/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2016, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncEntropy.cpp \brief entropy encoder class */ #include "TEncEntropy.h" #include "TLibCommon/CommonDef.h" #include "TLibCommon/TComSampleAdaptiveOffset.h" #include "TLibCommon/TComTU.h" #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST #include "../TLibCommon/Debug.h" static const Bool bDebugPredEnabled = DebugOptionList::DebugPred.getInt()!=0; #endif //! \ingroup TLibEncoder //! \{ Void TEncEntropy::setEntropyCoder ( TEncEntropyIf* e ) { m_pcEntropyCoderIf = e; } Void TEncEntropy::encodeSliceHeader ( TComSlice* pcSlice ) { m_pcEntropyCoderIf->codeSliceHeader( pcSlice ); return; } Void TEncEntropy::encodeTilesWPPEntryPoint( TComSlice* pSlice ) { m_pcEntropyCoderIf->codeTilesWPPEntryPoint( pSlice ); } Void TEncEntropy::encodeTerminatingBit ( UInt uiIsLast ) { m_pcEntropyCoderIf->codeTerminatingBit( uiIsLast ); return; } Void TEncEntropy::encodeSliceFinish() { m_pcEntropyCoderIf->codeSliceFinish(); } #if CGS_3D_ASYMLUT Void TEncEntropy::encodePPS( const TComPPS* pcPPS, TEnc3DAsymLUT * pc3DAsymLUT ) { m_pcEntropyCoderIf->codePPS( pcPPS, pc3DAsymLUT ); return; } #else Void TEncEntropy::encodePPS( const TComPPS* pcPPS ) { m_pcEntropyCoderIf->codePPS( pcPPS ); return; } #endif Void TEncEntropy::encodeSPS( const TComSPS* pcSPS ) { m_pcEntropyCoderIf->codeSPS( pcSPS ); return; } Void TEncEntropy::encodeCUTransquantBypassFlag( TComDataCU* pcCU, UInt uiAbsPartIdx, Bool bRD ) { if( bRD ) { uiAbsPartIdx = 0; } m_pcEntropyCoderIf->codeCUTransquantBypassFlag( pcCU, uiAbsPartIdx ); } Void TEncEntropy::encodeVPS( const TComVPS* pcVPS ) { m_pcEntropyCoderIf->codeVPS( pcVPS ); return; } Void TEncEntropy::encodeSkipFlag( TComDataCU* pcCU, UInt uiAbsPartIdx, Bool bRD ) { if ( pcCU->getSlice()->isIntra() ) { return; } if( bRD ) { uiAbsPartIdx = 0; } m_pcEntropyCoderIf->codeSkipFlag( pcCU, uiAbsPartIdx ); } //! encode merge flag Void TEncEntropy::encodeMergeFlag( TComDataCU* pcCU, UInt uiAbsPartIdx ) { // at least one merge candidate exists m_pcEntropyCoderIf->codeMergeFlag( pcCU, uiAbsPartIdx ); } //! encode merge index Void TEncEntropy::encodeMergeIndex( TComDataCU* pcCU, UInt uiAbsPartIdx, Bool bRD ) { if( bRD ) { uiAbsPartIdx = 0; assert( pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N ); } m_pcEntropyCoderIf->codeMergeIndex( pcCU, uiAbsPartIdx ); } //! encode prediction mode Void TEncEntropy::encodePredMode( TComDataCU* pcCU, UInt uiAbsPartIdx, Bool bRD ) { if( bRD ) { uiAbsPartIdx = 0; } if ( pcCU->getSlice()->isIntra() ) { return; } m_pcEntropyCoderIf->codePredMode( pcCU, uiAbsPartIdx ); } //! encode split flag Void TEncEntropy::encodeSplitFlag( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, Bool bRD ) { if( bRD ) { uiAbsPartIdx = 0; } m_pcEntropyCoderIf->codeSplitFlag( pcCU, uiAbsPartIdx, uiDepth ); } //! encode partition size Void TEncEntropy::encodePartSize( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, Bool bRD ) { if( bRD ) { uiAbsPartIdx = 0; } m_pcEntropyCoderIf->codePartSize( pcCU, uiAbsPartIdx, uiDepth ); } /** Encode I_PCM information. * \param pcCU pointer to CU * \param uiAbsPartIdx CU index * \param bRD flag indicating estimation or encoding */ Void TEncEntropy::encodeIPCMInfo( TComDataCU* pcCU, UInt uiAbsPartIdx, Bool bRD ) { if(!pcCU->getSlice()->getSPS()->getUsePCM() || pcCU->getWidth(uiAbsPartIdx) > (1<getSlice()->getSPS()->getPCMLog2MaxSize()) || pcCU->getWidth(uiAbsPartIdx) < (1<getSlice()->getSPS()->getPCMLog2MinSize())) { return; } if( bRD ) { uiAbsPartIdx = 0; } m_pcEntropyCoderIf->codeIPCMInfo ( pcCU, uiAbsPartIdx ); } Void TEncEntropy::xEncodeTransform( Bool& bCodeDQP, Bool& codeChromaQpAdj, TComTU &rTu ) { //pcCU, absPartIdxCU, uiAbsPartIdx, uiDepth+1, uiTrIdx+1, quadrant, TComDataCU *pcCU=rTu.getCU(); const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); const UInt numValidComponent = pcCU->getPic()->getNumberValidComponents(); const Bool bChroma = isChromaEnabled(pcCU->getPic()->getChromaFormat()); const UInt uiTrIdx = rTu.GetTransformDepthRel(); const UInt uiDepth = rTu.GetTransformDepthTotal(); #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST const Bool bDebugRQT=pcCU->getSlice()->getFinalized() && DebugOptionList::DebugRQT.getInt()!=0; if (bDebugRQT) { printf("x..codeTransform: offsetLuma=%d offsetChroma=%d absPartIdx=%d, uiDepth=%d\n width=%d, height=%d, uiTrIdx=%d, uiInnerQuadIdx=%d\n", rTu.getCoefficientOffset(COMPONENT_Y), rTu.getCoefficientOffset(COMPONENT_Cb), uiAbsPartIdx, uiDepth, rTu.getRect(COMPONENT_Y).width, rTu.getRect(COMPONENT_Y).height, rTu.GetTransformDepthRel(), rTu.GetSectionNumber()); } #endif const UInt uiSubdiv = pcCU->getTransformIdx( uiAbsPartIdx ) > uiTrIdx;// + pcCU->getDepth( uiAbsPartIdx ) > uiDepth; const UInt uiLog2TrafoSize = rTu.GetLog2LumaTrSize(); UInt cbf[MAX_NUM_COMPONENT] = {0,0,0}; Bool bHaveACodedBlock = false; Bool bHaveACodedChromaBlock = false; for(UInt ch=0; chgetCbf( uiAbsPartIdx, compID , uiTrIdx ); if (cbf[ch] != 0) { bHaveACodedBlock = true; if (isChroma(compID)) { bHaveACodedChromaBlock = true; } } } if( pcCU->isIntra(uiAbsPartIdx) && pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_NxN && uiDepth == pcCU->getDepth(uiAbsPartIdx) ) { assert( uiSubdiv ); } else if( pcCU->isInter(uiAbsPartIdx) && (pcCU->getPartitionSize(uiAbsPartIdx) != SIZE_2Nx2N) && uiDepth == pcCU->getDepth(uiAbsPartIdx) && (pcCU->getSlice()->getSPS()->getQuadtreeTUMaxDepthInter() == 1) ) { if ( uiLog2TrafoSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) ) { assert( uiSubdiv ); } else { assert(!uiSubdiv ); } } else if( uiLog2TrafoSize > pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() ) { assert( uiSubdiv ); } else if( uiLog2TrafoSize == pcCU->getSlice()->getSPS()->getQuadtreeTULog2MinSize() ) { assert( !uiSubdiv ); } else if( uiLog2TrafoSize == pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) ) { assert( !uiSubdiv ); } else { assert( uiLog2TrafoSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) ); m_pcEntropyCoderIf->codeTransformSubdivFlag( uiSubdiv, 5 - uiLog2TrafoSize ); } const UInt uiTrDepthCurr = uiDepth - pcCU->getDepth( uiAbsPartIdx ); const Bool bFirstCbfOfCU = uiTrDepthCurr == 0; for(UInt ch=COMPONENT_Cb; chgetCbf( uiAbsPartIdx, compID, uiTrDepthCurr - 1 ) ) { m_pcEntropyCoderIf->codeQtCbf( rTu, compID, (uiSubdiv == 0) ); } } else { assert( pcCU->getCbf( uiAbsPartIdx, compID, uiTrDepthCurr ) == pcCU->getCbf( uiAbsPartIdx, compID, uiTrDepthCurr - 1 ) ); } } if( uiSubdiv ) { TComTURecurse tuRecurseChild(rTu, true); do { xEncodeTransform( bCodeDQP, codeChromaQpAdj, tuRecurseChild ); } while (tuRecurseChild.nextSection(rTu)); } else { { DTRACE_CABAC_VL( g_nSymbolCounter++ ); DTRACE_CABAC_T( "\tTrIdx: abspart=" ); DTRACE_CABAC_V( uiAbsPartIdx ); DTRACE_CABAC_T( "\tdepth=" ); DTRACE_CABAC_V( uiDepth ); DTRACE_CABAC_T( "\ttrdepth=" ); DTRACE_CABAC_V( pcCU->getTransformIdx( uiAbsPartIdx ) ); DTRACE_CABAC_T( "\n" ); } if( !pcCU->isIntra(uiAbsPartIdx) && uiDepth == pcCU->getDepth( uiAbsPartIdx ) && (!bChroma || (!pcCU->getCbf( uiAbsPartIdx, COMPONENT_Cb, 0 ) && !pcCU->getCbf( uiAbsPartIdx, COMPONENT_Cr, 0 ) ) ) ) { assert( pcCU->getCbf( uiAbsPartIdx, COMPONENT_Y, 0 ) ); // printf( "saved one bin! " ); } else { m_pcEntropyCoderIf->codeQtCbf( rTu, COMPONENT_Y, true ); //luma CBF is always at the lowest level } if ( bHaveACodedBlock ) { // dQP: only for CTU once if ( pcCU->getSlice()->getPPS()->getUseDQP() ) { if ( bCodeDQP ) { encodeQP( pcCU, rTu.GetAbsPartIdxCU() ); bCodeDQP = false; } } if ( pcCU->getSlice()->getUseChromaQpAdj() ) { if ( bHaveACodedChromaBlock && codeChromaQpAdj && !pcCU->getCUTransquantBypass(rTu.GetAbsPartIdxCU()) ) { encodeChromaQpAdjustment( pcCU, rTu.GetAbsPartIdxCU() ); codeChromaQpAdj = false; } } const UInt numValidComp=pcCU->getPic()->getNumberValidComponents(); for(UInt ch=COMPONENT_Y; chgetCbf(subTUIterator.GetAbsPartIdxTU(compID), compID, (uiTrIdx + 1)); if (subTUCBF != 0) { #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST if (bDebugRQT) { printf("Call NxN for chan %d width=%d height=%d cbf=%d\n", compID, subTUIterator.getRect(compID).width, subTUIterator.getRect(compID).height, 1); } #endif m_pcEntropyCoderIf->codeCoeffNxN( subTUIterator, (pcCU->getCoeff(compID) + subTUIterator.getCoefficientOffset(compID)), compID ); } } while (subTUIterator.nextSection(rTu)); } else { if (isChroma(compID) && (cbf[COMPONENT_Y] != 0)) { m_pcEntropyCoderIf->codeCrossComponentPrediction( rTu, compID ); } if (cbf[compID] != 0) { m_pcEntropyCoderIf->codeCoeffNxN( rTu, (pcCU->getCoeff(compID) + rTu.getCoefficientOffset(compID)), compID ); } } } } } } } //! encode intra direction for luma Void TEncEntropy::encodeIntraDirModeLuma ( TComDataCU* pcCU, UInt absPartIdx, Bool isMultiplePU ) { m_pcEntropyCoderIf->codeIntraDirLumaAng( pcCU, absPartIdx , isMultiplePU); } //! encode intra direction for chroma Void TEncEntropy::encodeIntraDirModeChroma( TComDataCU* pcCU, UInt uiAbsPartIdx ) { m_pcEntropyCoderIf->codeIntraDirChroma( pcCU, uiAbsPartIdx ); #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST if (bDebugPredEnabled && pcCU->getSlice()->getFinalized()) { UInt cdir=pcCU->getIntraDir(CHANNEL_TYPE_CHROMA, uiAbsPartIdx); if (cdir==36) { cdir=pcCU->getIntraDir(CHANNEL_TYPE_LUMA, uiAbsPartIdx); } printf("coding chroma Intra dir: %d, uiAbsPartIdx: %d, luma dir: %d\n", cdir, uiAbsPartIdx, pcCU->getIntraDir(CHANNEL_TYPE_LUMA, uiAbsPartIdx)); } #endif } Void TEncEntropy::encodePredInfo( TComDataCU* pcCU, UInt uiAbsPartIdx ) { if( pcCU->isIntra( uiAbsPartIdx ) ) // If it is Intra mode, encode intra prediction mode. { encodeIntraDirModeLuma ( pcCU, uiAbsPartIdx,true ); if (pcCU->getPic()->getChromaFormat()!=CHROMA_400) { encodeIntraDirModeChroma( pcCU, uiAbsPartIdx ); if (enable4ChromaPUsInIntraNxNCU(pcCU->getPic()->getChromaFormat()) && pcCU->getPartitionSize( uiAbsPartIdx )==SIZE_NxN) { UInt uiPartOffset = ( pcCU->getPic()->getNumPartitionsInCtu() >> ( pcCU->getDepth(uiAbsPartIdx) << 1 ) ) >> 2; encodeIntraDirModeChroma( pcCU, uiAbsPartIdx + uiPartOffset ); encodeIntraDirModeChroma( pcCU, uiAbsPartIdx + uiPartOffset*2 ); encodeIntraDirModeChroma( pcCU, uiAbsPartIdx + uiPartOffset*3 ); } } } else // if it is Inter mode, encode motion vector and reference index { encodePUWise( pcCU, uiAbsPartIdx ); } } Void TEncEntropy::encodeCrossComponentPrediction( TComTU &rTu, ComponentID compID ) { m_pcEntropyCoderIf->codeCrossComponentPrediction( rTu, compID ); } //! encode motion information for every PU block Void TEncEntropy::encodePUWise( TComDataCU* pcCU, UInt uiAbsPartIdx ) { #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST const Bool bDebugPred = bDebugPredEnabled && pcCU->getSlice()->getFinalized(); #endif PartSize ePartSize = pcCU->getPartitionSize( uiAbsPartIdx ); UInt uiNumPU = ( ePartSize == SIZE_2Nx2N ? 1 : ( ePartSize == SIZE_NxN ? 4 : 2 ) ); UInt uiDepth = pcCU->getDepth( uiAbsPartIdx ); UInt uiPUOffset = ( g_auiPUOffset[UInt( ePartSize )] << ( ( pcCU->getSlice()->getSPS()->getMaxTotalCUDepth() - uiDepth ) << 1 ) ) >> 4; for ( UInt uiPartIdx = 0, uiSubPartIdx = uiAbsPartIdx; uiPartIdx < uiNumPU; uiPartIdx++, uiSubPartIdx += uiPUOffset ) { encodeMergeFlag( pcCU, uiSubPartIdx ); if ( pcCU->getMergeFlag( uiSubPartIdx ) ) { encodeMergeIndex( pcCU, uiSubPartIdx ); #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST if (bDebugPred) { std::cout << "Coded merge flag, CU absPartIdx: " << uiAbsPartIdx << " PU(" << uiPartIdx << ") absPartIdx: " << uiSubPartIdx; std::cout << " merge index: " << (UInt)pcCU->getMergeIndex(uiSubPartIdx) << std::endl; } #endif } else { encodeInterDirPU( pcCU, uiSubPartIdx ); for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { if ( pcCU->getSlice()->getNumRefIdx( RefPicList( uiRefListIdx ) ) > 0 ) { encodeRefFrmIdxPU ( pcCU, uiSubPartIdx, RefPicList( uiRefListIdx ) ); encodeMvdPU ( pcCU, uiSubPartIdx, RefPicList( uiRefListIdx ) ); encodeMVPIdxPU ( pcCU, uiSubPartIdx, RefPicList( uiRefListIdx ) ); #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST if (bDebugPred) { std::cout << "refListIdx: " << uiRefListIdx << std::endl; std::cout << "MVD horizontal: " << pcCU->getCUMvField(RefPicList(uiRefListIdx))->getMvd( uiAbsPartIdx ).getHor() << std::endl; std::cout << "MVD vertical: " << pcCU->getCUMvField(RefPicList(uiRefListIdx))->getMvd( uiAbsPartIdx ).getVer() << std::endl; std::cout << "MVPIdxPU: " << pcCU->getMVPIdx(RefPicList( uiRefListIdx ), uiSubPartIdx) << std::endl; std::cout << "InterDir: " << (UInt)pcCU->getInterDir(uiSubPartIdx) << std::endl; } #endif } } } } return; } Void TEncEntropy::encodeInterDirPU( TComDataCU* pcCU, UInt uiAbsPartIdx ) { if ( !pcCU->getSlice()->isInterB() ) { return; } m_pcEntropyCoderIf->codeInterDir( pcCU, uiAbsPartIdx ); return; } //! encode reference frame index for a PU block Void TEncEntropy::encodeRefFrmIdxPU( TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefList ) { assert( pcCU->isInter( uiAbsPartIdx ) ); if ( ( pcCU->getSlice()->getNumRefIdx( eRefList ) == 1 ) ) { return; } if ( pcCU->getInterDir( uiAbsPartIdx ) & ( 1 << eRefList ) ) { m_pcEntropyCoderIf->codeRefFrmIdx( pcCU, uiAbsPartIdx, eRefList ); } return; } //! encode motion vector difference for a PU block Void TEncEntropy::encodeMvdPU( TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefList ) { assert( pcCU->isInter( uiAbsPartIdx ) ); if ( pcCU->getInterDir( uiAbsPartIdx ) & ( 1 << eRefList ) ) { m_pcEntropyCoderIf->codeMvd( pcCU, uiAbsPartIdx, eRefList ); } return; } Void TEncEntropy::encodeMVPIdxPU( TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefList ) { if ( (pcCU->getInterDir( uiAbsPartIdx ) & ( 1 << eRefList )) ) { m_pcEntropyCoderIf->codeMVPIdx( pcCU, uiAbsPartIdx, eRefList ); } return; } Void TEncEntropy::encodeQtCbf( TComTU &rTu, const ComponentID compID, const Bool lowestLevel ) { m_pcEntropyCoderIf->codeQtCbf( rTu, compID, lowestLevel ); } Void TEncEntropy::encodeTransformSubdivFlag( UInt uiSymbol, UInt uiCtx ) { m_pcEntropyCoderIf->codeTransformSubdivFlag( uiSymbol, uiCtx ); } Void TEncEntropy::encodeQtRootCbf( TComDataCU* pcCU, UInt uiAbsPartIdx ) { m_pcEntropyCoderIf->codeQtRootCbf( pcCU, uiAbsPartIdx ); } Void TEncEntropy::encodeQtCbfZero( TComTU &rTu, const ChannelType chType ) { m_pcEntropyCoderIf->codeQtCbfZero( rTu, chType ); } Void TEncEntropy::encodeQtRootCbfZero( ) { m_pcEntropyCoderIf->codeQtRootCbfZero( ); } // dQP Void TEncEntropy::encodeQP( TComDataCU* pcCU, UInt uiAbsPartIdx, Bool bRD ) { if( bRD ) { uiAbsPartIdx = 0; } if ( pcCU->getSlice()->getPPS()->getUseDQP() ) { m_pcEntropyCoderIf->codeDeltaQP( pcCU, uiAbsPartIdx ); } } //! encode chroma qp adjustment Void TEncEntropy::encodeChromaQpAdjustment( TComDataCU* cu, UInt absPartIdx, Bool inRd ) { if( inRd ) { absPartIdx = 0; } m_pcEntropyCoderIf->codeChromaQpAdjustment( cu, absPartIdx ); } // texture //! encode coefficients Void TEncEntropy::encodeCoeff( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, Bool& bCodeDQP, Bool& codeChromaQpAdj ) { #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST const Bool bDebugRQT=pcCU->getSlice()->getFinalized() && DebugOptionList::DebugRQT.getInt()!=0; #endif if( pcCU->isIntra(uiAbsPartIdx) ) { if (false) { DTRACE_CABAC_VL( g_nSymbolCounter++ ) DTRACE_CABAC_T( "\tdecodeTransformIdx()\tCUDepth=" ) DTRACE_CABAC_V( uiDepth ) DTRACE_CABAC_T( "\n" ) } } else { if( !(pcCU->getMergeFlag( uiAbsPartIdx ) && pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N ) ) { m_pcEntropyCoderIf->codeQtRootCbf( pcCU, uiAbsPartIdx ); } if ( !pcCU->getQtRootCbf( uiAbsPartIdx ) ) { return; } } TComTURecurse tuRecurse(pcCU, uiAbsPartIdx, uiDepth); #if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST if (bDebugRQT) { printf("..codeCoeff: uiAbsPartIdx=%d, PU format=%d, 2Nx2N=%d, NxN=%d\n", uiAbsPartIdx, pcCU->getPartitionSize(uiAbsPartIdx), SIZE_2Nx2N, SIZE_NxN); } #endif xEncodeTransform( bCodeDQP, codeChromaQpAdj, tuRecurse ); } Void TEncEntropy::encodeCoeffNxN( TComTU &rTu, TCoeff* pcCoef, const ComponentID compID) { TComDataCU *pcCU = rTu.getCU(); if (pcCU->getCbf(rTu.GetAbsPartIdxTU(), compID, rTu.GetTransformDepthRel()) != 0) { if (rTu.getRect(compID).width != rTu.getRect(compID).height) { //code two sub-TUs TComTURecurse subTUIterator(rTu, false, TComTU::VERTICAL_SPLIT, true, compID); const UInt subTUSize = subTUIterator.getRect(compID).width * subTUIterator.getRect(compID).height; do { const UChar subTUCBF = pcCU->getCbf(subTUIterator.GetAbsPartIdxTU(compID), compID, (subTUIterator.GetTransformDepthRel() + 1)); if (subTUCBF != 0) { m_pcEntropyCoderIf->codeCoeffNxN( subTUIterator, (pcCoef + (subTUIterator.GetSectionNumber() * subTUSize)), compID); } } while (subTUIterator.nextSection(rTu)); } else { m_pcEntropyCoderIf->codeCoeffNxN(rTu, pcCoef, compID); } } } Void TEncEntropy::estimateBit (estBitsSbacStruct* pcEstBitsSbac, Int width, Int height, const ChannelType chType) { const UInt heightAtEntropyCoding = (width != height) ? (height >> 1) : height; m_pcEntropyCoderIf->estBit ( pcEstBitsSbac, width, heightAtEntropyCoding, chType ); } Int TEncEntropy::countNonZeroCoeffs( TCoeff* pcCoef, UInt uiSize ) { Int count = 0; for ( Int i = 0; i < uiSize; i++ ) { count += pcCoef[i] != 0; } return count; } #if SVC_EXTENSION Void TEncEntropy::encodeSliceHeaderExtn( TComSlice* pSlice, Int shBitsWrittenTillNow ) { m_pcEntropyCoderIf->codeSliceHeaderExtn( pSlice, shBitsWrittenTillNow ); } #endif //! \}