/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TDecCu.cpp \brief CU decoder class */ #include "TDecCu.h" #include "TLibCommon/TComTU.h" #if SVC_EXTENSION #include "TDecTop.h" #endif //! \ingroup TLibDecoder //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== TDecCu::TDecCu() { m_ppcYuvResi = NULL; m_ppcYuvReco = NULL; m_ppcCU = NULL; } TDecCu::~TDecCu() { } #if SVC_EXTENSION Void TDecCu::init(TDecTop** ppcDecTop, TDecEntropy* pcEntropyDecoder, TComTrQuant* pcTrQuant, TComPrediction* pcPrediction, UInt layerId) { m_pcEntropyDecoder = pcEntropyDecoder; m_pcTrQuant = pcTrQuant; m_pcPrediction = pcPrediction; m_ppcTDecTop = ppcDecTop; m_layerId = layerId; for ( UInt ui = 0; ui < m_uiMaxDepth-1; ui++ ) { m_ppcCU [ui]->setLayerId(layerId); } #if LAYER_CTB memcpy(g_auiLayerZscanToRaster[m_layerId], g_auiZscanToRaster, sizeof( g_auiZscanToRaster ) ); memcpy(g_auiLayerRasterToZscan[m_layerId], g_auiRasterToZscan, sizeof( g_auiRasterToZscan ) ); memcpy(g_auiLayerRasterToPelX[m_layerId], g_auiRasterToPelX, sizeof( g_auiRasterToPelX ) ); memcpy(g_auiLayerRasterToPelY[m_layerId], g_auiRasterToPelY, sizeof( g_auiRasterToPelY ) ); #endif } #else Void TDecCu::init( TDecEntropy* pcEntropyDecoder, TComTrQuant* pcTrQuant, TComPrediction* pcPrediction) { m_pcEntropyDecoder = pcEntropyDecoder; m_pcTrQuant = pcTrQuant; m_pcPrediction = pcPrediction; } #endif /** \param uiMaxDepth total number of allowable depth \param uiMaxWidth largest CU width \param uiMaxHeight largest CU height */ Void TDecCu::create( UInt uiMaxDepth, UInt uiMaxWidth, UInt uiMaxHeight, ChromaFormat chromaFormatIDC ) { m_uiMaxDepth = uiMaxDepth+1; m_ppcYuvResi = new TComYuv*[m_uiMaxDepth-1]; m_ppcYuvReco = new TComYuv*[m_uiMaxDepth-1]; m_ppcCU = new TComDataCU*[m_uiMaxDepth-1]; UInt uiNumPartitions; for ( UInt ui = 0; ui < m_uiMaxDepth-1; ui++ ) { uiNumPartitions = 1<<( ( m_uiMaxDepth - ui - 1 )<<1 ); UInt uiWidth = uiMaxWidth >> ui; UInt uiHeight = uiMaxHeight >> ui; m_ppcYuvResi[ui] = new TComYuv; m_ppcYuvResi[ui]->create( uiWidth, uiHeight, chromaFormatIDC ); m_ppcYuvReco[ui] = new TComYuv; m_ppcYuvReco[ui]->create( uiWidth, uiHeight, chromaFormatIDC ); m_ppcCU [ui] = new TComDataCU; m_ppcCU [ui]->create( chromaFormatIDC, uiNumPartitions, uiWidth, uiHeight, true, uiMaxWidth >> (m_uiMaxDepth - 1) ); } m_bDecodeDQP = false; m_IsChromaQpAdjCoded = false; // initialize partition order. UInt* piTmp = &g_auiZscanToRaster[0]; initZscanToRaster(m_uiMaxDepth, 1, 0, piTmp); initRasterToZscan( uiMaxWidth, uiMaxHeight, m_uiMaxDepth ); // initialize conversion matrix from partition index to pel initRasterToPelXY( uiMaxWidth, uiMaxHeight, m_uiMaxDepth ); } Void TDecCu::destroy() { for ( UInt ui = 0; ui < m_uiMaxDepth-1; ui++ ) { m_ppcYuvResi[ui]->destroy(); delete m_ppcYuvResi[ui]; m_ppcYuvResi[ui] = NULL; m_ppcYuvReco[ui]->destroy(); delete m_ppcYuvReco[ui]; m_ppcYuvReco[ui] = NULL; m_ppcCU [ui]->destroy(); delete m_ppcCU [ui]; m_ppcCU [ui] = NULL; } delete [] m_ppcYuvResi; m_ppcYuvResi = NULL; delete [] m_ppcYuvReco; m_ppcYuvReco = NULL; delete [] m_ppcCU ; m_ppcCU = NULL; } // ==================================================================================================================== // Public member functions // ==================================================================================================================== /** \param pcCU pointer of CU data \param ruiIsLast last data? */ Void TDecCu::decodeCtu( TComDataCU* pCtu, Bool& isLastCtuOfSliceSegment ) { if ( pCtu->getSlice()->getPPS()->getUseDQP() ) { setdQPFlag(true); } if ( pCtu->getSlice()->getUseChromaQpAdj() ) { setIsChromaQpAdjCoded(true); } #if SVC_EXTENSION pCtu->setLayerId(m_layerId); #endif // start from the top level CU xDecodeCU( pCtu, 0, 0, isLastCtuOfSliceSegment); } /** \param pcCU pointer of CU data */ Void TDecCu::decompressCtu( TComDataCU* pCtu ) { xDecompressCU( pCtu, 0, 0 ); } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== /**decode end-of-slice flag * \param pcCU * \param uiAbsPartIdx * \param uiDepth * \returns Bool */ Bool TDecCu::xDecodeSliceEnd( TComDataCU* pcCU, UInt uiAbsPartIdx ) { UInt uiIsLastCtuOfSliceSegment; if (pcCU->isLastSubCUOfCtu(uiAbsPartIdx)) { m_pcEntropyDecoder->decodeTerminatingBit( uiIsLastCtuOfSliceSegment ); } else { uiIsLastCtuOfSliceSegment=0; } return uiIsLastCtuOfSliceSegment>0; } /** decode CU block recursively * \param pcCU * \param uiAbsPartIdx * \param uiDepth * \returns Void */ Void TDecCu::xDecodeCU( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, Bool &isLastCtuOfSliceSegment) { TComPic* pcPic = pcCU->getPic(); UInt uiCurNumParts = pcPic->getNumPartitionsInCtu() >> (uiDepth<<1); UInt uiQNumParts = uiCurNumParts>>2; Bool bBoundary = false; UInt uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiRPelX = uiLPelX + (g_uiMaxCUWidth>>uiDepth) - 1; UInt uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiBPelY = uiTPelY + (g_uiMaxCUHeight>>uiDepth) - 1; TComSlice * pcSlice = pcCU->getPic()->getSlice(pcCU->getPic()->getCurrSliceIdx()); #if SVC_EXTENSION if( ( uiRPelX < pcSlice->getPicWidthInLumaSamples() ) && ( uiBPelY < pcSlice->getPicHeightInLumaSamples() ) ) #else if( ( uiRPelX < pcSlice->getSPS()->getPicWidthInLumaSamples() ) && ( uiBPelY < pcSlice->getSPS()->getPicHeightInLumaSamples() ) ) #endif { m_pcEntropyDecoder->decodeSplitFlag( pcCU, uiAbsPartIdx, uiDepth ); } else { bBoundary = true; } if( ( ( uiDepth < pcCU->getDepth( uiAbsPartIdx ) ) && ( uiDepth < g_uiMaxCUDepth - g_uiAddCUDepth ) ) || bBoundary ) { UInt uiIdx = uiAbsPartIdx; if( (g_uiMaxCUWidth>>uiDepth) == pcCU->getSlice()->getPPS()->getMinCuDQPSize() && pcCU->getSlice()->getPPS()->getUseDQP()) { setdQPFlag(true); pcCU->setQPSubParts( pcCU->getRefQP(uiAbsPartIdx), uiAbsPartIdx, uiDepth ); // set QP to default QP } if( (g_uiMaxCUWidth>>uiDepth) == pcCU->getSlice()->getPPS()->getMinCuChromaQpAdjSize() && pcCU->getSlice()->getUseChromaQpAdj() ) { setIsChromaQpAdjCoded(true); } for ( UInt uiPartUnitIdx = 0; uiPartUnitIdx < 4; uiPartUnitIdx++ ) { uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiIdx] ]; uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiIdx] ]; #if SVC_EXTENSION if ( !isLastCtuOfSliceSegment && ( uiLPelX < pcCU->getSlice()->getPicWidthInLumaSamples() ) && ( uiTPelY < pcCU->getSlice()->getPicHeightInLumaSamples() ) ) #else if ( !isLastCtuOfSliceSegment && ( uiLPelX < pcCU->getSlice()->getSPS()->getPicWidthInLumaSamples() ) && ( uiTPelY < pcCU->getSlice()->getSPS()->getPicHeightInLumaSamples() ) ) #endif { xDecodeCU( pcCU, uiIdx, uiDepth+1, isLastCtuOfSliceSegment ); } else { pcCU->setOutsideCUPart( uiIdx, uiDepth+1 ); } uiIdx += uiQNumParts; } if( (g_uiMaxCUWidth>>uiDepth) == pcCU->getSlice()->getPPS()->getMinCuDQPSize() && pcCU->getSlice()->getPPS()->getUseDQP()) { if ( getdQPFlag() ) { UInt uiQPSrcPartIdx = uiAbsPartIdx; pcCU->setQPSubParts( pcCU->getRefQP( uiQPSrcPartIdx ), uiAbsPartIdx, uiDepth ); // set QP to default QP } } return; } if( (g_uiMaxCUWidth>>uiDepth) >= pcCU->getSlice()->getPPS()->getMinCuDQPSize() && pcCU->getSlice()->getPPS()->getUseDQP()) { setdQPFlag(true); pcCU->setQPSubParts( pcCU->getRefQP(uiAbsPartIdx), uiAbsPartIdx, uiDepth ); // set QP to default QP } if( (g_uiMaxCUWidth>>uiDepth) >= pcCU->getSlice()->getPPS()->getMinCuChromaQpAdjSize() && pcCU->getSlice()->getUseChromaQpAdj() ) { setIsChromaQpAdjCoded(true); } if (pcCU->getSlice()->getPPS()->getTransquantBypassEnableFlag()) { m_pcEntropyDecoder->decodeCUTransquantBypassFlag( pcCU, uiAbsPartIdx, uiDepth ); } // decode CU mode and the partition size if( !pcCU->getSlice()->isIntra()) { m_pcEntropyDecoder->decodeSkipFlag( pcCU, uiAbsPartIdx, uiDepth ); } #if SVC_EXTENSION // Check CU skip for higher layer IRAP skip flag if( pcCU->getSlice()->getVPS()->getHigherLayerIrapSkipFlag() && pcCU->getSlice()->getVPS()->getSingleLayerForNonIrapFlag() && pcCU->getLayerId() > 0 ) { Bool lowerLayerExist = false; for(int i=0;igetLayerId();i++) { if(pcCU->getSlice()->getBaseColPic(pcCU->getSlice()->getInterLayerPredLayerIdc(i))) { lowerLayerExist = true; } } if( lowerLayerExist && !pcCU->isSkipped(uiAbsPartIdx) ) { printf( "Warning: CU is not skipped with enabled higher layer IRAP skip flag\n" ); } } #endif if( pcCU->isSkipped(uiAbsPartIdx) ) { m_ppcCU[uiDepth]->copyInterPredInfoFrom( pcCU, uiAbsPartIdx, REF_PIC_LIST_0 ); m_ppcCU[uiDepth]->copyInterPredInfoFrom( pcCU, uiAbsPartIdx, REF_PIC_LIST_1 ); TComMvField cMvFieldNeighbours[MRG_MAX_NUM_CANDS << 1]; // double length for mv of both lists UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS]; Int numValidMergeCand = 0; for( UInt ui = 0; ui < m_ppcCU[uiDepth]->getSlice()->getMaxNumMergeCand(); ++ui ) { uhInterDirNeighbours[ui] = 0; } m_pcEntropyDecoder->decodeMergeIndex( pcCU, 0, uiAbsPartIdx, uiDepth ); UInt uiMergeIndex = pcCU->getMergeIndex(uiAbsPartIdx); m_ppcCU[uiDepth]->getInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand, uiMergeIndex ); pcCU->setInterDirSubParts( uhInterDirNeighbours[uiMergeIndex], uiAbsPartIdx, 0, uiDepth ); TComMv cTmpMv( 0, 0 ); for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { if ( pcCU->getSlice()->getNumRefIdx( RefPicList( uiRefListIdx ) ) > 0 ) { pcCU->setMVPIdxSubParts( 0, RefPicList( uiRefListIdx ), uiAbsPartIdx, 0, uiDepth); pcCU->setMVPNumSubParts( 0, RefPicList( uiRefListIdx ), uiAbsPartIdx, 0, uiDepth); pcCU->getCUMvField( RefPicList( uiRefListIdx ) )->setAllMvd( cTmpMv, SIZE_2Nx2N, uiAbsPartIdx, uiDepth ); pcCU->getCUMvField( RefPicList( uiRefListIdx ) )->setAllMvField( cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ], SIZE_2Nx2N, uiAbsPartIdx, uiDepth ); } } xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, isLastCtuOfSliceSegment ); return; } m_pcEntropyDecoder->decodePredMode( pcCU, uiAbsPartIdx, uiDepth ); m_pcEntropyDecoder->decodePartSize( pcCU, uiAbsPartIdx, uiDepth ); if (pcCU->isIntra( uiAbsPartIdx ) && pcCU->getPartitionSize( uiAbsPartIdx ) == SIZE_2Nx2N ) { m_pcEntropyDecoder->decodeIPCMInfo( pcCU, uiAbsPartIdx, uiDepth ); if(pcCU->getIPCMFlag(uiAbsPartIdx)) { xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, isLastCtuOfSliceSegment ); return; } } // prediction mode ( Intra : direction mode, Inter : Mv, reference idx ) m_pcEntropyDecoder->decodePredInfo( pcCU, uiAbsPartIdx, uiDepth, m_ppcCU[uiDepth]); // Coefficient decoding Bool bCodeDQP = getdQPFlag(); Bool isChromaQpAdjCoded = getIsChromaQpAdjCoded(); m_pcEntropyDecoder->decodeCoeff( pcCU, uiAbsPartIdx, uiDepth, bCodeDQP, isChromaQpAdjCoded ); setIsChromaQpAdjCoded( isChromaQpAdjCoded ); setdQPFlag( bCodeDQP ); xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, isLastCtuOfSliceSegment ); } Void TDecCu::xFinishDecodeCU( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, Bool &isLastCtuOfSliceSegment) { if( pcCU->getSlice()->getPPS()->getUseDQP()) { pcCU->setQPSubParts( getdQPFlag()?pcCU->getRefQP(uiAbsPartIdx):pcCU->getCodedQP(), uiAbsPartIdx, uiDepth ); // set QP } if (pcCU->getSlice()->getUseChromaQpAdj() && !getIsChromaQpAdjCoded()) { pcCU->setChromaQpAdjSubParts( pcCU->getCodedChromaQpAdj(), uiAbsPartIdx, uiDepth ); // set QP } isLastCtuOfSliceSegment = xDecodeSliceEnd( pcCU, uiAbsPartIdx ); } Void TDecCu::xDecompressCU( TComDataCU* pCtu, UInt uiAbsPartIdx, UInt uiDepth ) { TComPic* pcPic = pCtu->getPic(); Bool bBoundary = false; UInt uiLPelX = pCtu->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiRPelX = uiLPelX + (g_uiMaxCUWidth>>uiDepth) - 1; UInt uiTPelY = pCtu->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiBPelY = uiTPelY + (g_uiMaxCUHeight>>uiDepth) - 1; TComSlice * pcSlice = pCtu->getPic()->getSlice(pCtu->getPic()->getCurrSliceIdx()); #if SVC_EXTENSION if( ( uiRPelX >= pcSlice->getPicWidthInLumaSamples() ) || ( uiBPelY >= pcSlice->getPicHeightInLumaSamples() ) ) #else if( ( uiRPelX >= pcSlice->getSPS()->getPicWidthInLumaSamples() ) || ( uiBPelY >= pcSlice->getSPS()->getPicHeightInLumaSamples() ) ) #endif { bBoundary = true; } if( ( ( uiDepth < pCtu->getDepth( uiAbsPartIdx ) ) && ( uiDepth < g_uiMaxCUDepth - g_uiAddCUDepth ) ) || bBoundary ) { UInt uiNextDepth = uiDepth + 1; UInt uiQNumParts = pCtu->getTotalNumPart() >> (uiNextDepth<<1); UInt uiIdx = uiAbsPartIdx; for ( UInt uiPartIdx = 0; uiPartIdx < 4; uiPartIdx++ ) { uiLPelX = pCtu->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiIdx] ]; uiTPelY = pCtu->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiIdx] ]; #if SVC_EXTENSION if( ( uiLPelX < pcSlice->getPicWidthInLumaSamples() ) && ( uiTPelY < pcSlice->getPicHeightInLumaSamples() ) ) #else if( ( uiLPelX < pcSlice->getSPS()->getPicWidthInLumaSamples() ) && ( uiTPelY < pcSlice->getSPS()->getPicHeightInLumaSamples() ) ) #endif { xDecompressCU(pCtu, uiIdx, uiNextDepth ); } uiIdx += uiQNumParts; } return; } // Residual reconstruction m_ppcYuvResi[uiDepth]->clear(); m_ppcCU[uiDepth]->copySubCU( pCtu, uiAbsPartIdx, uiDepth ); switch( m_ppcCU[uiDepth]->getPredictionMode(0) ) { case MODE_INTER: xReconInter( m_ppcCU[uiDepth], uiDepth ); break; case MODE_INTRA: xReconIntraQT( m_ppcCU[uiDepth], uiDepth ); break; default: assert(0); break; } #ifdef DEBUG_STRING const PredMode predMode=m_ppcCU[uiDepth]->getPredictionMode(0); if (DebugOptionList::DebugString_Structure.getInt()&DebugStringGetPredModeMask(predMode)) { PartSize eSize=m_ppcCU[uiDepth]->getPartitionSize(0); std::ostream &ss(std::cout); ss <<"###: " << (predMode==MODE_INTRA?"Intra ":"Inter ") << partSizeToString[eSize] << " CU at " << m_ppcCU[uiDepth]->getCUPelX() << ", " << m_ppcCU[uiDepth]->getCUPelY() << " width=" << UInt(m_ppcCU[uiDepth]->getWidth(0)) << std::endl; } #endif if ( m_ppcCU[uiDepth]->isLosslessCoded(0) && (m_ppcCU[uiDepth]->getIPCMFlag(0) == false)) { xFillPCMBuffer(m_ppcCU[uiDepth], uiDepth); } xCopyToPic( m_ppcCU[uiDepth], pcPic, uiAbsPartIdx, uiDepth ); } Void TDecCu::xReconInter( TComDataCU* pcCU, UInt uiDepth ) { // inter prediction m_pcPrediction->motionCompensation( pcCU, m_ppcYuvReco[uiDepth] ); #ifdef DEBUG_STRING const Int debugPredModeMask=DebugStringGetPredModeMask(MODE_INTER); if (DebugOptionList::DebugString_Pred.getInt()&debugPredModeMask) printBlockToStream(std::cout, "###inter-pred: ", *(m_ppcYuvReco[uiDepth])); #endif // inter recon xDecodeInterTexture( pcCU, uiDepth ); #ifdef DEBUG_STRING if (DebugOptionList::DebugString_Resi.getInt()&debugPredModeMask) printBlockToStream(std::cout, "###inter-resi: ", *(m_ppcYuvResi[uiDepth])); #endif // clip for only non-zero cbp case if ( pcCU->getQtRootCbf( 0) ) { m_ppcYuvReco[uiDepth]->addClip( m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], 0, pcCU->getWidth( 0 ) ); } else { m_ppcYuvReco[uiDepth]->copyPartToPartYuv( m_ppcYuvReco[uiDepth],0, pcCU->getWidth( 0 ),pcCU->getHeight( 0 )); } #ifdef DEBUG_STRING if (DebugOptionList::DebugString_Reco.getInt()&debugPredModeMask) printBlockToStream(std::cout, "###inter-reco: ", *(m_ppcYuvReco[uiDepth])); #endif } Void TDecCu::xIntraRecBlk( TComYuv* pcRecoYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, const ComponentID compID, TComTU &rTu) { if (!rTu.ProcessComponentSection(compID)) return; const Bool bIsLuma = isLuma(compID); TComDataCU *pcCU = rTu.getCU(); const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); const TComRectangle &tuRect =rTu.getRect(compID); const UInt uiWidth = tuRect.width; const UInt uiHeight = tuRect.height; const UInt uiStride = pcRecoYuv->getStride (compID); Pel* piPred = pcPredYuv->getAddr( compID, uiAbsPartIdx ); const ChromaFormat chFmt = rTu.GetChromaFormat(); if (uiWidth != uiHeight) { //------------------------------------------------ //split at current level if dividing into square sub-TUs TComTURecurse subTURecurse(rTu, false, TComTU::VERTICAL_SPLIT, true, compID); //recurse further do { xIntraRecBlk(pcRecoYuv, pcPredYuv, pcResiYuv, compID, subTURecurse); } while (subTURecurse.nextSection(rTu)); //------------------------------------------------ return; } const UInt uiChPredMode = pcCU->getIntraDir( toChannelType(compID), uiAbsPartIdx ); const UInt uiChCodedMode = (uiChPredMode==DM_CHROMA_IDX && !bIsLuma) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, chFmt)) : uiChPredMode; const UInt uiChFinalMode = ((chFmt == CHROMA_422) && !bIsLuma) ? g_chroma422IntraAngleMappingTable[uiChCodedMode] : uiChCodedMode; //===== init availability pattern ===== Bool bAboveAvail = false; Bool bLeftAvail = false; const Bool bUseFilteredPredictions=TComPrediction::filteringIntraReferenceSamples(compID, uiChFinalMode, uiWidth, uiHeight, chFmt, pcCU->getSlice()->getSPS()->getDisableIntraReferenceSmoothing()); #ifdef DEBUG_STRING std::ostream &ss(std::cout); #endif DEBUG_STRING_NEW(sTemp) m_pcPrediction->initAdiPatternChType( rTu, bAboveAvail, bLeftAvail, compID, bUseFilteredPredictions DEBUG_STRING_PASS_INTO(sTemp) ); //===== get prediction signal ===== m_pcPrediction->predIntraAng( compID, uiChFinalMode, 0 /* Decoder does not have an original image */, 0, piPred, uiStride, rTu, bAboveAvail, bLeftAvail, bUseFilteredPredictions ); #ifdef DEBUG_STRING ss << sTemp; #endif //===== inverse transform ===== Pel* piResi = pcResiYuv->getAddr( compID, uiAbsPartIdx ); TCoeff* pcCoeff = pcCU->getCoeff(compID) + rTu.getCoefficientOffset(compID);//( uiNumCoeffInc * uiAbsPartIdx ); const QpParam cQP(*pcCU, compID); DEBUG_STRING_NEW(sDebug); #ifdef DEBUG_STRING const Int debugPredModeMask=DebugStringGetPredModeMask(MODE_INTRA); std::string *psDebug=(DebugOptionList::DebugString_InvTran.getInt()&debugPredModeMask) ? &sDebug : 0; #endif if (pcCU->getCbf(uiAbsPartIdx, compID, rTu.GetTransformDepthRel()) != 0) { m_pcTrQuant->invTransformNxN( rTu, compID, piResi, uiStride, pcCoeff, cQP DEBUG_STRING_PASS_INTO(psDebug) ); } else { for (UInt y = 0; y < uiHeight; y++) for (UInt x = 0; x < uiWidth; x++) { piResi[(y * uiStride) + x] = 0; } } #ifdef DEBUG_STRING if (psDebug) ss << (*psDebug); #endif //===== reconstruction ===== const UInt uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride(compID); const Bool useCrossComponentPrediction = isChroma(compID) && (pcCU->getCrossComponentPredictionAlpha(uiAbsPartIdx, compID) != 0); const Pel* pResiLuma = pcResiYuv->getAddr( COMPONENT_Y, uiAbsPartIdx ); const Int strideLuma = pcResiYuv->getStride( COMPONENT_Y ); Pel* pPred = piPred; Pel* pResi = piResi; Pel* pReco = pcRecoYuv->getAddr( compID, uiAbsPartIdx ); Pel* pRecIPred = pcCU->getPic()->getPicYuvRec()->getAddr( compID, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu() + uiAbsPartIdx ); #ifdef DEBUG_STRING const Bool bDebugPred=((DebugOptionList::DebugString_Pred.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID)); const Bool bDebugResi=((DebugOptionList::DebugString_Resi.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID)); const Bool bDebugReco=((DebugOptionList::DebugString_Reco.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID)); if (bDebugPred || bDebugResi || bDebugReco) ss << "###: " << "CompID: " << compID << " pred mode (ch/fin): " << uiChPredMode << "/" << uiChFinalMode << " absPartIdx: " << rTu.GetAbsPartIdxTU() << std::endl; #endif #if O0043_BEST_EFFORT_DECODING const Int bitDepthDelta = g_bitDepthInStream[toChannelType(compID)] - g_bitDepth[toChannelType(compID)]; #endif const Int clipbd = g_bitDepth[toChannelType(compID)]; if( useCrossComponentPrediction ) { TComTrQuant::crossComponentPrediction( rTu, compID, pResiLuma, piResi, piResi, uiWidth, uiHeight, strideLuma, uiStride, uiStride, true ); } for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { #ifdef DEBUG_STRING if (bDebugPred || bDebugResi || bDebugReco) ss << "###: "; if (bDebugPred) { ss << " - pred: "; for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { ss << pPred[ uiX ] << ", "; } } if (bDebugResi) ss << " - resi: "; #endif for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { #ifdef DEBUG_STRING if (bDebugResi) ss << pResi[ uiX ] << ", "; #endif #if O0043_BEST_EFFORT_DECODING pReco [ uiX ] = ClipBD( rightShiftEvenRounding(pPred[ uiX ] + pResi[ uiX ], bitDepthDelta), clipbd ); #else pReco [ uiX ] = ClipBD( pPred[ uiX ] + pResi[ uiX ], clipbd ); #endif pRecIPred[ uiX ] = pReco[ uiX ]; } #ifdef DEBUG_STRING if (bDebugReco) { ss << " - reco: "; for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { ss << pReco[ uiX ] << ", "; } } if (bDebugPred || bDebugResi || bDebugReco) ss << "\n"; #endif pPred += uiStride; pResi += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; } } Void TDecCu::xReconIntraQT( TComDataCU* pcCU, UInt uiDepth ) { if (pcCU->getIPCMFlag(0)) { xReconPCM( pcCU, uiDepth ); return; } const UInt numChType = pcCU->getPic()->getChromaFormat()!=CHROMA_400 ? 2 : 1; for (UInt chType=CHANNEL_TYPE_LUMA; chTypegetPic()->getChromaFormat()) : true; const UInt uiInitTrDepth = ( pcCU->getPartitionSize(0) != SIZE_2Nx2N && NxNPUHas4Parts ? 1 : 0 ); TComTURecurse tuRecurseCU(pcCU, 0); TComTURecurse tuRecurseWithPU(tuRecurseCU, false, (uiInitTrDepth==0)?TComTU::DONT_SPLIT : TComTU::QUAD_SPLIT); do { xIntraRecQT( m_ppcYuvReco[uiDepth], m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], chanType, tuRecurseWithPU ); } while (tuRecurseWithPU.nextSection(tuRecurseCU)); } } /** Function for deriving recontructed PU/CU chroma samples with QTree structure * \param pcCU pointer of current CU * \param uiTrDepth current tranform split depth * \param uiAbsPartIdx part index * \param pcRecoYuv pointer to reconstructed sample arrays * \param pcPredYuv pointer to prediction sample arrays * \param pcResiYuv pointer to residue sample arrays * \ This function dervies recontructed PU/CU chroma samples with QTree recursive structure */ Void TDecCu::xIntraRecQT(TComYuv* pcRecoYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, const ChannelType chType, TComTU &rTu) { UInt uiTrDepth = rTu.GetTransformDepthRel(); TComDataCU *pcCU = rTu.getCU(); UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx ); if( uiTrMode == uiTrDepth ) { if (isLuma(chType)) xIntraRecBlk( pcRecoYuv, pcPredYuv, pcResiYuv, COMPONENT_Y, rTu ); else { const UInt numValidComp=getNumberValidComponents(rTu.GetChromaFormat()); for(UInt compID=COMPONENT_Cb; compIDgetCtuRsAddr(); m_ppcYuvReco[uiDepth]->copyToPicYuv ( pcPic->getPicYuvRec (), uiCtuRsAddr, uiZorderIdx ); return; } Void TDecCu::xDecodeInterTexture ( TComDataCU* pcCU, UInt uiDepth ) { TComTURecurse tuRecur(pcCU, 0, uiDepth); for(UInt ch=0; chgetPic()->getNumberValidComponents(); ch++) { const ComponentID compID=ComponentID(ch); DEBUG_STRING_OUTPUT(std::cout, debug_reorder_data_inter_token[compID]) m_pcTrQuant->invRecurTransformNxN ( compID, m_ppcYuvResi[uiDepth], tuRecur ); } DEBUG_STRING_OUTPUT(std::cout, debug_reorder_data_inter_token[MAX_NUM_COMPONENT]) } /** Function for deriving reconstructed luma/chroma samples of a PCM mode CU. * \param pcCU pointer to current CU * \param uiPartIdx part index * \param piPCM pointer to PCM code arrays * \param piReco pointer to reconstructed sample arrays * \param uiStride stride of reconstructed sample arrays * \param uiWidth CU width * \param uiHeight CU height * \param ttText texture component type * \returns Void */ Void TDecCu::xDecodePCMTexture( TComDataCU* pcCU, const UInt uiPartIdx, const Pel *piPCM, Pel* piReco, const UInt uiStride, const UInt uiWidth, const UInt uiHeight, const ComponentID compID) { Pel* piPicReco = pcCU->getPic()->getPicYuvRec()->getAddr(compID, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu()+uiPartIdx); const UInt uiPicStride = pcCU->getPic()->getPicYuvRec()->getStride(compID); const UInt uiPcmLeftShiftBit = g_bitDepth[toChannelType(compID)] - pcCU->getSlice()->getSPS()->getPCMBitDepth(toChannelType(compID)); for(UInt uiY = 0; uiY < uiHeight; uiY++ ) { for(UInt uiX = 0; uiX < uiWidth; uiX++ ) { piReco[uiX] = (piPCM[uiX] << uiPcmLeftShiftBit); piPicReco[uiX] = piReco[uiX]; } piPCM += uiWidth; piReco += uiStride; piPicReco += uiPicStride; } } /** Function for reconstructing a PCM mode CU. * \param pcCU pointer to current CU * \param uiDepth CU Depth * \returns Void */ Void TDecCu::xReconPCM( TComDataCU* pcCU, UInt uiDepth ) { for (UInt ch=0; ch < pcCU->getPic()->getNumberValidComponents(); ch++) { const ComponentID compID = ComponentID(ch); const UInt width = (g_uiMaxCUWidth >>(uiDepth+m_ppcYuvResi[uiDepth]->getComponentScaleX(compID))); const UInt height = (g_uiMaxCUHeight>>(uiDepth+m_ppcYuvResi[uiDepth]->getComponentScaleY(compID))); const UInt stride = m_ppcYuvResi[uiDepth]->getStride(compID); Pel * pPCMChannel = pcCU->getPCMSample(compID); Pel * pRecChannel = m_ppcYuvReco[uiDepth]->getAddr(compID); xDecodePCMTexture( pcCU, 0, pPCMChannel, pRecChannel, stride, width, height, compID ); } } /** Function for filling the PCM buffer of a CU using its reconstructed sample array * \param pcCU pointer to current CU * \param uiDepth CU Depth * \returns Void */ Void TDecCu::xFillPCMBuffer(TComDataCU* pCU, UInt depth) { const ChromaFormat format = pCU->getPic()->getChromaFormat(); const UInt numValidComp=getNumberValidComponents(format); for (UInt componentIndex = 0; componentIndex < numValidComp; componentIndex++) { const ComponentID component = ComponentID(componentIndex); const UInt width = g_uiMaxCUWidth >> (depth + getComponentScaleX(component, format)); const UInt height = g_uiMaxCUHeight >> (depth + getComponentScaleY(component, format)); Pel *source = m_ppcYuvReco[depth]->getAddr(component, 0, width); Pel *destination = pCU->getPCMSample(component); const UInt sourceStride = m_ppcYuvReco[depth]->getStride(component); for (Int line = 0; line < height; line++) { for (Int column = 0; column < width; column++) { destination[column] = source[column]; } source += sourceStride; destination += width; } } } //! \}