enables or disables the use of early skip detection.  When enabled, the skip mode will be tested before any other.
1051\\
1052
1053\Option{FEN} &
1054%\ShortOption{\None} &
1055\Default{false} &
1056Enables or disables the use of fast encoder mode.  When enabled,
1057the following occurs:
1058\begin{itemize}
1059\item In the SAD computation for blocks having size larger than 8, only
1060      the lines of even rows in the block are considered.
1061\item The number of iterations used in the bi-directional motion vector
1062      refinement in the motion estimation process is reduced from 4 to 1.
1063\end{itemize}
1064\\
1065
1066\Option{FDM} &
1067%\ShortOption{\None} &
1068\Default{true} &
1069Enables or disables the use of fast encoder decisions for 2Nx2N merge
1070mode.  When enabled, the RD cost for the merge mode of the current
1071candidate is not evaluated if the merge skip mode was the best merge
1072mode for one of the previous candidates.
1073\\
1074
1075\Option{RDpenalty} &
1076%\ShortOption{\None} &
1077\Default{0} &
1078RD-penalty for 32x32 TU for intra in non-intra slices.
1079Enabling this parameter can reduce the visibility of CU boundaries in the coded picture.
1080\par
1081\begin{tabular}{cp{0.45\textwidth}}
1082 0 & No RD-penalty \\
1083 1 & RD-penalty \\
1084 2 & Maximum RD-penalty (no 32x32 TU)\\
1085\end{tabular}
1086\\
1087
1088\end{OptionTableNoShorthand}
1089
1090%%
1091%% Quantization parameters
1092%%
1093\begin{OptionTableNoShorthand}{Quantization parameters}{tab:quantization}
1094\Option{QP (-q)} &
1095%\ShortOption{-q} &
1096\Default{30.0} &
1097Specifies the base value of the quantization parameter. If it is non-integer, the QP is switched once during encoding.
1098\\
1099
1100\Option{CbQpOffset (-cbqpofs)}%
1101\Option{CrQpOffset (-crqpofs)} &
1102%\ShortOption{-cbqpofs}%
1103%\ShortOption{-crqpofs} &
1104\Default{0}%
1105\Default{0} &
1106Global offset to apply to the luma QP to derive the QP of Cb and Cr
1107respectively.  These options correspond to the values of cb_qp_offset
1108and cr_qp_offset, that are transmitted in the PPS.  Valid values are in
1109the range $[-12, 12]$.
1110\\
1111
1112\Option{MaxCuDQPDepth (-dqd)} &
1113%\ShortOption{\None} &
1114\Default{0} &
1115Defines maximum depth of a minimum CuDQP for sub-LCU-level delta QP.
1116MaxCuDQPDepth shall be greater than or equal to SliceGranularity.
1117\\
1118
1119\Option{RDOQ} &
1120%\ShortOption{\None} &
1121\Default{true} &
1122Enables or disables rate-distortion-optimized quantization for transformed TUs.
1123\\
1124
1125\Option{RDOQTS} &
1126%\ShortOption{\None} &
1127\Default{true} &
1128Enables or disables rate-distortion-optimized quantization for transform-skipped TUs.
1129\\
1130
1131\Option{SelectiveRDOQ} &
1132%\ShortOption{\None} &
1133\Default{false} &
1134Enables or disables selective rate-distortion-optimized quantization.
1135A simple quantization is use to pre-analyze, whether to bypass the RDOQ process or not.
1136If all the coefficients are quantized to 0, the RDOQ process is bypassed.
1137Otherwise, the RDOQ process is performed as usual.
1138\\
1139
1140\Option{DeltaQpRD (-dqr)} &
1141%\ShortOption{-dqr} &
1142\Default{0} &
1143Specifies the maximum QP offset at slice level for multi-pass slice
1144encoding.  When encoding, each slice is tested multiple times by using
1145slice QP values in the range $[-\mathrm{DeltaQpRD}, \mathrm{DeptaQpRD}]$,
1146and the best QP value is chosen as the slice QP.
1147\\
1148
1149\Option{MaxDeltaQP (-d)} &
1150%\ShortOption{-d} &
1151\Default{0} &
1152Specifies the maximum QP offset at the largest coding unit level for
1153the block-level adaptive QP assignment scheme. In the encoder, each
1154largest coding unit is tested multiple times by using the QP values in
1155the range $[-\mathrm{MaxDeltaQP}, \mathrm{MaxDeltaQP}]$, and the best QP
1156value is chosen as the QP value of the largest coding unit.
1157\\
1158
1159\Option{dQPFile (-m)} &
1160%\ShortOption{-m} &
1161\Default{\NotSet} &
1162Specifies a file containing a list of QP deltas. The $n$-th line
1163(where $n$ is 0 for the first line) of this file corresponds to the QP
1164value delta for the picture with POC value $n$.
1165\\
1166
1167\Option{AdaptiveQp (-aq)} &
1168%\ShortOption{-aq} &
1169\Default{false} &
1170Enable or disable QP adaptation based upon a psycho-visual model.
1171\\
1172
1173\Option{MaxQPAdaptationRange (-aqr)} &
1174%\ShortOption{-aqps} &
1175\Default{6} &
1176Specifies the maximum QP adaptation range.
1177\\
1178
1179\Option{AdaptiveQpSelection (-aqps)} &
1180%\ShortOption{-aqps} &
1181\Default{false} &
1182Specifies whether QP values for non-I frames will be calculated on the
1183fly based on statistics of previously coded frames.
1184\\
1185
1186\Option{RecalculateQP...} \Option{AccordingToLambda} &
1187%\ShortOption{\None} &
1188\Default{false} &
1189Recalculate QP values according to lambda values. Do not suggest to be enabled in all intra case.
1190\\
1191
1192\Option{ScalingList} &
1193%\ShortOption{\None} &
1194\Default{0} &
1195Controls the specification of scaling lists:
1196\par
1197\begin{tabular}{cp{0.45\textwidth}}
1198 0 & Scaling lists are disabled \\
1199 1 & Use default scaling lists \\
1200 2 & Scaling lists are specified in the file indicated by ScalingListFile \\
1201\end{tabular}
1202\\
1203
1204\Option{ScalingListFile} &
1205%\ShortOption{\None} &
1206\Default{\NotSet} &
1207When ScalingList is set to 2, this parameter indicates the name of the file, which contains the defined scaling lists.
1208If ScalingList is set to 2 and this parameter is an empty string, information on the format of the scaling list file
1209is output and the encoder stops.
1210\\
1211
1212\Option{MaxCUChromaQpAdjustmentDepth} &
1213%\ShortOption{\None} &
1214\Default{-1} &
1215Specifies the maximum depth for CU chroma QP adjustment; if negative, CU chroma QP adjustment is disabled.
1216\\
1217
1218\end{OptionTableNoShorthand}
1219
1220
1221%%
1222%% Slice coding parameters
1223%%
1224\begin{OptionTableNoShorthand}{Slice coding parameters}{tab:slice-coding}
1225%\Option{SliceGranularity} &
1226%\ShortOption{\None} &
1227%\Default{0} &
1228%Determines the depth in an LCU at which slices may begin and end.
1229%\par
1230%\begin{tabular}{cp{0.45\textwidth}}
1231% 0   & Slice addresses are LCU aligned \\
1232% $1 \leq n \leq 3$
1233%     & Slice start addresses are aligned to CUs at depth $n$ \\
1234%\end{tabular}
1235%
1236%Note: The smallest permissible alignment is 16x16 CUs.
1237%Values of $n$ must satisfy this constraint, for example, with a 64x64
1238%LCU, $n$ must be less than or equal to 2.
1239%\\
1240
1241\Option{SliceMode} &
1242%\ShortOption{\None} &
1243\Default{0} &
1244Controls the slice partitioning method in conjunction with
1245SliceArgument.
1246\par
1247\begin{tabular}{cp{0.45\textwidth}}
1248 0 & Single slice \\
1249 1 & Maximum number of CTUs per slice \\
1250 2 & Maximum number of bytes per slice \\
1251 3 & Maximum number of tiles per slice \\
1252\end{tabular}
1253\\
1254
1255\Option{SliceArgument} &
1256%\ShortOption{\None} &
1257\Default{\NotSet} &
1258Specifies the maximum number of CTUs, bytes or tiles in a slice depending on the
1259SliceMode setting.
1260\\
1261
1262\Option{SliceSegmentMode} &
1263%\ShortOption{\None} &
1264\Default{0} &
1265Enables (dependent) slice segment coding in conjunction with
1266SliceSegmentArgument.
1267\par
1268\begin{tabular}{cp{0.45\textwidth}}
1269 0 & Single slice \\
1270 1 & Maximum number of CTUs per slice segment\\
1271 2 & Maximum number of bytes per slice segment\\
1272 3 & Maximum number of tiles per slice segment\\
1273\end{tabular}
1274\\
1275
1276\Option{SliceSegmentArgument} &
1277%\ShortOption{\None} &
1278\Default{\NotSet} &
1279Defines the maximum number of CTUs, bytes or tiles a slice segment
1280depending on the SliceSegmentMode setting.
1281\\
1282
1283\Option{WaveFrontSynchro} &
1284%\ShortOption{\None} &
1285\Default{false} &
1286Enables the use of specific CABAC probabilities synchronization at the
1287beginning of each line of CTBs in order to produce a bitstream that can
1288be encoded or decoded using one or more cores.
1289\\
1290
1291\Option{TileUniformSpacing} &
1292%\ShortOption{\None} &
1293\Default{false} &
1294Controls the mode used to determine per row and column tile sizes.
1295\par
1296\begin{tabular}{cp{0.45\textwidth}}
1297 0 & Each tile column width and tile row height is explicitly set
1298     by TileColumnWidthArray and TileRowHeightArray respectively \\
1299 1 & Tile columns and tile rows are uniformly spaced. \\
1300\end{tabular}
1301\\
1302
1303\Option{NumTileColumnsMinus1}%
1304\Option{NumTileRowsMinus1} &
1305%\ShortOption{\None} &
1306\Default{0} &
1307Specifies the tile based picture partitioning geometry as
1308$\mathrm{NumTileColumnsMinus1} + 1 \times \mathrm{NumTileRowsMinus1} + 1$
1309columns and rows.
1310\\
1311
1312\Option{TileColumnWidthArray}%
1313\Option{TileRowHeightArray} &
1314%\ShortOption{\None} &
1315\Default{\NotSet} &
1316Specifies a space or comma separated list of widths and heights,
1317respectively, of each tile column or tile row.  The first value in the
1318list corresponds to the leftmost tile column or topmost tile row.
1319\\
1320\end{OptionTableNoShorthand}
1321
1322
1323
1324%%
1325%% Deblocking filter parameters
1326%%
1327\begin{OptionTableNoShorthand}{Deblocking filter parameters}{tab:deblocking-filter}
1328\Option{LoopFilterDisable} &
1329%\ShortOption{\None} &
1330\Default{false} &
1331Enables or disables the in-loop deblocking filter.
1332\\
1333
1334\Option{LFCrossSliceBoundaryFlag} &
1335%\ShortOption{\None} &
1336\Default{true} &
1337Enables or disables the use of in-loop filtering across slice
1338boundaries.
1339\\
1340
1341\Option{DeblockingFilterControlPresent}&
1342%\ShortOption{\None}&
1343\Default{false}&
1344Enables or disables the presence of the deblocking filter control
1345parameters in the picture parameter set and in the slice segment header.
1346When disabled, the default deblocking filter parameters are used.
1347\\
1348
1349\Option{LoopFilterOffsetInPPS}&
1350%\ShortOption{\None}&
1351\Default{false}&
1352If enabled, the in-loop deblocking filter control parameters are sent in PPS.
1353Otherwise, the in-loop deblocking filter control parameters are sent in the slice segment header.
1354If deblocking filter parameters are sent in PPS, the same values of deblocking filter parameters
1355are used for all pictures in the sequence (i.e. deblocking parameter = base parameter value). 
1356If deblocking filter parameters are sent in the slice segment header, varying deblocking filter
1357parameters can be specified by setting parameters tcOffsetDiv2 and betaOffsetDiv2 in the GOP structure table.
1358In this case, the final value of the deblocking filter parameter sent for a certain GOP picture is equal to
1359(base parameter + GOP parameter for this picture). Intra-pictures use the base parameters values.
1360\\
1361
1362\Option{LoopFilterTcOffset_div2}&
1363%\ShortOption{\None}&
1364\Default{0}&
1365Specifies the base value for the in-loop deblocking filter parameter tc_offset_div2. The final value of tc_offset_div2
1366shall be an integer number in the range $-6..6$.
1367\\
1368
1369\Option{LoopFilterBetaOffset_div2}&
1370%\ShortOption{\None}&
1371\Default{0}&
1372Specifies the base value for the in-loop deblocking filter parameter beta_offset_div2. The final value of beta_offset_div2
1373shall be an integer number in the range $-6..6$.
1374\\
1375
1376\Option{DeblockingFilterMetric}&
1377%\ShortOption{\None}&
1378\Default{false}&
1379Enables or disables the use of a deblocking filter metric to evaluate the suitability of deblocking..
1380\\
1381
1382\Option{LFCrossSliceBoundaryFlag}&
1383%\ShortOption{\None}&
1384\Default{true}&
1385Enables or disables the use of a deblocking across tile boundaries.
1386\\
1387
1388\end{OptionTableNoShorthand}
1389
1390
1391
1392%%
1393%% Coding tools parameters
1394%%
1395
1396\begin{OptionTableNoShorthand}{Coding tools parameters}{tab:coding-tools}
1397
1398\Option{AMP} &
1399%\ShortOption{\None} &
1400\Default{true} &
1401Enables or disables the use of asymmetric motion partitions.
1402\\
1403
1404\Option{SAO} &
1405%\ShortOption{\None} &
1406\Default{true} &
1407Enables or disables the sample adaptive offset (SAO) filter.
1408\\
1409
1410\Option{SAOLcuBoundary} &
1411%\ShortOption{\None} &
1412\Default{false} &
1413Enables or disables SAO parameter estimation using non-deblocked pixels
1414for LCU bottom and right boundary areas.
1415\\
1416
1417\Option{ConstrainedIntraPred} &
1418%\ShortOption{\None} &
1419\Default{false} &
1420Enables or disables constrained intra prediction.  Constrained intra
1421prediction only permits samples from intra blocks in the same slice as the
1422current block to be used for intra prediction.
1423\\
1424
1425\Option{TransquantBypassEnableFlag} &
1426%\ShortOption{\None} &
1427\Default{false} &
1428Enables or disables the ability to bypass the transform,
1429quantization and filtering stages at CU level.
1430This option corresponds to the value of
1431transquant_bypass_enable_flag that is transmitted in the PPS.
1432
1433See CUTransquantBypassFlagForce for further details.
1434\\
1435
1436\Option{CUTransquantBypassFlagForce} &
1437%\ShortOption{\None} &
1438\Default{0} &
1439Controls the per CU transformation, quantization and filtering
1440mode decision.
1441This option controls the value of the per CU cu_transquant_bypass_flag.
1442\par
1443\begin{tabular}{cp{0.45\textwidth}}
1444 0 & Bypass is searched on a CU-by-CU basis and will be used if the cost is lower than not bypassing. \\
1445 1 & Bypass is forced for all CUs. \\
1446\end{tabular}
1447
1448This option has no effect if TransquantBypassEnableFlag is disabled.
1449\\
1450
1451\Option{PCMEnabledFlag} &
1452%\ShortOption{\None} &
1453\Default{false} &
1454Enables or disables the use of PCM. The encoder will use cost measures on a CU-by-CU basis to determine if PCM mode is to be applied.
1455\\
1456
1457\Option{PCMLog2MaxSize} &
1458%\ShortOption{\None} &
1459\Default{5 \\ ($= \mathrm{log}_2(32)$)} &
1460Specifies log2 of the maximum PCM block size. When PCM is enabled, the
1461PCM mode is available for 2Nx2N intra PUs smaller than or equal to the
1462specified maximum PCM block size
1463\\
1464
1465\Option{PCMLog2MinSize} &
1466%\ShortOption{\None} &
1467\Default{3} &
1468Specifies log2 of the minimum PCM block size. When PCM is enabled, the
1469PCM mode is available for 2Nx2N intra PUs larger than or equal to the
1470specified minimum PCM block size.
1471\par
1472When larger than PCMLog2MaxSize, PCM mode is not used.
1473\\
1474
1475\Option{PCMInputBitDepthFlag} &
1476%\ShortOption{\None} &
1477\Default{true} &
1478If enabled specifies that PCM sample bit-depth is set equal to
1479InputBitDepth. Otherwise, it specifies that PCM sample bit-depth is set
1480equal to InternalBitDepth.
1481\\
1482
1483\Option{PCMFilterDisableFlag} &
1484%\ShortOption{\None} &
1485\Default{false} &
1486If enabled specifies that loop-filtering on reconstructed samples of PCM
1487blocks is skipped. Otherwise, it specifies that loop-filtering on
1488reconstructed samples of PCM blocks is not skipped.
1489% 0 = (loop-filtering is not skipped for PCM samples).
1490\\
1491
1492\Option{WeightedPredP (-wpP)} &
1493%\ShortOption{-wpP} &
1494\Default{false} &
1495Enables the use of weighted prediction in P slices.
1496\\
1497
1498\Option{WeightedPredB (-wpB)} &
1499%\ShortOption{-wpB} &
1500\Default{false} &
1501Enables the use of weighted prediction in B slices.
1502\\
1503
1504\Option{Log2ParallelMergeLevel} &
1505%\ShortOption{\None} &
1506\Default{2} &
1507Defines the PPS-derived Log2ParMrgLevel variable.
1508\\
1509
1510\Option{SignHideFlag (-SBH)} &
1511%\ShortOption{-SBH} &
1512\Default{true} &
1513If enabled specifies that for each 4x4 coefficient group for which the
1514number of coefficients between the first nonzero coefficient and the
1515last nonzero coefficient along the scanning line exceeds 4, the sign bit
1516of the first nonzero coefficient will not be directly transmitted in the
1517bitstream, but may be inferred from the parity of the sum of all nonzero
1518coefficients in the current coefficient group.
1519\\
1520
1521\Option{StrongIntraSmoothing (-sis)} &
1522%\ShortOption{-sis} &
1523\Default{true} &
1524If enabled specifies that for 32x32 intra prediction block, the intra smoothing
1525when applied is either the 1:2:1 smoothing filter or a stronger bi-linear
1526interpolation filter.  Key reference sample values are tested and if the criteria
1527is satisfied, the stronger intra smoothing filter is applied.
1528If disabled, the intra smoothing filter when applied is the 1:2:1 smoothing filter.
1529\\
1530
1531\Option{TMVPMode} &
1532%\ShortOption{\None} &
1533\Default{1} &
1534Controls the temporal motion vector prediction mode.
1535\par
1536\begin{tabular}{cp{0.45\textwidth}}
1537  0 & Disabled for all slices. \\
1538  1 & Enabled for all slices. \\
1539  2 & Disabled only for the first picture of each GOPSize. \\
1540\end{tabular}
1541\\
1542
1543\Option{TransformSkip} &
1544%\ShortOption{\None} &
1545\Default{false} &
1546Enables or disables transform-skipping mode decision.
1547\\
1548
1549\Option{TransformSkipFast} &
1550%\ShortOption{\None} &
1551\Default{false} &
1552Enables or disables reduced testing of the transform-skipping mode
1553decision for chroma TUs.  When enabled, no RDO search is performed for
1554chroma TUs, instead they are transform-skipped if the four corresponding
1555luma TUs are also skipped.
1556\par
1557This option has no effect if TransformSkip is disabled.
1558\\
1559\end{OptionTableNoShorthand}
1560
1561%%
1562%% Rate control parameters
1563%%
1564
1565\begin{OptionTableNoShorthand}{Rate control parameters}{tab:rate-control}
1566
1567\Option{RateControl} &
1568%\ShortOption{\None} &
1569\Default{false} &
1570Rate control: enables rate control or not.
1571\\
1572
1573\Option{TargetBitrate} &
1574%\ShortOption{\None} &
1575\Default{0} &
1576Rate control: target bitrate, in bps.
1577\\
1578
1579\Option{KeepHierarchicalBit} &
1580%\ShortOption{\None} &
1581\Default{0} &
1582Rate control: 0: equal bit allocation among pictures;
15831: fix ratio hierarchical bit allocation; 2: adaptive hierarchical ratio bit allocation.
1584It is suggested to enable hierarchical bit allocation for hierarchical-B coding structure.
1585\\
1586
1587\Option{LCULevelRateControl} &
1588%\ShortOption{\None} &
1589\Default{true} &
1590Rate control: true: LCU level RC; false: picture level RC.
1591\\
1592
1593\Option{RCLCUSeparateModel} &
1594%\ShortOption{\None} &
1595\Default{true} &
1596Rate control: use LCU level separate R-lambda model or not.
1597When LCULevelRateControl is equal to false, this parameter is meaningless.
1598\\
1599
1600\Option{InitialQP} &
1601%\ShortOption{\None} &
1602\Default{0} &
1603Rate control: initial QP value for the first picture.
16040 to auto determine the initial QP value.
1605\\
1606
1607\Option{RCForceIntraQP} &
1608%\ShortOption{\None} &
1609\Default{false} &
1610Rate control: force intra QP to be equal to initial QP or not.
1611\\
1612\end{OptionTableNoShorthand}
1613
1614%%
1615%% VUI parameters
1616%%
1617\begin{OptionTableNoShorthand}{VUI parameters}{tab:VUI}
1618\Option{VuiParametersPresent (-vui)} &
1619\Default{false} &
1620Enable generation of vui_parameters().
1621\\
1622\Option{AspectRatioInfoPresent} &
1623\Default{false} &
1624Signals whether aspect_ratio_idc is present.
1625\\
1626\Option{AspectRatioIdc} &
1627\Default{0} &
1628aspect_ratio_idc
1629\\
1630\Option{SarWidth} &
1631\Default{0} &
1632Specifies the horizontal size of the sample aspect ratio.
1633\\
1634\Option{SarHeight} &
1635\Default{0} &
1636Specifies the vertical size of the sample aspect ratio.
1637\\
1638\Option{OverscanInfoPresent} &
1639\Default{false} &
1640Signals whether overscan_info_present_flag is present.
1641\\
1642\Option{OverscanAppropriate} &
1643\Default{false} &
1644Indicates whether cropped decoded pictures are suitable for display using overscan.
1645\par
1646\begin{tabular}{cp{0.45\textwidth}}
1647  0 & Indicates that the decoded pictures should not be displayed using overscan. \\
1648  1 & Indicates that the decoded pictures may be displayed using overscan. \\
1649\end{tabular}
1650\\
1651\Option{VideoSignalTypePresent} &
1652\Default{false} &
1653Signals whether video_format, video_full_range_flag, and colour_description_present_flag are present.
1654\\
1655\Option{VideoFormat} &
1656\Default{5} &
1657Indicates representation of pictures.
1658\\
1659\Option{VideoFullRange} &
1660\Default{false} &
1661Indicates the black level and range of luma and chroma signals.
1662\par
1663\begin{tabular}{cp{0.45\textwidth}}
1664  0 & Indicates that the luma and chroma signals are to be scaled prior to display. \\
1665  1 & Indicates that the luma and chroma signals are not to be scaled prior to display. \\
1666\end{tabular}
1667\\
1668\Option{ColourDescriptionPresent} &
1669\Default{false} &
1670Signals whether colour_primaries, transfer_characteristics and matrix_coefficients are present.
1671\\
1672\Option{ColourPrimaries} &
1673\Default{2} &
1674Indicates chromaticity coordinates of the source primaries.
1675\\
1676\Option{TransferCharateristics} &
1677\Default{2} &
1678Indicates the opto-electronic transfer characteristics of the source.
1679\\
1680\Option{MatrixCoefficients} &
1681\Default{2} &
1682Describes the matrix coefficients used in deriving luma and chroma from RGB primaries.
1683\\
1684\Option{ChromaLocInfoPresent} &
1685\Default{false} &
1686Signals whether chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are present.
1687\\
1688\Option{ChromaSampleLocTypeTopField} &
1689\Default{0} &
1690Specifies the location of chroma samples for top field.
1691\\
1692\Option{ChromaSampleLocTypeBottomField} &
1693\Default{0} &
1694Specifies the location of chroma samples for bottom field.
1695\\
1696\Option{NeutralChromaIndication} &
1697\Default{false} &
1698Indicates that the value of all decoded chroma samples is equal to 1<<(BitDepthCr-1).
1699\\
1700
1701\Option{DefaultDisplayWindowFlag} &
1702\Default{flag} &
1703Indicates the presence of the Default Window parameters.
1704\par
1705\begin{tabular}{cp{0.45\textwidth}}
1706false & Disabled \\
1707true & Enabled \\
1708\end{tabular}
1709\\
1710
1711\Option{DefDispWinLeftOffset}%
1712\Option{DefDispWinRightOffset}%
1713\Option{DefDispWinTopOffset}%
1714\Option{DefDispWinBottomOffset} &
1715\Default{0} &
1716Specifies the horizontal and vertical offset to be applied to the
1717input video from the conformance window in luma samples.
1718Must be a multiple of the chroma resolution (e.g. a multiple of two for 4:2:0).
1719\\
1720
1721\Option{FrameFieldInfoPresentFlag} &
1722\Default{false} &
1723Specificies the value of the VUI syntax element `frame_field_info_present_flag', which indicates that pic_struct and field coding related values are present in picture timing SEI messages.
1724\\
1725
1726\Option{PocProportionalToTimingFlag} &
1727\Default{false} &
1728Specificies the value of the VUI syntax element `vui_poc_proportional_to_timing_flag', which indicates that the POC value is proportional to the output time with respect to the first picture in the CVS.
1729\\
1730
1731\Option{NumTicksPocDiffOneMinus} &
1732\Default{0} &
1733Specificies the value of the VUI syntax element `vui_num_ticks_poc_diff_one_minus1', which specifies the number of clock ticks corresponding to a difference of picture order count values equal to 1, and is used only when PocProportionalToTimingFlag is true.
1734\\
1735
1736\Option{BitstreamRestriction} &
1737\Default{false} &
1738Signals whether bitstream restriction parameters are present.
1739\\
1740\Option{TilesFixedStructure} &
1741\Default{false} &
1742Indicates that each active picture parameter set has the same values of the syntax elements related to tiles.
1743\\
1744\Option{MotionVectorsOverPicBoundaries} &
1745\Default{false} &
1746Indicates that no samples outside the picture boundaries are used for inter prediction.
1747\\
1748\Option{MaxBytesPerPicDenom} &
1749\Default{2} &
1750Indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units associated with any coded picture.
1751\\
1752\Option{MaxBitsPerMinCuDenom} &
1753\Default{1} &
1754Indicates an upper bound for the number of bits of coding_unit() data.
1755\\
1756\Option{Log2MaxMvLengthHorizontal} &
1757\Default{15} &
1758Indicate the maximum absolute value of a decoded horizontal MV component in quarter-pel luma units.
1759\\
1760\Option{Log2MaxMvLengthVertical} &
1761\Default{15} &
1762Indicate the maximum absolute value of a decoded vertical MV component in quarter-pel luma units.
1763\\
1764\end{OptionTableNoShorthand}
1765
1766
1767\begin{OptionTableNoShorthand}{Range Extensions (Version 2) tool parameters}{tab:rext-tools}
1768
1769\Option{CostMode} &
1770\Default{lossy} &
1771Specifies the cost mode to use.
1772\par
1773\begin{tabular}{lp{0.3\textwidth}}
1774  lossy                   & $cost=distortion+\lambda \times bits$ \\
1775  sequence_level_lossless & $cost=distortion / \lambda + bits$. \\
1776  lossless                & As with sequence_level_lossless, but QP is also set to 0 (this will be deprecated in the future) \\
1777  mixed_lossless_lossy    & As with sequence_level_lossless, but QP'=4 is used for pre-estimates of transquant-bypass blocks \\
1778\end{tabular}
1779\\
1780
1781\Option{ExtendedPrecision} &
1782\Default{false} &
1783Specifies the use of extended_precision_processing flag. Note that unless the HIGH_BIT_DEPTH_SUPPORT macro in TypeDef.h is enabled, all internal bit depths must be 8 when the ExtendedPrecision setting is enabled.
1784This setting is only valid for the 16-bit RExt profiles.
1785\\
1786
1787\Option{HighPrecisionPredictionWeighting} &
1788\Default{false} &
1789Specifies the value of high_precision_prediction_weighting_flag. This setting is only valid for the 16-bit or 4:4:4 RExt profiles.
1790\\
1791
1792\Option{CrossComponentPrediction} &
1793\Default{false} &
1794When true, specifies the use of the cross component prediction tool (4:4:4 processing only). Version 1 and some Version 2 (RExt) profiles require this to be false.
1795\\
1796
1797\Option{ReconBasedCrossCPredictionEstimate} &
1798\Default{false} &
1799If true, then when determining the alpha value for cross-component prediction, use the reconstructed residual rather than the pre-transform encoder-side residual
1800\\
1801
1802\Option{SaoLumaOffsetBitShift}
1803\Option{SaoChromaOffsetBitShift}&
1804\Default{0}
1805\Default{0} &
1806Specifies the shift to apply to the SAO parameters. If negative, an estimate will be calculated based upon the initial QP. Version 1 and some Version 2 (RExt) profiles require this to be 0.
1807\\
1808
1809\Option{TransformSkipLog2MaxSize} &
1810\Default{2} &
1811Specifies the maximum TU size for which transform-skip can be used; the minimum value is 2. Version 1 and some Version 2 (RExt) profiles require this to be 2.
1812\\
1813
1814\Option{ImplicitResidualDPCM} &
1815\Default{false} &
1816When true, specifies the use of the implicitly signalled residual RDPCM tool (for intra). Version 1 and some Version 2 (RExt) profiles require this to be false.
1817\\
1818
1819\Option{ExplicitResidualDPCM} &
1820\Default{false} &
1821When true, specifies the use of the explicitly signalled residual RDPCM tool (for intra-block-copy and inter). Version 1 and some Version 2 (RExt) profiles require this to be false.
1822\\
1823
1824\Option{ResidualRotation} &
1825\Default{false} &
1826When true, specifies the use of the residual rotation tool. Version 1 and some Version 2 (RExt) profiles require this to be false.
1827\\
1828
1829\Option{SingleSignificanceMapContext} &
1830\Default{false} &
1831When true, specifies the use of a single significance map context for transform-skipped and transquant-bypassed TUs. Version 1 and some Version 2 (RExt) profiles require this to be false.
1832\\
1833
1834\Option{GolombRiceParameterAdaptation} &
1835\Default{false} &
1836When true, enable the adaptation of the Golomb-Rice parameter over the course of each slice. Version 1 and some Version 2 (RExt) profiles require this to be false.
1837\\
1838
1839\Option{AlignCABACBeforeBypass} &
1840\Default{false} &
1841When true, align the CABAC engine to a defined fraction of a bit prior to coding bypass data (including sign bits) when coeff_abs_level_remaining syntax elements are present in the group.
1842This must always be true for the high-throughput-RExt profile, and false otherwise.
1843\\
1844
1845\Option{IntraReferenceSmoothing} &
1846\Default{true} &
1847When true, enable intra reference smoothing, otherwise disable it. Version 1 and some Version 2 (RExt) profiles require this to be true.
1848\\
1849
1850\end{OptionTableNoShorthand}
1851
1852\subsection{Encoder SEI parameters}
1853The table below lists the SEI messages defined for Version 1 and Range-Extensions, and if available, the respective table that lists the controls within the HM Encoder to include the messages within the bit stream.
1854
1855\begin{SEIListTable}{List of Version 1 and RExt SEI messages}
1856    0 & Buffering period                         & Table \ref{tab:sei-buffering-period} \\
1857    1 & Picture timing                           & Table \ref{tab:sei-picture-timing} \\
1858    2 & Pan-scan rectangle                       & (Not handled)\\
1859    3 & Filler payload                           & (Not handled)\\
1860    4 & User data registered by Rec. ITU-T T.35  & (Not handled)\\
1861    5 & User data unregistered                   & Decoded only\\
1862    6 & Recovery point                           & Table \ref{tab:sei-recovery-point} \\
1863    9 & Scene information                        & (Not handled)\\
1864   15 & Picture snapshot                         & (Not handled)\\
1865   16 & Progressive refinement segment start     & (Not handled)\\
1866   17 & Progressive refinement segment end       & (Not handled)\\
1867   19 & Film grain characteristics               & (Not handled)\\
1868   22 & Post-filter hint                         & (Not handled)\\
1869   23 & Tone mapping information                 & Table \ref{tab:sei-tone-mapping-info} \\
1870   45 & Frame packing arrangement                & Table \ref{tab:sei-frame-packing-arrangement} \\
1871   47 & Display orientation                      & Table \ref{tab:sei-display-orientation} \\
1872  128 & Structure of pictures information        & Table \ref{tab:sei-sop-info} \\
1873  129 & Active parameter sets                    & Table \ref{tab:sei-active-parameter-sets} \\
1874  130 & Decoding unit information                & Table \ref{tab:sei-decoding-unit-info} \\
1875  131 & Temporal sub-layer zero index            & Table \ref{tab:sei-temporal-level-0} \\
1876  132 & Decoded picture hash                     & Table \ref{tab:sei-decoded-picture-hash} \\
1877  133 & Scalable nesting                         & Table \ref{tab:sei-scalable-nesting} \\
1878  134 & Region refresh information               & Table \ref{tab:sei-region-refresh-info} \\
1879  135 & No display                               & Table \ref{tab:sei-no-display} \\
1880  136 & Time code                                & Table \ref{tab:sei-time-code} \\
1881  137 & Mastering display colour volume          & Table \ref{tab:sei-mastering-display-colour-volume} \\
1882  138 & Segmented rectangular frame packing arrangement & Table \ref{tab:sei-seg-rect-fpa}\\
1883  139 & Temporal motion-constrained tile sets    & Table \ref{tab:sei-tmcts} \\
1884  140 & Chroma resampling filter hint            & Table \ref{tab:chroma-resampling-filter-hint} \\
1885  141 & Knee function information                & Table \ref{tab:sei-knee-function} \\
1886  142 & Colour remapping information             & (Not handled)\\
1887  143 & Deinterlaced field identification        & (Not handled)\\
1888\end{SEIListTable}
1889%%
1890%% SEI messages
1891%%
1892
1893 
1894
1895\begin{OptionTableNoShorthand}{Buffering period SEI message encoder parameters}{tab:sei-buffering-period}
1896\Option{SEIBufferingPeriod} &
1897\Default{0} &
1898Enables or disables the insertion of the Buffering period
1899SEI messages. This option has no effect if VuiParametersPresent is disabled.
1900SEIBufferingPeriod requires SEIActiveParameterSets to be enabled.
1901\\
1902\end{OptionTableNoShorthand}
1903
1904
1905
1906\begin{OptionTableNoShorthand}{Picture timing SEI message encoder parameters}{tab:sei-picture-timing}
1907\Option{SEIPictureTiming} &
1908\Default{0} &
1909Enables or disables the insertion of the Picture timing
1910SEI messages. This option has no effect if VuiParametersPresent is disabled.
1911\\
1912\end{OptionTableNoShorthand}
1913
1914
1915
1916\begin{OptionTableNoShorthand}{Recovery point SEI message encoder parameters}{tab:sei-recovery-point}
1917\Option{SEIRecoveryPoint} &
1918\Default{0} &
1919Enables or disables the insertion of the Recovery point
1920SEI messages.
1921\\
1922\end{OptionTableNoShorthand}
1923
1924
1925
1926\begin{OptionTableNoShorthand}{Tone mapping information SEI message encoder parameters}{tab:sei-tone-mapping-info}
1927\Option{SEIToneMappingInfo} &
1928\Default{0} &
1929Enables or disables the insertion of the Tone Mapping SEI message.
1930\\
1931\Option{SEIToneMapId} &
1932\Default{0} &
1933Specifies Id of Tone Mapping SEI message for a given session.
1934\\
1935\Option{SEIToneMapCancelFlag} &
1936\Default{false} &
1937Indicates that Tone Mapping SEI message cancels the persistance or follows.
1938\\
1939\Option{SEIToneMapPersistenceFlag} &
1940\Default{true} &
1941Specifies the persistence of the Tone Mapping SEI message.
1942\\
1943\Option{SEIToneMapCodedDataBitDepth} &
1944\Default{8} &
1945Specifies Coded Data BitDepth of Tone Mapping SEI messages.
1946\\
1947\Option{SEIToneMapTargetBitDepth} &
1948\Default{8} &
1949Specifies Output BitDepth of Tome mapping function.
1950\\
1951\Option{SEIToneMapModelId} &
1952\Default{0} &
1953Specifies Model utilized for mapping coded data into
1954target_bit_depth range.
1955\par
1956\begin{tabular}{cp{0.35\textwidth}}
1957  0 & linear mapping with clipping \\
1958  1 & sigmoidal mapping \\
1959  2 & user-defined table mapping \\
1960  3 & piece-wise linear mapping \\
1961  4 & luminance dynamic range mapping \\
1962\end{tabular}
1963\\
1964\Option{SEIToneMapMinValue} &
1965\Default{0} &
1966Specifies the minimum value in mode 0.
1967\\
1968\Option{SEIToneMapMaxValue} &
1969\Default{1023} &
1970Specifies the maxmum value in mode 0.
1971\\
1972\Option{SEIToneMapSigmoidMidpoint} &
1973\Default{512} &
1974Specifies the centre point in mode 1.
1975\\
1976\Option{SEIToneMapSigmoidWidth} &
1977\Default{960} &
1978Specifies the distance between 5% and 95% values of
1979the target_bit_depth in mode 1.
1980\\
1981\Option{SEIToneMapStartOfCodedInterval} &
1982\Default{\None} &
1983Array of user-defined mapping table.
1984Default table can be set to the following:
1985\par
1986\begin{tabular}{cp{0.35\textwidth}}
19870 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
1988\\
1989192 192 196 204 208 216 220 228 232 240 248 252 260 264
1990\\
1991272 276 284 292 292 296 300 304 308 312 320 324 328 332
1992\\
1993336 344 348 352 356 360 368 372 376 380 384 388 396 400
1994\\
1995404 408 412 420 424 428 432 436 444 444 444 448 452 456
1996\\
1997460 464 468 472 476 476 480 484 488 492 496 500 504 508
1998\\
1999508 512 516 520 524 528 532 536 540 540 544 548 552 556
2000\\
2001560 564 568 572 572 576 580 584 588 592 596 600 604 604
2002\\
2003608 612 616 620 624 628 632 636 636 640 644 648 652 656
2004\\
2005660 664 668 672 672 672 676 680 680 684 688 692 692 696
2006\\
2007700 704 704 708 712 716 716 720 724 724 728 732 736 736
2008\\
2009740 744 748 748 752 756 760 760 764 768 768 772 776 780
2010\\
2011780 784 788 792 792 796 800 804 804 808 812 812 816 820
2012\\
2013824 824 828 832 836 836 840 844 848 848 852 856 860 860
2014\\
2015860 864 864 868 872 872 876 880 880 884 884 888 892 892
2016\\
2017896 900 900 904 908 908 912 912 916 920 920 924 928 928
2018\\
2019932 936 936 940 940 944 948 948 952 956 956 960 964 964
2020\\
2021968 968 972 976 976 980 984 984 988 992 992 996 996 1000
2022\\
20231004 1004 1008 1012 1012 1016 1020 1024
2024\\
2025\end{tabular}
2026\\
2027\Option{SEIToneMapNumPivots} &
2028\Default{0} &
2029Specifies the number of pivot points in mode 3.
2030\\
2031\Option{SEIToneMapCodedPivotValue} &
2032\Default{\None} &
2033Array of coded pivot point in mode 3.
2034A suggested table is:
2035\par
2036\begin{tabular}{cp{0.45\textwidth}}
203764 128 256 512 768
2038\end{tabular}
2039\\
2040\Option{SEIToneMapTargetPivotValue} &
2041\Default{\None} &
2042Array of target pivot point in mode 3.
2043A suggested table is:
2044\par
2045\begin{tabular}{cp{0.45\textwidth}}
204648 73 111 168 215
2047\end{tabular}
2048\\
2049\Option{SEIToneMap...} \Option{CameraIsoSpeedIdc} &
2050\Default{0} &
2051Indicates the camera ISO speed for daylight illumination.
2052\\
2053\Option{SEIToneMap...} \Option{CameraIsoSpeedValue} &
2054\Default{400} &
2055Specifies the camera ISO speed for daylight illumination of Extended_ISO.
2056\\
2057\Option{SEIToneMap...} \Option{ExposureIndexIdc} &
2058\Default{0} &
2059Indicates the exposure index setting of the camera.
2060\\
2061\Option{SEIToneMap...} \Option{ExposureIndexValue} &
2062\Default{400} &
2063Specifies the exposure index setting of the cameran of Extended_ISO.
2064\\
2065\Option{SEIToneMapExposure...} \Option{CompensationValueSignFlag} &
2066\Default{0} &
2067Specifies the sign of ExposureCompensationValue.
2068\\
2069\Option{SEIToneMapExposure...} \Option{CompensationValueNumerator} &
2070\Default{0} &
2071Specifies the numerator of ExposureCompensationValue.
2072\\
2073\Option{SEIToneMapExposure...} \Option{CompensationValueDenomIdc} &
2074\Default{2} &
2075Specifies the denominator of ExposureCompensationValue.
2076\\
2077\Option{SEIToneMapRef...} \Option{ScreenLuminanceWhite} &
2078\Default{350} &
2079Specifies reference screen brightness setting in units of candela per square metre.
2080\\
2081\Option{SEIToneMapExtended...} \Option{RangeWhiteLevel} &
2082\Default{800} &
2083Indicates the luminance dynamic range.
2084\\
2085\Option{SEIToneMapNominal...} \Option{BlackLevelLumaCodeValue} &
2086\Default{16} &
2087Specifies luma sample value of the nominal black level assigned decoded pictures.
2088\\
2089\Option{SEIToneMapNominal...} \Option{WhiteLevelLumaCodeValue} &
2090\Default{235} &
2091Specifies luma sample value of the nominal white level assigned decoded pictures.
2092\\
2093\Option{SEIToneMapExtended...} \Option{WhiteLevelLumaCodeValue} &
2094\Default{300} &
2095Specifies luma sample value of the extended dynamic range assigned decoded pictures.
2096\\
2097\end{OptionTableNoShorthand}
2098
2099
2100
2101\begin{OptionTableNoShorthand}{Frame packing arrangement SEI message encoder parameters}{tab:sei-frame-packing-arrangement}
2102\Option{SEIFramePacking} &
2103\Default{0} &
2104Enables or disables the insertion of the Frame packing arrangement SEI messages.
2105\\
2106\Option{SEIFramePackingType} &
2107\Default{0} &
2108Indicates the arrangement type in the Frame packing arrangement SEI message.
2109This option has no effect if SEIFramePacking is disabled.
2110\par
2111\begin{tabular}{cp{0.35\textwidth}}
2112  3 & Side by Side \\
2113  4 & Top Bottom \\
2114  5 & Frame Alternate \\
2115\end{tabular}
2116\\
2117\Option{SEIFramePackingInterpretation} &
2118\Default{0} &
2119Indicates the constituent frames relationship in the Frame packing arrangement SEI message.
2120This option has no effect if SEIFramePacking is disabled.
2121\par
2122\begin{tabular}{cp{0.35\textwidth}}
2123  0 & Unspecified \\
2124  1 & Frame 0 is associated with the left view of a stereo pair \\
2125  2 & Frame 0 is associated with the right view of a stereo pair \\
2126\end{tabular}
2127\\
2128\Option{SEIFramePackingQuincunx} &
2129\Default{0} &
2130Enables or disables the quincunx_sampling signalling in the
2131Frame packing arrangement SEI messages. This option has no
2132effect if SEIFramePacking is disabled.
2133\\
2134\Option{SEIFramePackingId} &
2135\Default{0} &
2136Indicates the session number in the Frame packing arrangement
2137SEI messages. This option has no effect if SEIFramePacking is
2138disabled.
2139\\
2140\end{OptionTableNoShorthand}
2141
2142
2143
2144\begin{OptionTableNoShorthand}{Display orientation SEI message encoder parameters}{tab:sei-display-orientation}
2145\Option{SEIDisplayOrientation} &
2146\Default{0} &
2147Enables or disables the insertion of the Display orientation
2148SEI messages.
2149\par
2150\begin{tabular}{cp{0.20\textwidth}}
2151  0 & Disabled \\
2152  N: $0 < N < (2^{16} - 1)$ & Enable display orientation SEI message with
2153  \mbox{anticlockwise_rotation = N} 
2154  and \mbox{display_orientation_repetition_period = 1} \\
2155\end{tabular}
2156\\
2157\end{OptionTableNoShorthand}
2158
2159
2160
2161\begin{OptionTableNoShorthand}{Structure of pictures information SEI message encoder parameters}{tab:sei-sop-info}
2162\Option{SEISOPDescription} &
2163\Default{0} &
2164Enables or disables the insertion of the Structure of pictures information SEI messages.
2165\\
2166\end{OptionTableNoShorthand}
2167
2168
2169
2170\begin{OptionTableNoShorthand}{Active parameter sets SEI message encoder parameters}{tab:sei-active-parameter-sets}
2171\Option{SEIActiveParameterSets} &
2172\Default{0} &
2173Enables or disables the insertion of the Active parameter sets
2174SEI messages.
2175\\
2176\end{OptionTableNoShorthand}
2177
2178
2179
2180\begin{OptionTableNoShorthand}{Decoding unit information SEI message encoder parameters}{tab:sei-decoding-unit-info}
2181\Option{SEIDecodingUnitInfo} &
2182\Default{0} &
2183Enables or disables the insertion of the Decoding unit information
2184SEI messages. This option has no effect if VuiParametersPresent is disabled.
2185\\
2186\end{OptionTableNoShorthand}
2187
2188
2189
2190\begin{OptionTableNoShorthand}{Temporal sub-layer zero index SEI message encoder parameters}{tab:sei-temporal-level-0}
2191\Option{SEITemporalLevel0Index} &
2192\Default{0} &
2193Enables or disables the insertion of the Temporal level zero index
2194SEI messages.
2195\\
2196\end{OptionTableNoShorthand}
2197
2198
2199
2200\begin{OptionTableNoShorthand}{Decoded picture hash SEI message encoder parameters}{tab:sei-decoded-picture-hash}
2201\Option{SEIDecodedPictureHash} &
2202\Default{0} &
2203Enables or disables the calculation and insertion of the Decoded picture hash
2204SEI messages.
2205\par
2206\begin{tabular}{cp{0.35\textwidth}}
2207  0 & Disabled \\
2208  1 & Transmits MD5 in SEI message and writes the value to the encoder
2209      log \\
2210  2 & Transmits CRC in SEI message and writes the value to the encoder
2211      log \\
2212  3 & Transmits checksum in SEI message and writes the value to the encoder
2213      log \\
2214\end{tabular}
2215\\
2216\end{OptionTableNoShorthand}
2217
2218
2219
2220\begin{OptionTableNoShorthand}{Scalable nesting SEI message encoder parameters}{tab:sei-scalable-nesting}
2221\Option{SEIScalableNesting} &
2222\Default{0} &
2223Enables or disables the use of the scalable nesting SEI messages.
2224\\
2225\end{OptionTableNoShorthand}
2226
2227
2228       
2229\begin{OptionTableNoShorthand}{Region refresh information SEI message encoder parameters}{tab:sei-region-refresh-info}
2230\Option{SEIGradualDecodingRefreshInfo} &
2231\Default{0} &
2232Enables or disables the insertion of the Gradual decoding refresh information
2233SEI messages.
2234\\
2235\end{OptionTableNoShorthand}
2236
2237
2238
2239\begin{OptionTableNoShorthand}{No display SEI message encoder parameters}{tab:sei-no-display}
2240\Option{SEINoDisplay} &
2241\Default{0} &
2242When non-zero, generate no-display SEI message for temporal layer N or higher.
2243\\
2244\end{OptionTableNoShorthand}
2245
2246
2247       
2248\begin{OptionTableNoShorthand}{Time code SEI message encoder parameters}{tab:sei-time-code}
2249\Option{SEITimeCodeEnabled} &
2250\Default{false} &
2251When true (non-zero), generate Time code SEI messages.
2252\\
2253\Option{SEITimeCodeNumClockTs} &
2254\Default{0} &
2255Number of clock time sets, in the range of 0 to 3 (inclusive).
2256\\
2257\Option{SEITimeCodeTimeStampFlag} &
2258\Default{\None} &
2259Time stamp flag associated to each time set (comma or space separated list of entries).
2260\\
2261\Option{SEITimeCodeFieldBasedFlag} &
2262\Default{\None} &
2263Field based flag associated to each time set (comma or space separated list of entries).
2264\\
2265\Option{SEITimeCodeCountingType} &
2266\Default{\None} &
2267Counting type associated to each time set (comma or space separated list of entries).
2268\\
2269\Option{SEITimeCodeFullTsFlag} &
2270\Default{\None} &
2271Full time stamp flag associated to each time set (comma or space separated list of entries).
2272\\
2273\Option{SEITimeCodeDiscontinuityFlag} &
2274\Default{\None} &
2275Discontinuity flag associated to each time set (comma or space separated list of entries).
2276\\
2277\Option{SEITimeCodeCntDroppedFlag} &
2278\Default{\None} &
2279Counter dropped flag associated to each time set (comma or space separated list of entries).
2280\\
2281\Option{SEITimeCodeNumFrames} &
2282\Default{\None} &
2283Number of frames associated to each time set (comma or space separated list of entries).
2284\\
2285\Option{SEITimeCodeSecondsFlag} &
2286\Default{\None} &
2287Flag to signal seconds value presence in each time set (comma or space separated list of entries).
2288\\
2289\Option{SEITimeCodeMinutesFlag} &
2290\Default{\None} &
2291Flag to signal minutes value presence in each time set (comma or space separated list of entries).
2292\\
2293\Option{SEITimeCodeHoursFlag} &
2294\Default{\None} &
2295Flag to signal hours value presence in each time set (comma or space separated list of entries).
2296\\
2297\Option{SEITimeCodeSecondsValue} &
2298\Default{\None} &
2299Seconds value for each time set (comma or space separated list of entries).
2300\\
2301\Option{SEITimeCodeMinutesValue} &
2302\Default{\None} &
2303Minutes value for each time set (comma or space separated list of entries).
2304\\
2305\Option{SEITimeCodeHoursValue} &
2306\Default{\None} &
2307Hours value for each time set (comma or space separated list of entries).
2308\\
2309\Option{SEITimeCodeOffsetLength} &
2310\Default{\None} &
2311Time offset length associated to each time set (comma or space separated list of entries).
2312\\
2313\Option{SEITimeCodeTimeOffset} &
2314\Default{\None} &
2315Time offset associated to each time set (comma or space separated list of entries).
2316\\
2317\end{OptionTableNoShorthand}
2318
2319
2320
2321\begin{OptionTableNoShorthand}{Mastering display colour volume SEI message encoder parameters}{tab:sei-mastering-display-colour-volume}
2322\Option{SEIMasteringDisplayColourVolume} &
2323\Default{false} &
2324When true (non-zero), generate Mastering display colour volume SEI message.
2325\\
2326\Option{SEIMasteringDisplayMaxLuminance} &
2327\Default{10000} &
2328Specifies the mastering display maximum luminance value in units of 1/10000 candela per square metre.
2329\\
2330\Option{SEIMasteringDisplayMinLuminance} &
2331\Default{0} &
2332Specifies the mastering display minimum luminance value in units of 1/10000 candela per square metre.
2333\\
2334\Option{SEIMasteringDisplayPrimaries} &
2335\Default{0,50000, 0,0, 50000,0} &
2336Mastering display primaries for all three colour planes in CIE xy coordinates in increments of 1/50000 (results in the ranges 0 to 50000 inclusive).
2337\\
2338\Option{SEIMasteringDisplayWhitePoint} &
2339\Default{16667, 16667} &
2340Mastering display white point CIE xy coordinates in normalized increments of 1/50000 (e.g. 0.333 = 16667).
2341\\
2342\end{OptionTableNoShorthand}
2343
2344
2345
2346\begin{OptionTableNoShorthand}{Segmented rectangular frame packing arrangement SEI message encoder parameters}{tab:sei-seg-rect-fpa}
2347\Option{SEISegmentedRectFramePacking} &
2348\Default{0} &
2349Controls generation of segmented rectangular frame packing SEI messages.
2350\\
2351\Option{SEISegmentedRectFramePackingCancel} &
2352\Default{false} &
2353If true, cancels the persistence of any previous SRFPA SEI message.
2354\\
2355\Option{SEISegmentedRectFramePackingType} &
2356\Default{0} &
2357Specifies the arrangement of the frames in the reconstructed picture.
2358\\
2359\Option{SEISegmentedRectFramePackingPersistence} &
2360\Default{false} &
2361If false the SEI applies to the current frame only.
2362\\
2363\end{OptionTableNoShorthand}
2364
2365
2366
2367\begin{OptionTableNoShorthand}{Temporal motion-constrained tile sets SEI message encoder parameters}{tab:sei-tmcts}
2368\Option{SEITempMotionConstrainedTileSets} &
2369\Default{false} &
2370When true (non-zero), generates example temporal motion constrained tile sets SEI messages.
2371\\
2372\end{OptionTableNoShorthand}
2373
2374
2375
2376\begin{OptionTableNoShorthand}{Chroma resampling filter hint SEI message encoder parameters}{tab:chroma-resampling-filter-hint}
2377\Option{SEIChromaSamplingFilterHint} &
2378\Default{false} &
2379When true (non-zero), generates example chroma sampling filter hint SEI messages.
2380\\
2381\Option{SEIChromaSamplingHorizontalFilterType} &
2382\Default{2} &
2383Defines the index of the chroma sampling horizontal filter:
2384\par
2385\begin{tabular}{cp{0.35\textwidth}}
2386  0 & Unspecified \\
2387  1 & Filters signalled within the SEI message \\
2388  2 & Filters as described by SMPTE RP 2050-1:2012\\
2389\end{tabular}
2390\\
2391\Option{SEIChromaSamplingVerticalFilterType} &
2392\Default{2} &
2393Defines the index of the chroma sampling vertical filter:
2394\par
2395\begin{tabular}{cp{0.35\textwidth}}
2396  0 & Unspecified \\
2397  1 & Filters signalled within the SEI message \\
2398  2 & Filters as described in the 5/3 filter description of ITU-T Rec. T.800 | ISO/IEC 15444-1\\
2399\end{tabular}
2400\\
2401\end{OptionTableNoShorthand}
2402
2403
2404
2405\begin{OptionTableNoShorthand}{Knee function SEI message encoder parameters}{tab:sei-knee-function}
2406\Option{SEIKneeFunctionInfo} &
2407\Default{false} &
2408Enables (true) or disables (false) the insertion of the Knee function SEI messages.
2409\\
2410\Option{SEIKneeFunctionId} &
2411\Default{0} &
2412Specifies Id of Knee function SEI message for a given session.
2413\\
2414\Option{SEIKneeFunctionCancelFlag} &
2415\Default{false} &
2416Indicates that Knee function SEI message cancels the persistance (true) or follows (false).
2417\\
2418\Option{SEIKneeFunctionPersistenceFlag} &
2419\Default{true} &
2420Specifies the persistence of the Knee function SEI message.
2421\\
2422\Option{SEIKneeFunctionInputDrange} &
2423\Default{1000} &
2424Specifies the peak luminance level for the input picture of Knee function SEI messages.
2425\\
2426\Option{SEIKneeFunctionInputDispLuminance} &
2427\Default{100} &
2428Specifies the expected display brightness for the input picture of Knee function SEI messages.
2429\\
2430\Option{SEIKneeFunctionOutputDrange} &
2431\Default{4000} &
2432Specifies the peak luminance level for the output picture of Knee function SEI messages.
2433\\
2434\Option{SEIKneeFunctionOutputDispLuminance} &
2435\Default{800} &
2436Specifies the expected display brightness for the output picture of Knee function SEI messages.
2437\\
2438\Option{SEIKneeFunctionNumKneePointsMinus1} &
2439\Default{2} &
2440Specifies the number of knee points - 1.
2441\\
2442\Option{SEIKneeFunctionInputKneePointValue} &
2443\Default{} &
2444Array of input knee point. Default table can be set to the following:
2445\par
2446\begin{tabular}{cp{0.45\textwidth}}
2447600 800 900
2448\end{tabular}
2449\\
2450\Option{SEIKneeFunctionOutputKneePointValue} &
2451\Default{} &
2452Array of output knee point. Default table can be set to the following:
2453\par
2454\begin{tabular}{cp{0.45\textwidth}}
2455100 250 450
2456\end{tabular}
2457\\
2458\end{OptionTableNoShorthand}
2459
2460
2461
2462%\Option{SEITimeCode} &
2463%\Default{false} &
2464%When true, generate time code SEI messages.
2465%\\
2466
2467%%
2468%%
2469%%
2470\subsection{Hardcoded encoder parameters}
2471\begin{MacroTable}{CommonDef.h constants}
2472ADAPT_SR_SCALE &
24731 &
2474Defines a scaling factor used to derive the motion search range is
2475adaptive (see ASR configuration parameter). Default value is 1.
2476\\
2477
2478MAX_GOP &
247964 &
2480maximum size of value of hierarchical GOP.
2481\\
2482
2483MAX_NUM_REF &
24844 &
2485maximum number of multiple reference frames
2486\\
2487
2488MAX_NUM_REF_LC &
24898 &
2490maximum number of combined reference frames
2491\\
2492
2493AMVP_MAX_NUM_CANDS &
24942 &
2495maximum number of final candidates
2496\\
2497
2498AMVP_MAX_NUM_CANDS_MEM &
24993 &
2500\\
2501
2502MRG_MAX_NUM_CANDS &
25035 &
2504\\
2505
2506DYN_REF_FREE &
2507off &
2508dynamic free of reference memories
2509\\
2510
2511MAX_TLAYER &
25128 &
2513maximum number of temporal layers
2514\\
2515
2516HB_LAMBDA_FOR_LDC &
2517on &
2518use of B-style lambda for non-key pictures in low-delay mode
2519\\
2520
2521GPB_SIMPLE &
2522on &
2523Fast estimation of generalized B in low-delay mode
2524\\
2525
2526GPB_SIMPLE_UNI &
2527on &
2528Fast estimation of generalized B in low-delay mode for uni-direction
2529\\
2530
2531FASTME_SMOOTHER_MV &
2532on &
2533Fast ME using smoother MV assumption
2534\\
2535
2536ADAPT_SR_SCALE &
2537on &
2538division factor for adaptive search range
2539\\
2540
2541CLIP_TO_709_RANGE &
2542off &
2543\\
2544
2545EARLY_SKIP_THRES &
25461.5 &
2547early skip if RD < EARLY_SKIP_THRES*avg[BestSkipRD]
2548\\
2549
2550MAX_NUM_REF_PICS &
255116 &
2552\\
2553
2554MAX_CHROMA_FORMAT_IDC &
25553 &
2556\\
2557\end{MacroTable}
2558
2559\subsubsection*{TypeDef.h}
2560Numerous constants that guard individual adoptions are defined within
2561\url{source/Lib/TLibCommon/TypeDef.h}.
2562
2563
2564%%
2565%%
2566%%
2567\clearpage
2568\section{Using the decoder}
2569\subsection{General}
2570\begin{verbatim}
2571TAppDecoder -b str.bin -o dec.yuv [options]
2572\end{verbatim}
2573
2574\begin{OptionTableNoShorthand}{Decoder options}{tab:decoder-options}
2575\Option{(--help)} &
2576%\ShortOption{\None} &
2577\Default{\None} &
2578Prints usage information.
2579\\
2580
2581\Option{BitStreamFile (-b)} &
2582%\ShortOption{-b} &
2583\Default{\NotSet} &
2584Defines the input bit stream file name.
2585\\
2586
2587\Option{ReconFile (-o)} &
2588%\ShortOption{-o} &
2589\Default{\NotSet} &
2590Defines reconstructed YUV file name. If empty, no file is generated.
2591\\
2592
2593\Option{SkipFrames (-s)} &
2594%\ShortOption{-s} &
2595\Default{0} &
2596Defines the number of pictures in decoding order to skip.
2597\\
2598
2599\Option{MaxTemporalLayer (-t)} &
2600%\ShortOption{-t} &
2601\Default{-1} &
2602Defines the maximum temporal layer to be decoded. If -1, then all layers are decoded.
2603\\
2604
2605\Option{TarDecLayerIdSetFile (-l)} &
2606%\ShortOption{-t} &
2607\Default{\NotSet} &
2608Specifies the targetDecLayerIdSet file name. The file would contain white-space separated LayerId values of the layers that are to be decoded.
2609Omitting the parameter, or using a value of -1 in the file decodes all layers.
2610\\
2611
2612\Option{OutputBitDepth (-d)} &
2613%\ShortOption{-d} &
2614\Default{0 \\ (Native)} &
2615Specifies the luma bit-depth of the reconstructed YUV file (the value 0 indicates
2616that the native bit-depth is used)
2617\\
2618
2619\Option{OutputBitDepthC} &
2620%\ShortOption{\None} &
2621\Default{0 \\ (Native)} &
2622Defines the chroma bit-depth of the reconstructed YUV file (the value 0 indicates
2623that the native bit-depth is used)
2624\\
2625
2626\Option{SEIDecodedPictureHash} &
2627%\ShortOption{\None} &
2628\Default{1} &
2629Enable or disable verification of any Picture hash SEI messages. When
2630this parameter is set to 0, the feature is disabled and all messages are
2631ignored. When set to 1 (default), the feature is enabled and the decoder
2632has the following behaviour:
2633\begin{itemize}
2634\item
2635  If Picture hash SEI messages are included in the bit stream, the same type
2636  of hash is calculated for each decoded picture and written to the
2637  log together with an indication whether the calculted value matches
2638  the value in the SEI message.
2639  Decoding will continue even if there is a mismatch.
2640
2641\item
2642  After decoding is complete, if any MD5sum comparison failed, a warning
2643  is printed and the decoder exits with the status EXIT_FAILURE
2644
2645\item
2646  The per-picture MD5 log message has the following formats:
2647  [MD5:d41d8cd98f00b204e9800998ecf8427e,(OK)],
2648  [MD5:d41d8cd98f00b204e9800998ecf8427e,(unk)],
2649  [MD5:d41d8cd98f00b204e9800998ecf8427e,(***ERROR***)] [rxMD5:b9e1...]
2650  where, "(unk)" implies that no MD5 was signalled for this picture,
2651  "(OK)" implies that the decoder agrees with the signalled MD5,
2652  "(***ERROR***)" implies that the decoder disagrees with the signalled
2653  MD5. "[rxMD5:...]" is the signalled MD5 if different.
2654\end{itemize}
2655\\
2656
2657\Option{OutputDecodedSEIMessagesFilename} &
2658%\ShortOption{\None} &
2659\Default{\NotSet} &
2660When a non-empty file name is specified, information regarding any decoded SEI messages will be output to the indicated file. If the file name is '-', then stdout is used instead.
2661\\
2662
2663\Option{RespectDefDispWindow (-w)} &
2664%\ShortOption{-w} &
2665\Default{0} &
2666Video region to be output by the decoder.
2667\par
2668\begin{tabular}{cp{0.45\textwidth}}
2669  0 & Output content inside the conformance window. \\
2670  1 & Output content inside the default window. \\
2671\end{tabular}
2672\\
2673
2674\Option{OutputColourSpaceConvert} &
2675\Default{\NotSet} &
2676Specifies the colour space conversion to apply to 444 video. Permitted values are:
2677\par
2678\begin{tabular}{lp{0.45\textwidth}}
2679  UNCHANGED   & No colour space conversion is applied \\
2680  YCrCbToYCbCr & Swap the second and third components \\
2681  GBRtoRGB     & Reorder the three components \\
2682\end{tabular}
2683If no value is specified, no colour space conversion is applied. The list may eventually also include RGB to YCbCr or YCgCo conversions.\\
2684\\
2685
2686\Option{SEINoDisplay} &
2687\Default{false} &
2688When true, do not output frames for which there is an SEI NoDisplay message.
2689\\
2690
2691\end{OptionTableNoShorthand}
2692
2693
2694\subsection{Using the decoder analyser}
2695If the decoder is compiled with the macro RExt__DECODER_DEBUG_BIT_STATISTICS defined as 1 (either externally, or by editing TypeDef.h), the decoder will gather fractional bit counts associated with the different syntax elements, producing a table of the number of bits per syntax element, and where appropriate, according to block size and colour component/channel.
2696The Linux makefile will compile both the analyser and standard version when the `all' or `everything' target is used (where the latter will also build  high-bit-depth executables).
2697
2698
2699\end{document}
Note: See TracBrowser for help on using the repository browser.