/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TDecGop.cpp \brief GOP decoder class */ #include "TDecGop.h" #include "TDecCAVLC.h" #include "TDecSbac.h" #include "TDecBinCoder.h" #include "TDecBinCoderCABAC.h" #include "libmd5/MD5.h" #include "TLibCommon/SEI.h" #if SVC_EXTENSION #include "TDecTop.h" #endif #include #include extern Bool g_md5_mismatch; ///< top level flag to signal when there is a decode problem #if CONFORMANCE_BITSTREAM_MODE Bool pocCompareFunction( const TComPic &pic1, const TComPic &pic2 ) { return (const_cast(pic1).getPOC() < const_cast(pic2).getPOC()); } #endif //! \ingroup TLibDecoder //! \{ static void calcAndPrintHashStatus(TComPicYuv& pic, const SEIDecodedPictureHash* pictureHashSEI); #if Q0074_COLOUR_REMAPPING_SEI static Void applyColourRemapping(TComPicYuv& pic, const SEIColourRemappingInfo* colourRemappingInfoSEI, UInt layerId=0 ); static std::vector storeCriSEI; //Persistent Colour Remapping Information SEI #endif // ==================================================================================================================== // Constructor / destructor / initialization / destroy // ==================================================================================================================== TDecGop::TDecGop() { m_dDecTime = 0; m_pcSbacDecoders = NULL; m_pcBinCABACs = NULL; } TDecGop::~TDecGop() { } #if SVC_EXTENSION Void TDecGop::create(UInt layerId) { m_layerId = layerId; } #else Void TDecGop::create() { } #endif Void TDecGop::destroy() { } #if SVC_EXTENSION Void TDecGop::init(TDecTop** ppcDecTop, TDecEntropy* pcEntropyDecoder, #else Void TDecGop::init( TDecEntropy* pcEntropyDecoder, #endif TDecSbac* pcSbacDecoder, TDecBinCABAC* pcBinCABAC, TDecCavlc* pcCavlcDecoder, TDecSlice* pcSliceDecoder, TComLoopFilter* pcLoopFilter, TComSampleAdaptiveOffset* pcSAO ) { m_pcEntropyDecoder = pcEntropyDecoder; m_pcSbacDecoder = pcSbacDecoder; m_pcBinCABAC = pcBinCABAC; m_pcCavlcDecoder = pcCavlcDecoder; m_pcSliceDecoder = pcSliceDecoder; m_pcLoopFilter = pcLoopFilter; m_pcSAO = pcSAO; #if SVC_EXTENSION m_ppcTDecTop = ppcDecTop; #endif } // ==================================================================================================================== // Private member functions // ==================================================================================================================== // ==================================================================================================================== // Public member functions // ==================================================================================================================== Void TDecGop::decompressSlice(TComInputBitstream* pcBitstream, TComPic*& rpcPic) { TComSlice* pcSlice = rpcPic->getSlice(rpcPic->getCurrSliceIdx()); // Table of extracted substreams. // These must be deallocated AND their internal fifos, too. TComInputBitstream **ppcSubstreams = NULL; //-- For time output for each slice long iBeforeTime = clock(); m_pcSbacDecoder->init( (TDecBinIf*)m_pcBinCABAC ); m_pcEntropyDecoder->setEntropyDecoder (m_pcSbacDecoder); UInt uiNumSubstreams = pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag() ? pcSlice->getNumEntryPointOffsets()+1 : pcSlice->getPPS()->getNumSubstreams(); // init each couple {EntropyDecoder, Substream} UInt *puiSubstreamSizes = pcSlice->getSubstreamSizes(); ppcSubstreams = new TComInputBitstream*[uiNumSubstreams]; m_pcSbacDecoders = new TDecSbac[uiNumSubstreams]; m_pcBinCABACs = new TDecBinCABAC[uiNumSubstreams]; for ( UInt ui = 0 ; ui < uiNumSubstreams ; ui++ ) { m_pcSbacDecoders[ui].init(&m_pcBinCABACs[ui]); ppcSubstreams[ui] = pcBitstream->extractSubstream(ui+1 < uiNumSubstreams ? puiSubstreamSizes[ui] : pcBitstream->getNumBitsLeft()); } for ( UInt ui = 0 ; ui+1 < uiNumSubstreams; ui++ ) { m_pcEntropyDecoder->setEntropyDecoder ( &m_pcSbacDecoders[uiNumSubstreams - 1 - ui] ); m_pcEntropyDecoder->setBitstream ( ppcSubstreams [uiNumSubstreams - 1 - ui] ); m_pcEntropyDecoder->resetEntropy (pcSlice); } m_pcEntropyDecoder->setEntropyDecoder ( m_pcSbacDecoder ); m_pcEntropyDecoder->setBitstream ( ppcSubstreams[0] ); m_pcEntropyDecoder->resetEntropy (pcSlice); m_pcSbacDecoders[0].load(m_pcSbacDecoder); m_pcSliceDecoder->decompressSlice( ppcSubstreams, rpcPic, m_pcSbacDecoder, m_pcSbacDecoders); m_pcEntropyDecoder->setBitstream( ppcSubstreams[uiNumSubstreams-1] ); // deallocate all created substreams, including internal buffers. for (UInt ui = 0; ui < uiNumSubstreams; ui++) { ppcSubstreams[ui]->deleteFifo(); delete ppcSubstreams[ui]; } delete[] ppcSubstreams; delete[] m_pcSbacDecoders; m_pcSbacDecoders = NULL; delete[] m_pcBinCABACs; m_pcBinCABACs = NULL; m_dDecTime += (Double)(clock()-iBeforeTime) / CLOCKS_PER_SEC; } Void TDecGop::filterPicture(TComPic*& rpcPic) { TComSlice* pcSlice = rpcPic->getSlice(rpcPic->getCurrSliceIdx()); //-- For time output for each slice long iBeforeTime = clock(); // deblocking filter Bool bLFCrossTileBoundary = pcSlice->getPPS()->getLoopFilterAcrossTilesEnabledFlag(); m_pcLoopFilter->setCfg(bLFCrossTileBoundary); m_pcLoopFilter->loopFilterPic( rpcPic ); if( pcSlice->getSPS()->getUseSAO() ) { m_pcSAO->reconstructBlkSAOParams(rpcPic, rpcPic->getPicSym()->getSAOBlkParam()); m_pcSAO->SAOProcess(rpcPic); m_pcSAO->PCMLFDisableProcess(rpcPic); } rpcPic->compressMotion(); Char c = (pcSlice->isIntra() ? 'I' : pcSlice->isInterP() ? 'P' : 'B'); if (!pcSlice->isReferenced()) c += 32; //-- For time output for each slice #if SVC_EXTENSION printf("\nPOC %4d LId: %1d TId: %1d ( %c-SLICE %s, QP%3d ) ", pcSlice->getPOC(), rpcPic->getLayerId(), pcSlice->getTLayer(), c, NaluToStr( pcSlice->getNalUnitType() ).data(), pcSlice->getSliceQp() ); #else printf("\nPOC %4d TId: %1d ( %c-SLICE, QP%3d ) ", pcSlice->getPOC(), pcSlice->getTLayer(), c, pcSlice->getSliceQp() ); #endif m_dDecTime += (Double)(clock()-iBeforeTime) / CLOCKS_PER_SEC; printf ("[DT %6.3f] ", m_dDecTime ); m_dDecTime = 0; for (Int iRefList = 0; iRefList < 2; iRefList++) { printf ("[L%d ", iRefList); for (Int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx(RefPicList(iRefList)); iRefIndex++) { #if SVC_EXTENSION #if VPS_EXTN_DIRECT_REF_LAYERS if( pcSlice->getRefPic(RefPicList(iRefList), iRefIndex)->isILR( m_layerId ) ) { UInt refLayerId = pcSlice->getRefPic(RefPicList(iRefList), iRefIndex)->getLayerId(); UInt refLayerIdc = pcSlice->getReferenceLayerIdc(refLayerId); assert( g_posScalingFactor[refLayerIdc][0] ); assert( g_posScalingFactor[refLayerIdc][1] ); printf( "%d(%d, {%1.2f, %1.2f}x)", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex), refLayerId, 65536.0/g_posScalingFactor[refLayerIdc][0], 65536.0/g_posScalingFactor[refLayerIdc][1] ); } else { printf ("%d", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex)); } #endif if( pcSlice->getEnableTMVPFlag() && iRefList == 1 - pcSlice->getColFromL0Flag() && iRefIndex == pcSlice->getColRefIdx() ) { printf( "c" ); } printf( " " ); #else printf ("%d ", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex)); #endif } printf ("] "); } if (m_decodedPictureHashSEIEnabled) { SEIMessages pictureHashes = getSeisByType(rpcPic->getSEIs(), SEI::DECODED_PICTURE_HASH ); const SEIDecodedPictureHash *hash = ( pictureHashes.size() > 0 ) ? (SEIDecodedPictureHash*) *(pictureHashes.begin()) : NULL; if (pictureHashes.size() > 1) { printf ("Warning: Got multiple decoded picture hash SEI messages. Using first."); } calcAndPrintHashStatus(*rpcPic->getPicYuvRec(), hash); } #if CONFORMANCE_BITSTREAM_MODE if( this->getLayerDec(rpcPic->getLayerId())->getConfModeFlag() ) { // Add this reconstructed picture to the parallel buffer. std::vector *thisLayerBuffer = (this->getLayerDec(rpcPic->getLayerId()))->getConfListPic(); thisLayerBuffer->push_back(*rpcPic); std::sort( thisLayerBuffer->begin(), thisLayerBuffer->end(), pocCompareFunction ); } #endif #if Q0074_COLOUR_REMAPPING_SEI if (m_colourRemapSEIEnabled) { SEIMessages colourRemappingInfo = getSeisByType(rpcPic->getSEIs(), SEI::COLOUR_REMAPPING_INFO ); const SEIColourRemappingInfo *seiColourRemappingInfo = ( colourRemappingInfo.size() > 0 ) ? (SEIColourRemappingInfo*) *(colourRemappingInfo.begin()) : NULL; if (colourRemappingInfo.size() > 1) { printf ("Warning: Got multiple Colour Remapping Information SEI messages. Using first."); } applyColourRemapping(*rpcPic->getPicYuvRec(), seiColourRemappingInfo #if SVC_EXTENSION , rpcPic->getLayerId() #endif ); } #endif #if SETTING_PIC_OUTPUT_MARK rpcPic->setOutputMark(rpcPic->getSlice(0)->getPicOutputFlag() ? true : false); #else rpcPic->setOutputMark(true); #endif rpcPic->setReconMark(true); } /** * Calculate and print hash for pic, compare to picture_digest SEI if * present in seis. seis may be NULL. Hash is printed to stdout, in * a manner suitable for the status line. Theformat is: * [Hash_type:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,(yyy)] * Where, x..x is the hash * yyy has the following meanings: * OK - calculated hash matches the SEI message * ***ERROR*** - calculated hash does not match the SEI message * unk - no SEI message was available for comparison */ static void calcAndPrintHashStatus(TComPicYuv& pic, const SEIDecodedPictureHash* pictureHashSEI) { /* calculate MD5sum for entire reconstructed picture */ UChar recon_digest[3][16]; Int numChar=0; const Char* hashType = "\0"; if (pictureHashSEI) { switch (pictureHashSEI->method) { case SEIDecodedPictureHash::MD5: { hashType = "MD5"; calcMD5(pic, recon_digest); numChar = 16; break; } case SEIDecodedPictureHash::CRC: { hashType = "CRC"; calcCRC(pic, recon_digest); numChar = 2; break; } case SEIDecodedPictureHash::CHECKSUM: { hashType = "Checksum"; calcChecksum(pic, recon_digest); numChar = 4; break; } default: { assert (!"unknown hash type"); } } } /* compare digest against received version */ const Char* ok = "(unk)"; Bool mismatch = false; if (pictureHashSEI) { ok = "(OK)"; for(Int yuvIdx = 0; yuvIdx < 3; yuvIdx++) { for (UInt i = 0; i < numChar; i++) { if (recon_digest[yuvIdx][i] != pictureHashSEI->digest[yuvIdx][i]) { ok = "(***ERROR***)"; mismatch = true; } } } } printf("[%s:%s,%s] ", hashType, digestToString(recon_digest, numChar), ok); if (mismatch) { g_md5_mismatch = true; printf("[rx%s:%s] ", hashType, digestToString(pictureHashSEI->digest, numChar)); } } #if Q0074_COLOUR_REMAPPING_SEI Void xInitColourRemappingLut( const Int bitDepthY, const Int bitDepthC, std::vector(&preLut)[3], std::vector(&postLut)[3], const SEIColourRemappingInfo* const pCriSEI ) { for ( Int c=0 ; c<3 ; c++ ) { Int bitDepth = c ? bitDepthC : bitDepthY ; preLut[c].resize(1 << bitDepth); postLut[c].resize(1 << pCriSEI->m_colourRemapBitDepth); Int bitDepthDiff = pCriSEI->m_colourRemapBitDepth - bitDepth; Int iShift1 = (bitDepthDiff>0) ? bitDepthDiff : 0; //bit scale from bitdepth to ColourRemapBitdepth (manage only case colourRemapBitDepth>= bitdepth) if( bitDepthDiff<0 ) printf ("Warning: CRI SEI - colourRemapBitDepth (%d) m_colourRemapBitDepth, bitDepth); bitDepthDiff = pCriSEI->m_colourRemapBitDepth - pCriSEI->m_colourRemapInputBitDepth; Int iShift2 = (bitDepthDiff>0) ? bitDepthDiff : 0; //bit scale from ColourRemapInputBitdepth to ColourRemapBitdepth (manage only case colourRemapBitDepth>= colourRemapInputBitDepth) if( bitDepthDiff<0 ) printf ("Warning: CRI SEI - colourRemapBitDepth (%d) m_colourRemapBitDepth, pCriSEI->m_colourRemapInputBitDepth); //Fill preLut for ( Int k=0 ; k<(1<m_preLutNumValMinus1[c] ; iPivot++ ) { Int iCodedPrev = pCriSEI->m_preLutCodedValue[c][iPivot] << iShift2; //Coded in CRInputBitdepth Int iCodedNext = pCriSEI->m_preLutCodedValue[c][iPivot+1] << iShift2; //Coded in CRInputBitdepth Int iTargetPrev = pCriSEI->m_preLutTargetValue[c][iPivot]; //Coded in CRBitdepth Int iTargetNext = pCriSEI->m_preLutTargetValue[c][iPivot+1]; //Coded in CRBitdepth if ( iCodedPrev <= iSample && iSample <= iCodedNext ) { Float fInterpol = (Float)( (iCodedNext - iSample)*iTargetPrev + (iSample - iCodedPrev)*iTargetNext ) * 1.f / (Float)(iCodedNext - iCodedPrev); preLut[c][k] = (Int)( 0.5f + fInterpol ); iPivot = pCriSEI->m_preLutNumValMinus1[c] + 1; } } } //Fill postLut for ( Int k=0 ; k<(1<m_colourRemapBitDepth) ; k++ ) { Int iSample = k; for ( Int iPivot=0 ; iPivot<=pCriSEI->m_postLutNumValMinus1[c] ; iPivot++ ) { Int iCodedPrev = pCriSEI->m_postLutCodedValue[c][iPivot]; //Coded in CRBitdepth Int iCodedNext = pCriSEI->m_postLutCodedValue[c][iPivot+1]; //Coded in CRBitdepth Int iTargetPrev = pCriSEI->m_postLutTargetValue[c][iPivot]; //Coded in CRBitdepth Int iTargetNext = pCriSEI->m_postLutTargetValue[c][iPivot+1]; //Coded in CRBitdepth if ( iCodedPrev <= iSample && iSample <= iCodedNext ) { Float fInterpol = (Float)( (iCodedNext - iSample)*iTargetPrev + (iSample - iCodedPrev)*iTargetNext ) * 1.f / (Float)(iCodedNext - iCodedPrev) ; postLut[c][k] = (Int)( 0.5f + fInterpol ); iPivot = pCriSEI->m_postLutNumValMinus1[c] + 1; } } } } } static void applyColourRemapping(TComPicYuv& pic, const SEIColourRemappingInfo* pCriSEI, UInt layerId ) { if( !storeCriSEI.size() ) #if SVC_EXTENSION storeCriSEI.resize(MAX_LAYERS); #else storeCriSEI.resize(1); #endif if ( pCriSEI ) //if a CRI SEI has just been retrieved, keep it in memory (persistence management) storeCriSEI[layerId] = *pCriSEI; if( !storeCriSEI[layerId].m_colourRemapCancelFlag ) { Int iHeight = pic.getHeight(); Int iWidth = pic.getWidth(); Int iStride = pic.getStride(); Int iCStride = pic.getCStride(); Pel *YUVIn[3], *YUVOut[3]; YUVIn[0] = pic.getLumaAddr(); YUVIn[1] = pic.getCbAddr(); YUVIn[2] = pic.getCrAddr(); TComPicYuv picColourRemapped; #if SVC_EXTENSION #if AUXILIARY_PICTURES picColourRemapped.create( pic.getWidth(), pic.getHeight(), pic.getChromaFormat(), g_uiMaxCUWidth, g_uiMaxCUHeight, g_uiMaxCUDepth, NULL ); #else picColourRemapped.create( pic.getWidth(), pic.getHeight(), g_uiMaxCUWidth, g_uiMaxCUHeight, g_uiMaxCUDepth, NULL ); #endif #else picColourRemapped.create( pic.getWidth(), pic.getHeight(), g_uiMaxCUWidth, g_uiMaxCUHeight, g_uiMaxCUDepth ); #endif YUVOut[0] = picColourRemapped.getLumaAddr(); YUVOut[1] = picColourRemapped.getCbAddr(); YUVOut[2] = picColourRemapped.getCrAddr(); #if SVC_EXTENSION Int bitDepthY = g_bitDepthYLayer[layerId]; Int bitDepthC = g_bitDepthCLayer[layerId]; assert( g_bitDepthY == bitDepthY ); assert( g_bitDepthC == bitDepthC ); #else Int bitDepthY = g_bitDepthY; Int bitDepthC = g_bitDepthC; #endif std::vector preLut[3]; std::vector postLut[3]; xInitColourRemappingLut( bitDepthY, bitDepthC, preLut, postLut, &storeCriSEI[layerId] ); Int roundingOffset = (storeCriSEI[layerId].m_log2MatrixDenom==0) ? 0 : (1 << (storeCriSEI[layerId].m_log2MatrixDenom - 1)); for( Int y = 0; y < iHeight ; y++ ) { for( Int x = 0; x < iWidth ; x++ ) { Int YUVPre[3], YUVMat[3]; YUVPre[0] = preLut[0][ YUVIn[0][x] ]; YUVPre[1] = preLut[1][ YUVIn[1][x>>1] ]; YUVPre[2] = preLut[2][ YUVIn[2][x>>1] ]; YUVMat[0] = ( storeCriSEI[layerId].m_colourRemapCoeffs[0][0]*YUVPre[0] + storeCriSEI[layerId].m_colourRemapCoeffs[0][1]*YUVPre[1] + storeCriSEI[layerId].m_colourRemapCoeffs[0][2]*YUVPre[2] + roundingOffset ) >> ( storeCriSEI[layerId].m_log2MatrixDenom ); YUVMat[0] = Clip3( 0, (1<> ( storeCriSEI[layerId].m_log2MatrixDenom ); YUVMat[c] = Clip3( 0, (1<>1] = postLut[c][ YUVMat[c] ]; } } } YUVIn[0] += iStride; YUVOut[0] += iStride; if( y&1 ) { YUVIn[1] += iCStride; YUVIn[2] += iCStride; YUVOut[1] += iCStride; YUVOut[2] += iCStride; } } //Write remapped picture in decoding order Char cTemp[255]; sprintf(cTemp, "seiColourRemappedPic_L%d_%dx%d_%dbits.yuv", layerId, iWidth, iHeight, storeCriSEI[layerId].m_colourRemapBitDepth ); picColourRemapped.dump( cTemp, true, storeCriSEI[layerId].m_colourRemapBitDepth ); picColourRemapped.destroy(); storeCriSEI[layerId].m_colourRemapCancelFlag = !storeCriSEI[layerId].m_colourRemapPersistenceFlag; //Handling persistence } } #endif //! \}