/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2015, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEnc3DAsymLUT.cpp \brief TEnc3DAsymLUT encoder class */ #include #include #include #include #include #include "TEnc3DAsymLUT.h" #if CGS_3D_ASYMLUT TEnc3DAsymLUT::TEnc3DAsymLUT() { m_pColorInfo = NULL; m_pColorInfoC = NULL; m_pEncCuboid = NULL; m_pBestEncCuboid = NULL; m_nAccuFrameBit = 0; m_nAccuFrameCGSBit = 0; m_nPrevFrameCGSPartNumLog2 = 0; m_dTotalFrameBit = 0; m_nTotalCGSBit = 0; m_nPPSBit = 0; m_pDsOrigPic = NULL; #if R0179_ENC_OPT_3DLUT_SIZE m_pMaxColorInfo = NULL; m_pMaxColorInfoC = NULL; // fixed m_dDistFactor Double dTmpFactor[3]; dTmpFactor[I_SLICE] = 1.0; dTmpFactor[P_SLICE] = 4./3.; dTmpFactor[B_SLICE] = 1.5; for( Int iSliceType = 0; iSliceType < 3; iSliceType++) { for(Int iLayer = 0; iLayer < MAX_TLAYER; iLayer++) { m_dDistFactor[iSliceType][iLayer] = dTmpFactor[iSliceType]*(Double)(1<setBitstream(m_pBitstreamRedirect); #endif } Void TEnc3DAsymLUT::destroy() { xFree3DArray( m_pColorInfo ); xFree3DArray( m_pColorInfoC ); xFree3DArray( m_pEncCuboid ); xFree3DArray( m_pBestEncCuboid ); #if R0179_ENC_OPT_3DLUT_SIZE xFree3DArray( m_pMaxColorInfo ); xFree3DArray( m_pMaxColorInfoC ); delete m_pBitstreamRedirect; delete m_pEncCavlc; #endif TCom3DAsymLUT::destroy(); } TEnc3DAsymLUT::~TEnc3DAsymLUT() { if( m_dTotalFrameBit != 0 ) { printf( "\nTotal CGS bit: %d, %.2lf%%" , m_nTotalCGSBit , m_nTotalCGSBit * 100 / m_dTotalFrameBit ); } destroy(); } Double TEnc3DAsymLUT::xxDeriveVertexPerColor( Double N , Double Ys , Double Yy , Double Yu , Double Yv , Double ys , Double us , Double vs , Double yy , Double yu , Double yv , Double uu , Double uv , Double vv , Double YY , Pel & rP0 , Pel & rP1 , Pel & rP3 , Pel & rP7 , Int nResQuantBit ) { Int nInitP0 = rP0; Int nInitP1 = rP1; Int nInitP3 = rP3; Int nInitP7 = rP7; const Int nOne = xGetNormCoeffOne(); Double dNorm = (N * yy * vv * uu - N * yy * uv * uv - N * yv * yv * uu - N * vv * yu * yu + 2 * N * yv * uv * yu - yy * vs * vs * uu + 2 * yy * vs * uv * us - yy * vv * us * us - 2 * vs * uv * yu * ys + uv * uv * ys * ys + vs * vs * yu * yu - 2 * yv * vs * us * yu + 2 * yv * vs * ys * uu - 2 * yv * uv * us * ys + 2 * vv * yu * ys * us - vv * uu * ys * ys + yv * yv * us * us); if( N > 16 && dNorm != 0 ) { Double dInitA = (-N * uu * yv * Yv + N * uu * Yy * vv - N * Yy * uv * uv + N * yv * uv * Yu - N * yu * Yu * vv + N * yu * uv * Yv + yu * us * Ys * vv - vs * ys * uv * Yu - yu * vs * us * Yv - yv * uv * us * Ys - yv * vs * us * Yu - yu * uv * vs * Ys - ys * us * uv * Yv + ys * us * Yu * vv + 2 * Yy * vs * uv * us + uu * yv * vs * Ys - uu * ys * Ys * vv + uu * vs * ys * Yv + ys * Ys * uv * uv - Yy * vv * us * us + yu * Yu * vs * vs + yv * Yv * us * us - uu * Yy * vs * vs) / dNorm; Double dInitB = (N * yy * Yu * vv - N * yy * uv * Yv - N * Yu * yv * yv - N * yu * Yy * vv + N * uv * yv * Yy + N * yv * yu * Yv - yy * us * Ys * vv + yy * uv * vs * Ys - yy * Yu * vs * vs + yy * vs * us * Yv - uv * vs * ys * Yy - yv * yu * vs * Ys + yu * Yy * vs * vs + yu * ys * Ys * vv - uv * yv * ys * Ys + 2 * Yu * yv * vs * ys + us * ys * Yy * vv - vs * ys * yu * Yv + uv * ys * ys * Yv + us * Ys * yv * yv - Yu * ys * ys * vv - yv * ys * us * Yv - vs * us * yv * Yy) / dNorm; Double dInitC = -(-N * yy * Yv * uu + N * yy * uv * Yu - N * yv * yu * Yu - N * uv * yu * Yy + N * Yv * yu * yu + N * yv * Yy * uu - yy * uv * us * Ys + yy * Yv * us * us + yy * vs * Ys * uu - yy * vs * us * Yu + yv * ys * us * Yu - vs * Ys * yu * yu - yv * ys * Ys * uu + vs * us * yu * Yy + vs * ys * yu * Yu - uv * Yu * ys * ys + Yv * uu * ys * ys - yv * Yy * us * us - 2 * Yv * yu * ys * us - vs * ys * Yy * uu + uv * us * ys * Yy + uv * yu * ys * Ys + yv * yu * us * Ys) / dNorm; nInitP0 = ( Int )( dInitA * nOne + 0.5 ) >> nResQuantBit << nResQuantBit; nInitP1 = ( Int )( dInitB * nOne + 0.5 ) >> nResQuantBit << nResQuantBit; nInitP3 = ( Int )( dInitC * nOne + 0.5 ) >> nResQuantBit << nResQuantBit; } Int nMin = - ( 1 << ( m_nLUTBitDepth - 1 ) ); Int nMax = - nMin - ( 1 << nResQuantBit ); Int nMask = ( 1 << nResQuantBit ) - 1; Double dMinError = MAX_DOUBLE; Int nTestRange = 2; Int nStepSize = 1 << nResQuantBit; for( Int i = - nTestRange ; i <= nTestRange ; i++ ) { for( Int j = - nTestRange ; j <= nTestRange ; j++ ) { for( Int k = - nTestRange ; k <= nTestRange ; k++ ) { Int nTestP0 = Clip3( nMin , nMax , nInitP0 + i * nStepSize ); Int nTestP1 = Clip3( nMin , nMax , nInitP1 + j * nStepSize ); Int nTestP3 = Clip3( nMin , nMax , nInitP3 + k * nStepSize ); Double a = 1.0 * nTestP0 / nOne; Double b = 1.0 * nTestP1 / nOne; Double c = 1.0 * nTestP3 / nOne; Double d = ( Ys - a * ys - b * us - c * vs ) / N; nInitP7 = ( ( Int )d ) >> nResQuantBit << nResQuantBit; for( Int m = 0 ; m < 2 ; m++ ) { Int nTestP7 = Clip3( nMin , nMax , nInitP7 + m * nStepSize ); Double dError = xxCalEstDist( N , Ys , Yy , Yu , Yv , ys , us , vs , yy , yu , yv , uu , uv , vv , YY , a , b , c , nTestP7 ); if( dError < dMinError ) { dMinError = dError; rP0 = ( Pel )nTestP0; rP1 = ( Pel )nTestP1; rP3 = ( Pel )nTestP3; rP7 = ( Pel )nTestP7; } } } } } assert( !( rP0 & nMask ) && !( rP1 & nMask ) && !( rP3 & nMask ) && !( rP7 & nMask ) ); return( dMinError ); } Double TEnc3DAsymLUT::estimateDistWithCur3DAsymLUT( TComPic * pCurPic , UInt refLayerIdc ) { xxCollectData( pCurPic , refLayerIdc ); Double dErrorLuma = 0 , dErrorChroma = 0; Int nYSize = 1 << ( getCurOctantDepth() + getCurYPartNumLog2() ); Int nUVSize = 1 << getCurOctantDepth(); for( Int yIdx = 0 ; yIdx < nYSize ; yIdx++ ) { for( Int uIdx = 0 ; uIdx < nUVSize ; uIdx++ ) { for( Int vIdx = 0 ; vIdx < nUVSize ; vIdx++ ) { SColorInfo & rCuboidColorInfo = m_pColorInfo[yIdx][uIdx][vIdx]; SColorInfo & rCuboidColorInfoC = m_pColorInfoC[yIdx][uIdx][vIdx]; SCuboid & rCuboid = xGetCuboid( yIdx , uIdx , vIdx ); if( rCuboidColorInfo.N > 0 ) { dErrorLuma += xxCalEstDist( rCuboidColorInfo.N , rCuboidColorInfo.Ys , rCuboidColorInfo.Yy , rCuboidColorInfo.Yu , rCuboidColorInfo.Yv , rCuboidColorInfo.ys , rCuboidColorInfo.us , rCuboidColorInfo.vs , rCuboidColorInfo.yy , rCuboidColorInfo.yu , rCuboidColorInfo.yv , rCuboidColorInfo.uu , rCuboidColorInfo.uv , rCuboidColorInfo.vv , rCuboidColorInfo.YY , rCuboid.P[0].Y , rCuboid.P[1].Y , rCuboid.P[2].Y , rCuboid.P[3].Y ); } if( rCuboidColorInfoC.N > 0 ) { dErrorChroma += xxCalEstDist( rCuboidColorInfoC.N , rCuboidColorInfoC.Us , rCuboidColorInfoC.Uy , rCuboidColorInfoC.Uu , rCuboidColorInfoC.Uv , rCuboidColorInfoC.ys , rCuboidColorInfoC.us , rCuboidColorInfoC.vs , rCuboidColorInfoC.yy , rCuboidColorInfoC.yu , rCuboidColorInfoC.yv , rCuboidColorInfoC.uu , rCuboidColorInfoC.uv , rCuboidColorInfoC.vv , rCuboidColorInfoC.UU , rCuboid.P[0].U , rCuboid.P[1].U , rCuboid.P[2].U , rCuboid.P[3].U ); dErrorChroma += xxCalEstDist( rCuboidColorInfoC.N , rCuboidColorInfoC.Vs , rCuboidColorInfoC.Vy , rCuboidColorInfoC.Vu , rCuboidColorInfoC.Vv , rCuboidColorInfoC.ys , rCuboidColorInfoC.us , rCuboidColorInfoC.vs , rCuboidColorInfoC.yy , rCuboidColorInfoC.yu , rCuboidColorInfoC.yv , rCuboidColorInfoC.uu , rCuboidColorInfoC.uv , rCuboidColorInfoC.vv , rCuboidColorInfoC.VV , rCuboid.P[0].V , rCuboid.P[1].V , rCuboid.P[2].V , rCuboid.P[3].V ); } } } } return( dErrorLuma + dErrorChroma); } #if R0179_ENC_OPT_3DLUT_SIZE Double TEnc3DAsymLUT::derive3DAsymLUT( TComSlice * pSlice , TComPic * pCurPic , UInt refLayerIdc , TEncCfg * pCfg , Bool bSignalPPS , Bool bElRapSliceTypeB, Double dFrameLambda ) { m_nLUTBitDepth = pCfg->getCGSLUTBit(); Int nBestAdaptCThresholdU = 1 << ( getInputBitDepthC() - 1 ); Int nBestAdaptCThresholdV = 1 << ( getInputBitDepthC() - 1 ); Int nAdaptCThresholdU, nAdaptCThresholdV; Int nTmpLutBits[MAX_Y_SIZE][MAX_C_SIZE] ; memset(nTmpLutBits, 0, sizeof(nTmpLutBits)); SLUTSize sMaxLutSize; // collect stats for the most partitions Int nCurYPartNumLog2 = 0 , nCurOctantDepth = 0; Int nMaxPartNumLog2 = xGetMaxPartNumLog2(); xxMapPartNum2DepthYPart( nMaxPartNumLog2 , nCurOctantDepth , nCurYPartNumLog2 ); xUpdatePartitioning( nCurOctantDepth , nCurYPartNumLog2, nBestAdaptCThresholdU, nBestAdaptCThresholdV ); xxCollectData( pCurPic , refLayerIdc ); xxCopyColorInfo(m_pMaxColorInfo, m_pColorInfo, m_pMaxColorInfoC, m_pColorInfoC); sMaxLutSize.iCPartNumLog2 = nCurOctantDepth; sMaxLutSize.iYPartNumLog2 = nCurOctantDepth + nCurYPartNumLog2; m_pBitstreamRedirect->clear(); // find the best partition based on RD cost Int i; Double dMinCost, dCurCost; Int iBestLUTSizeIdx = 0; Int nBestResQuanBit = 0; Double dCurError, dMinError; Int iNumBitsCurSize; Int iNumBitsCurSizeSave = m_pEncCavlc->getNumberOfWrittenBits(); Double dDistFactor = getDistFactor(pSlice->getSliceType(), pSlice->getDepth()); // check all LUT sizes xxGetAllLutSizes(pSlice); if (m_nTotalLutSizes == 0) // return if no valid size is found, LUT will not be updated { nCurOctantDepth = sMaxLutSize.iCPartNumLog2; nCurYPartNumLog2 = sMaxLutSize.iYPartNumLog2-nCurOctantDepth; xUpdatePartitioning( nCurOctantDepth , nCurYPartNumLog2, nBestAdaptCThresholdU, nBestAdaptCThresholdV ); return MAX_DOUBLE; } dMinCost = MAX_DOUBLE; dMinError = MAX_DOUBLE; for (i = 0; i < m_nTotalLutSizes; i++) { // add up the stats nCurOctantDepth = m_sLutSizes[i].iCPartNumLog2; nCurYPartNumLog2 = m_sLutSizes[i].iYPartNumLog2-nCurOctantDepth; xUpdatePartitioning( nCurOctantDepth , nCurYPartNumLog2, nBestAdaptCThresholdU, nBestAdaptCThresholdV ); xxConsolidateData( &m_sLutSizes[i], &sMaxLutSize ); dCurError = xxDeriveVertexes(nBestResQuanBit, m_pEncCuboid); setResQuantBit( nBestResQuanBit ); xSaveCuboids( m_pEncCuboid ); m_pEncCavlc->xCode3DAsymLUT( this ); iNumBitsCurSize = m_pEncCavlc->getNumberOfWrittenBits(); dCurCost = dCurError/dDistFactor + dFrameLambda*(Double)(iNumBitsCurSize-iNumBitsCurSizeSave); nTmpLutBits[m_sLutSizes[i].iYPartNumLog2][m_sLutSizes[i].iCPartNumLog2] = iNumBitsCurSize-iNumBitsCurSizeSave; // store LUT size iNumBitsCurSizeSave = iNumBitsCurSize; if(dCurCost < dMinCost ) { SCuboid *** tmp = m_pBestEncCuboid; m_pBestEncCuboid = m_pEncCuboid; m_pEncCuboid = tmp; dMinCost = dCurCost; dMinError = dCurError; iBestLUTSizeIdx = i; } } nCurOctantDepth = m_sLutSizes[iBestLUTSizeIdx].iCPartNumLog2; nCurYPartNumLog2 = m_sLutSizes[iBestLUTSizeIdx].iYPartNumLog2-nCurOctantDepth; xUpdatePartitioning( nCurOctantDepth , nCurYPartNumLog2, nBestAdaptCThresholdU, nBestAdaptCThresholdV ); Bool bUseNewColorInfo = false; if( pCfg->getCGSAdaptChroma() && nCurOctantDepth <= 1 ) // if the best size found so far has depth = 0 or 1, then check AdaptC U/V thresholds { nAdaptCThresholdU = ( Int )( m_dSumU / m_nNChroma + 0.5 ); nAdaptCThresholdV = ( Int )( m_dSumV / m_nNChroma + 0.5 ); if( !(nAdaptCThresholdU == nBestAdaptCThresholdU && nAdaptCThresholdV == nBestAdaptCThresholdV ) ) { nCurOctantDepth = 1; if( nCurOctantDepth + nCurYPartNumLog2 > getMaxYPartNumLog2()+getMaxOctantDepth() ) nCurYPartNumLog2 = getMaxYPartNumLog2()+getMaxOctantDepth()-nCurOctantDepth; xUpdatePartitioning( nCurOctantDepth , nCurYPartNumLog2 , nAdaptCThresholdU , nAdaptCThresholdV ); xxCollectData( pCurPic , refLayerIdc ); dCurError = xxDeriveVertexes( nBestResQuanBit , m_pEncCuboid ) ; setResQuantBit( nBestResQuanBit ); xSaveCuboids( m_pEncCuboid ); m_pEncCavlc->xCode3DAsymLUT( this ); iNumBitsCurSize = m_pEncCavlc->getNumberOfWrittenBits(); dCurCost = dCurError/dDistFactor + dFrameLambda*(Double)(iNumBitsCurSize-iNumBitsCurSizeSave); iNumBitsCurSizeSave = iNumBitsCurSize; if(dCurCost < dMinCost ) { SCuboid *** tmp = m_pBestEncCuboid; m_pBestEncCuboid = m_pEncCuboid; m_pEncCuboid = tmp; dMinCost = dCurCost; dMinError = dCurError; nBestAdaptCThresholdU = nAdaptCThresholdU; nBestAdaptCThresholdV = nAdaptCThresholdV; bUseNewColorInfo = true; } } } xUpdatePartitioning( nCurOctantDepth , nCurYPartNumLog2, nBestAdaptCThresholdU, nBestAdaptCThresholdV ); // check res_quant_bits only for the best table size and best U/V threshold if( !bUseNewColorInfo ) xxConsolidateData( &m_sLutSizes[iBestLUTSizeIdx], &sMaxLutSize ); // xxCollectData( pCurPic , refLayerIdc ); for( Int nResQuanBit = 1 ; nResQuanBit < 4 ; nResQuanBit++ ) { dCurError = xxDeriveVertexes( nResQuanBit , m_pEncCuboid ); setResQuantBit( nResQuanBit ); xSaveCuboids( m_pEncCuboid ); m_pEncCavlc->xCode3DAsymLUT( this ); iNumBitsCurSize = m_pEncCavlc->getNumberOfWrittenBits(); dCurCost = dCurError/dDistFactor + dFrameLambda*(Double)(iNumBitsCurSize-iNumBitsCurSizeSave); iNumBitsCurSizeSave = iNumBitsCurSize; if(dCurCost < dMinCost) { nBestResQuanBit = nResQuanBit; SCuboid *** tmp = m_pBestEncCuboid; m_pBestEncCuboid = m_pEncCuboid; m_pEncCuboid = tmp; dMinCost = dCurCost; dMinError = dCurError; } else { break; } } setResQuantBit( nBestResQuanBit ); xSaveCuboids( m_pBestEncCuboid ); // update LUT size stats for(Int iLutSizeY = 0; iLutSizeY < MAX_Y_SIZE; iLutSizeY++) { for(Int iLutSizeC = 0; iLutSizeC < MAX_C_SIZE; iLutSizeC++) { if(nTmpLutBits[iLutSizeY][iLutSizeC] != 0) m_nNumLUTBits[iLutSizeY][iLutSizeC] = (m_nNumLUTBits[iLutSizeY][iLutSizeC] + nTmpLutBits[iLutSizeY][iLutSizeC]*3+2)>>2; // update with new stats } } // return cost rather than error return( dMinCost ); } #endif Double TEnc3DAsymLUT::derive3DAsymLUT( TComSlice * pSlice , TComPic * pCurPic , UInt refLayerIdc , TEncCfg * pCfg , Bool bSignalPPS , Bool bElRapSliceTypeB ) { m_nLUTBitDepth = pCfg->getCGSLUTBit(); Int nCurYPartNumLog2 = 0 , nCurOctantDepth = 0; xxDerivePartNumLog2( pSlice , pCfg , nCurOctantDepth , nCurYPartNumLog2 , bSignalPPS , bElRapSliceTypeB ); Int nBestResQuanBit = 0; Int nBestAdaptCThresholdU = 1 << ( getInputBitDepthC() - 1 ); Int nBestAdaptCThresholdV = 1 << ( getInputBitDepthC() - 1 ); Int nBestOctantDepth = nCurOctantDepth; Int nBestYPartNumLog2 = nCurYPartNumLog2; Int nTargetLoop = 1 + ( pCfg->getCGSAdaptChroma() && ( nCurOctantDepth == 1 || ( nCurOctantDepth * 3 + nCurYPartNumLog2 ) >= 5 ) ); Double dMinError = MAX_DOUBLE; for( Int nLoop = 0 ; nLoop < nTargetLoop ; nLoop++ ) { Int nAdaptCThresholdU = 1 << ( getInputBitDepthC() - 1 ); Int nAdaptCThresholdV = 1 << ( getInputBitDepthC() - 1 ); if( nLoop > 0 ) { nAdaptCThresholdU = ( Int )( m_dSumU / m_nNChroma + 0.5 ); nAdaptCThresholdV = ( Int )( m_dSumV / m_nNChroma + 0.5 ); if( nCurOctantDepth > 1 ) { nCurOctantDepth = 1; nCurYPartNumLog2 = 2; } if( nAdaptCThresholdU == nBestAdaptCThresholdU && nAdaptCThresholdV == nBestAdaptCThresholdV && nCurOctantDepth == nBestOctantDepth && nCurYPartNumLog2 == nBestYPartNumLog2 ) break; } xUpdatePartitioning( nCurOctantDepth , nCurYPartNumLog2 , nAdaptCThresholdU , nAdaptCThresholdV ); xxCollectData( pCurPic , refLayerIdc ); for( Int nResQuanBit = 0 ; nResQuanBit < 4 ; nResQuanBit++ ) { Double dError = xxDeriveVertexes( nResQuanBit , m_pEncCuboid ) / ( 1 + ( nResQuanBit > 0 ) * 0.001 * ( pSlice->getDepth() + 1 ) ); if( dError <= dMinError ) { nBestResQuanBit = nResQuanBit; nBestAdaptCThresholdU = nAdaptCThresholdU; nBestAdaptCThresholdV = nAdaptCThresholdV; nBestOctantDepth = nCurOctantDepth; nBestYPartNumLog2 = nCurYPartNumLog2; SCuboid *** tmp = m_pBestEncCuboid; m_pBestEncCuboid = m_pEncCuboid; m_pEncCuboid = tmp; dMinError = dError; } else { break; } } } setResQuantBit( nBestResQuanBit ); xUpdatePartitioning( nBestOctantDepth , nBestYPartNumLog2 , nBestAdaptCThresholdU , nBestAdaptCThresholdV ); xSaveCuboids( m_pBestEncCuboid ); return( dMinError ); } Double TEnc3DAsymLUT::xxDeriveVertexes( Int nResQuanBit , SCuboid *** pCurCuboid ) { Double dErrorLuma = 0 , dErrorChroma = 0; Int nYSize = 1 << ( getCurOctantDepth() + getCurYPartNumLog2() ); Int nUVSize = 1 << getCurOctantDepth(); for( Int yIdx = 0 ; yIdx < nYSize ; yIdx++ ) { for( Int uIdx = 0 ; uIdx < nUVSize ; uIdx++ ) { for( Int vIdx = 0 ; vIdx < nUVSize ; vIdx++ ) { SColorInfo & rCuboidColorInfo = m_pColorInfo[yIdx][uIdx][vIdx]; SColorInfo & rCuboidColorInfoC = m_pColorInfoC[yIdx][uIdx][vIdx]; SCuboid & rCuboid = pCurCuboid[yIdx][uIdx][vIdx]; for( Int idxVertex = 0 ; idxVertex < 4 ; idxVertex++ ) { rCuboid.P[idxVertex] = xGetCuboidVertexPredAll( yIdx , uIdx , vIdx , idxVertex , pCurCuboid ); } if( rCuboidColorInfo.N > 0 ) { dErrorLuma += xxDeriveVertexPerColor( rCuboidColorInfo.N , rCuboidColorInfo.Ys , rCuboidColorInfo.Yy , rCuboidColorInfo.Yu , rCuboidColorInfo.Yv , rCuboidColorInfo.ys , rCuboidColorInfo.us , rCuboidColorInfo.vs , rCuboidColorInfo.yy , rCuboidColorInfo.yu , rCuboidColorInfo.yv , rCuboidColorInfo.uu , rCuboidColorInfo.uv , rCuboidColorInfo.vv , rCuboidColorInfo.YY , rCuboid.P[0].Y , rCuboid.P[1].Y , rCuboid.P[2].Y , rCuboid.P[3].Y , nResQuanBit ); } if( rCuboidColorInfoC.N > 0 ) { dErrorChroma += xxDeriveVertexPerColor( rCuboidColorInfoC.N , rCuboidColorInfoC.Us , rCuboidColorInfoC.Uy , rCuboidColorInfoC.Uu , rCuboidColorInfoC.Uv , rCuboidColorInfoC.ys , rCuboidColorInfoC.us , rCuboidColorInfoC.vs , rCuboidColorInfoC.yy , rCuboidColorInfoC.yu , rCuboidColorInfoC.yv , rCuboidColorInfoC.uu , rCuboidColorInfoC.uv , rCuboidColorInfoC.vv , rCuboidColorInfoC.UU , rCuboid.P[0].U , rCuboid.P[1].U , rCuboid.P[2].U , rCuboid.P[3].U , nResQuanBit ); dErrorChroma += xxDeriveVertexPerColor( rCuboidColorInfoC.N , rCuboidColorInfoC.Vs , rCuboidColorInfoC.Vy , rCuboidColorInfoC.Vu , rCuboidColorInfoC.Vv , rCuboidColorInfoC.ys , rCuboidColorInfoC.us , rCuboidColorInfoC.vs , rCuboidColorInfoC.yy , rCuboidColorInfoC.yu , rCuboidColorInfoC.yv , rCuboidColorInfoC.uu , rCuboidColorInfoC.uv , rCuboidColorInfoC.vv , rCuboidColorInfoC.VV , rCuboid.P[0].V , rCuboid.P[1].V , rCuboid.P[2].V , rCuboid.P[3].V , nResQuanBit ); } if( nResQuanBit > 0 ) { // check quantization for( Int idxVertex = 0 ; idxVertex < 4 ; idxVertex++ ) { SYUVP sPred = xGetCuboidVertexPredAll( yIdx , uIdx , vIdx , idxVertex , pCurCuboid ); assert( ( ( rCuboid.P[idxVertex].Y - sPred.Y ) >> nResQuanBit << nResQuanBit ) == rCuboid.P[idxVertex].Y - sPred.Y ); assert( ( ( rCuboid.P[idxVertex].U - sPred.U ) >> nResQuanBit << nResQuanBit ) == rCuboid.P[idxVertex].U - sPred.U ); assert( ( ( rCuboid.P[idxVertex].V - sPred.V ) >> nResQuanBit << nResQuanBit ) == rCuboid.P[idxVertex].V - sPred.V ); } } } } } return( dErrorLuma + dErrorChroma ); } Void TEnc3DAsymLUT::xxCollectData( TComPic * pCurPic , UInt refLayerIdc ) { Pel * pSrcY = m_pDsOrigPic->getAddr(COMPONENT_Y); Pel * pSrcU = m_pDsOrigPic->getAddr(COMPONENT_Cb); Pel * pSrcV = m_pDsOrigPic->getAddr(COMPONENT_Cr); Int nStrideSrcY = m_pDsOrigPic->getStride(COMPONENT_Y); Int nStrideSrcC = m_pDsOrigPic->getStride(COMPONENT_Cb); TComPicYuv *pRecPic = pCurPic->getSlice(pCurPic->getCurrSliceIdx())->getBaseColPic(refLayerIdc)->getPicYuvRec(); Pel * pIRLY = pRecPic->getAddr(COMPONENT_Y); Pel * pIRLU = pRecPic->getAddr(COMPONENT_Cb); Pel * pIRLV = pRecPic->getAddr(COMPONENT_Cr); Int nStrideILRY = pRecPic->getStride(COMPONENT_Y); Int nStrideILRC = pRecPic->getStride(COMPONENT_Cb); #if R0179_ENC_OPT_3DLUT_SIZE xReset3DArray( m_pColorInfo , getMaxYSize() , getMaxCSize() , getMaxCSize() ); xReset3DArray( m_pColorInfoC , getMaxYSize() , getMaxCSize() , getMaxCSize() ); #else xReset3DArray( m_pColorInfo , xGetYSize() , xGetUSize() , xGetVSize() ); xReset3DArray( m_pColorInfoC , xGetYSize() , xGetUSize() , xGetVSize() ); #endif //alignment padding pRecPic->setBorderExtension( false ); pRecPic->extendPicBorder(); TComSlice * pSlice = pCurPic->getSlice(pCurPic->getCurrSliceIdx()); UInt refLayerId = pSlice->getVPS()->getRefLayerId(pSlice->getLayerId(), refLayerIdc); Window scalEL = pSlice->getPPS()->getScaledRefLayerWindowForLayer(refLayerId); TComPicYuv *pcRecPicBL = pSlice->getBaseColPic(refLayerIdc)->getPicYuvRec(); // borders of down-sampled picture Int leftDS = (scalEL.getWindowLeftOffset()*g_posScalingFactor[refLayerIdc][0]+(1<<15))>>16; Int rightDS = pcRecPicBL->getWidth(COMPONENT_Y) - 1 + (((scalEL.getWindowRightOffset())*g_posScalingFactor[refLayerIdc][0]+(1<<15))>>16); Int topDS = (((scalEL.getWindowTopOffset())*g_posScalingFactor[refLayerIdc][1]+(1<<15))>>16); Int bottomDS = pcRecPicBL->getHeight(COMPONENT_Y) - 1 + (((scalEL.getWindowBottomOffset())*g_posScalingFactor[refLayerIdc][1]+(1<<15))>>16); // overlapped region Int left = max( 0 , leftDS ); Int right = min( pcRecPicBL->getWidth(COMPONENT_Y) - 1 , rightDS ); Int top = max( 0 , topDS ); Int bottom = min( pcRecPicBL->getHeight(COMPONENT_Y) - 1 , bottomDS ); // since we do data collection only for overlapped region, the border extension is good enough m_dSumU = m_dSumV = 0; m_nNChroma = 0; for( Int i = top ; i <= bottom ; i++ ) { Int iDS = i-topDS; Int jDS = left-leftDS; Int posSrcY = iDS * nStrideSrcY + jDS; Int posIRLY = i * nStrideILRY + left; Int posSrcUV = ( iDS >> 1 ) * nStrideSrcC + (jDS>>1); Int posIRLUV = ( i >> 1 ) * nStrideILRC + (left>>1); for( Int j = left ; j <= right ; j++ , posSrcY++ , posIRLY++ , posSrcUV += !( j & 0x01 ) , posIRLUV += !( j & 0x01 ) ) { Int Y = pSrcY[posSrcY]; Int y = pIRLY[posIRLY]; Int U = pSrcU[posSrcUV]; Int u = pIRLU[posIRLUV]; Int V = pSrcV[posSrcUV]; Int v = pIRLV[posIRLUV]; // alignment //filtering u, v for luma; Int posIRLUVN = posIRLUV + ((i&1)? nStrideILRC : -nStrideILRC); if((j&1)) { u = (pIRLU[posIRLUVN] + pIRLU[posIRLUVN+1] +(u + pIRLU[posIRLUV+1])*3 +4)>>3; v = (pIRLV[posIRLUVN] + pIRLV[posIRLUVN+1] +(v + pIRLV[posIRLUV+1])*3 +4)>>3; } else { u = (pIRLU[posIRLUVN] +u*3 +2)>>2; v = (pIRLV[posIRLUVN] +v*3 +2)>>2; } m_dSumU += u; m_dSumV += v; m_nNChroma++; SColorInfo sColorInfo; SColorInfo & rCuboidColorInfo = m_pColorInfo[xGetYIdx(y)][xGetUIdx(u)][xGetVIdx(v)]; memset(&sColorInfo, 0, sizeof(SColorInfo)); sColorInfo.Ys = Y; sColorInfo.ys = y; sColorInfo.us = u; sColorInfo.vs = v; sColorInfo.Yy = Y * y; sColorInfo.Yu = Y * u; sColorInfo.Yv = Y * v; sColorInfo.yy = y * y; sColorInfo.yu = y * u; sColorInfo.yv = y * v; sColorInfo.uu = u * u; sColorInfo.uv = u * v; sColorInfo.vv = v * v; sColorInfo.YY = Y * Y; sColorInfo.N = 1; rCuboidColorInfo += sColorInfo; if(!((i&1) || (j&1))) { // alignment y = (pIRLY[posIRLY] + pIRLY[posIRLY+nStrideILRY] + 1)>>1; u = pIRLU[posIRLUV]; v = pIRLV[posIRLUV]; SColorInfo & rCuboidColorInfoC = m_pColorInfoC[xGetYIdx(y)][xGetUIdx(u)][xGetVIdx(v)]; sColorInfo.Us = U; sColorInfo.Vs = V; sColorInfo.ys = y; sColorInfo.us = u; sColorInfo.vs = v; sColorInfo.Uy = U * y; sColorInfo.Uu = U * u; sColorInfo.Uv = U * v; sColorInfo.Vy = V * y; sColorInfo.Vu = V * u; sColorInfo.Vv = V * v; sColorInfo.yy = y * y; sColorInfo.yu = y * u; sColorInfo.yv = y * v; sColorInfo.uu = u * u; sColorInfo.uv = u * v; sColorInfo.vv = v * v; sColorInfo.UU = U * U; sColorInfo.VV = V * V; sColorInfo.N = 1; rCuboidColorInfoC += sColorInfo; } } } } Void TEnc3DAsymLUT::xxDerivePartNumLog2( TComSlice * pSlice , TEncCfg * pcCfg , Int & rOctantDepth , Int & rYPartNumLog2 , Bool bSignalPPS , Bool bElRapSliceTypeB ) { Int nPartNumLog2 = 4; if( pSlice->getBaseColPic( pSlice->getInterLayerPredLayerIdc( 0 ) )->getSlice( 0 )->isIntra() ) { nPartNumLog2 = xGetMaxPartNumLog2(); } if( m_nAccuFrameBit && pSlice->getPPS()->getCGSFlag() ) { Double dBitCost = 1.0 * m_nAccuFrameCGSBit / m_nAccuFrameBit; nPartNumLog2 = m_nPrevFrameCGSPartNumLog2; Double dBitCostT = 0.03; if( dBitCost < dBitCostT / 6.0 ) { nPartNumLog2++; } else if( dBitCost >= dBitCostT ) { nPartNumLog2--; } } nPartNumLog2 = Clip3( 0 , xGetMaxPartNumLog2() , nPartNumLog2 ); xxMapPartNum2DepthYPart( nPartNumLog2 , rOctantDepth , rYPartNumLog2 ); } Void TEnc3DAsymLUT::xxMapPartNum2DepthYPart( Int nPartNumLog2 , Int & rOctantDepth , Int & rYPartNumLog2 ) { for( Int y = getMaxYPartNumLog2() ; y >= 0 ; y-- ) { for( Int depth = ( nPartNumLog2 - y ) >> 1 ; depth >= 0 ; depth-- ) { if( y + 3 * depth == nPartNumLog2 ) { rOctantDepth = depth; rYPartNumLog2 = y; return; } } } rOctantDepth = min( getMaxOctantDepth() , nPartNumLog2 / 3 ); rYPartNumLog2 = min( getMaxYPartNumLog2() , nPartNumLog2 - 3 * rOctantDepth ); } Void TEnc3DAsymLUT::updatePicCGSBits( TComSlice * pcSlice , Int nPPSBit ) { for( Int i = 0; i < pcSlice->getActiveNumILRRefIdx(); i++ ) { UInt refLayerIdc = pcSlice->getInterLayerPredLayerIdc(i); m_nAccuFrameBit += pcSlice->getPic()->getFrameBit() + pcSlice->getBaseColPic(refLayerIdc)->getFrameBit(); m_dTotalFrameBit += pcSlice->getPic()->getFrameBit() + pcSlice->getBaseColPic(refLayerIdc)->getFrameBit(); } m_nAccuFrameCGSBit += nPPSBit; m_nTotalCGSBit += nPPSBit; m_nPrevFrameCGSPartNumLog2 = getCurOctantDepth() * 3 + getCurYPartNumLog2(); #if R0179_ENC_OPT_3DLUT_SIZE Int nCurELFrameBit = pcSlice->getPic()->getFrameBit(); const Int nSliceType = pcSlice->getSliceType(); const Int nSliceTempLevel = pcSlice->getDepth(); m_nPrevELFrameBit[nSliceType][nSliceTempLevel] = m_nPrevELFrameBit[nSliceType][nSliceTempLevel] == 0 ? nCurELFrameBit:((m_nPrevELFrameBit[nSliceType][nSliceTempLevel]+nCurELFrameBit)>>1); #endif } #if R0179_ENC_OPT_3DLUT_SIZE Void TEnc3DAsymLUT::xxGetAllLutSizes(TComSlice *pSlice) { Int iMaxYPartNumLog2, iMaxCPartNumLog2; Int iCurYPartNumLog2, iCurCPartNumLog2; Int iMaxAddYPartNumLog2; Int iNumELFrameBits = m_nPrevELFrameBit[pSlice->getSliceType()][pSlice->getDepth()]; xxMapPartNum2DepthYPart( xGetMaxPartNumLog2() , iMaxCPartNumLog2 , iMaxYPartNumLog2 ); iMaxAddYPartNumLog2 = iMaxYPartNumLog2; iMaxYPartNumLog2 += iMaxCPartNumLog2; //m_sLutSizes[0].iYPartNumLog2 = iMaxYPartNumLog2; //m_sLutSizes[0].iCPartNumLog2 = iMaxCPartNumLog2; m_nTotalLutSizes = 0; for(iCurYPartNumLog2 = iMaxYPartNumLog2; iCurYPartNumLog2 >= 0; iCurYPartNumLog2--) { for(iCurCPartNumLog2 = iMaxCPartNumLog2; iCurCPartNumLog2 >= 0; iCurCPartNumLog2--) { // try more sizes if(iCurCPartNumLog2 <= iCurYPartNumLog2 && (m_nNumLUTBits[iCurYPartNumLog2][iCurCPartNumLog2] < (iNumELFrameBits>>1)) && m_nTotalLutSizes < MAX_NUM_LUT_SIZES) { m_sLutSizes[m_nTotalLutSizes].iYPartNumLog2 = iCurYPartNumLog2; m_sLutSizes[m_nTotalLutSizes].iCPartNumLog2 = iCurCPartNumLog2; m_nTotalLutSizes ++; } } } } Void TEnc3DAsymLUT::xxCopyColorInfo( SColorInfo *** dst, SColorInfo *** src , SColorInfo *** dstC, SColorInfo *** srcC ) { Int yIdx, uIdx, vIdx; // copy from pColorInfo to pMaxColorInfo for(yIdx = 0; yIdx < xGetYSize(); yIdx++) { for(uIdx = 0; uIdx < xGetUSize(); uIdx++) { for(vIdx = 0; vIdx < xGetVSize(); vIdx++) { dst [yIdx][uIdx][vIdx] = src [yIdx][uIdx][vIdx]; dstC[yIdx][uIdx][vIdx] = srcC[yIdx][uIdx][vIdx]; } } } } Void TEnc3DAsymLUT::xxAddColorInfo( Int yIdx, Int uIdx, Int vIdx, Int iYDiffLog2, Int iCDiffLog2 ) { SColorInfo & rCuboidColorInfo = m_pColorInfo [yIdx][uIdx][vIdx]; SColorInfo & rCuboidColorInfoC = m_pColorInfoC[yIdx][uIdx][vIdx]; for( Int i = 0; i < (1<iYPartNumLog2; Int nCSize = 1<< pMaxLUTSize->iCPartNumLog2; iYDiffLog2 = pMaxLUTSize->iYPartNumLog2-pCurLUTSize->iYPartNumLog2; iCDiffLog2 = pMaxLUTSize->iCPartNumLog2-pCurLUTSize->iCPartNumLog2; //assert(pMaxLUTSize->iCPartNumLog2 >= pCurLUTSize->iCPartNumLog2 && pMaxLUTSize->iYPartNumLog2 >= pCurLUTSize->iYPartNumLog2); if (iYDiffLog2 == 0 && iCDiffLog2 == 0) // shouldn't have to do anything { xxCopyColorInfo(m_pColorInfo, m_pMaxColorInfo, m_pColorInfoC, m_pMaxColorInfoC); return; } xReset3DArray( m_pColorInfo , 1<iYPartNumLog2, 1<iCPartNumLog2, 1<iCPartNumLog2 ); xReset3DArray( m_pColorInfoC , 1<iYPartNumLog2, 1<iCPartNumLog2, 1<iCPartNumLog2 ); for(yIdx = 0; yIdx < nYSize; yIdx++) { for(uIdx = 0; uIdx < nCSize; uIdx++) { for(vIdx = 0; vIdx < nCSize; vIdx++) { const SColorInfo & rCuboidSrc = m_pMaxColorInfo [yIdx][uIdx][vIdx]; const SColorInfo & rCuboidSrcC = m_pMaxColorInfoC[yIdx][uIdx][vIdx]; Int yIdx2, uIdx2, vIdx2; yIdx2 = yIdx>>iYDiffLog2; uIdx2 = uIdx>>iCDiffLog2; vIdx2 = vIdx>>iCDiffLog2; m_pColorInfo [yIdx2][uIdx2][vIdx2] += rCuboidSrc; m_pColorInfoC[yIdx2][uIdx2][vIdx2] += rCuboidSrcC; } } } } Void TEnc3DAsymLUT::update3DAsymLUTParam( TEnc3DAsymLUT * pSrc ) { assert( pSrc->getMaxOctantDepth() == getMaxOctantDepth() && pSrc->getMaxYPartNumLog2() == getMaxYPartNumLog2() ); xUpdatePartitioning( pSrc->getCurOctantDepth(), pSrc->getCurYPartNumLog2(), pSrc->getAdaptChromaThresholdU(), pSrc->getAdaptChromaThresholdV() ); setResQuantBit( pSrc->getResQuantBit() ); } #endif #endif