1 | /* The copyright in this software is being made available under the BSD |
---|
2 | * License, included below. This software may be subject to other third party |
---|
3 | * and contributor rights, including patent rights, and no such rights are |
---|
4 | * granted under this license. |
---|
5 | * |
---|
6 | * Copyright (c) 2010-2014, ITU/ISO/IEC |
---|
7 | * All rights reserved. |
---|
8 | * |
---|
9 | * Redistribution and use in source and binary forms, with or without |
---|
10 | * modification, are permitted provided that the following conditions are met: |
---|
11 | * |
---|
12 | * * Redistributions of source code must retain the above copyright notice, |
---|
13 | * this list of conditions and the following disclaimer. |
---|
14 | * * Redistributions in binary form must reproduce the above copyright notice, |
---|
15 | * this list of conditions and the following disclaimer in the documentation |
---|
16 | * and/or other materials provided with the distribution. |
---|
17 | * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may |
---|
18 | * be used to endorse or promote products derived from this software without |
---|
19 | * specific prior written permission. |
---|
20 | * |
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
---|
22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS |
---|
25 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
---|
26 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
---|
27 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
28 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
---|
29 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
---|
30 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
---|
31 | * THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | */ |
---|
33 | |
---|
34 | /** \file TComTrQuant.cpp |
---|
35 | \brief transform and quantization class |
---|
36 | */ |
---|
37 | |
---|
38 | #include <stdlib.h> |
---|
39 | #include <math.h> |
---|
40 | #include <limits> |
---|
41 | #include <memory.h> |
---|
42 | #include "TComTrQuant.h" |
---|
43 | #include "TComPic.h" |
---|
44 | #include "ContextTables.h" |
---|
45 | #include "TComTU.h" |
---|
46 | #include "Debug.h" |
---|
47 | |
---|
48 | typedef struct |
---|
49 | { |
---|
50 | Int iNNZbeforePos0; |
---|
51 | Double d64CodedLevelandDist; // distortion and level cost only |
---|
52 | Double d64UncodedDist; // all zero coded block distortion |
---|
53 | Double d64SigCost; |
---|
54 | Double d64SigCost_0; |
---|
55 | } coeffGroupRDStats; |
---|
56 | |
---|
57 | //! \ingroup TLibCommon |
---|
58 | //! \{ |
---|
59 | |
---|
60 | // ==================================================================================================================== |
---|
61 | // Constants |
---|
62 | // ==================================================================================================================== |
---|
63 | |
---|
64 | #define RDOQ_CHROMA 1 ///< use of RDOQ in chroma |
---|
65 | |
---|
66 | |
---|
67 | // ==================================================================================================================== |
---|
68 | // QpParam constructor |
---|
69 | // ==================================================================================================================== |
---|
70 | |
---|
71 | QpParam::QpParam(const Int qpy, |
---|
72 | const ChannelType chType, |
---|
73 | const Int qpBdOffset, |
---|
74 | const Int chromaQPOffset, |
---|
75 | const ChromaFormat chFmt ) |
---|
76 | { |
---|
77 | Int baseQp; |
---|
78 | |
---|
79 | if(isLuma(chType)) |
---|
80 | { |
---|
81 | baseQp = qpy + qpBdOffset; |
---|
82 | } |
---|
83 | else |
---|
84 | { |
---|
85 | baseQp = Clip3( -qpBdOffset, (chromaQPMappingTableSize - 1), qpy + chromaQPOffset ); |
---|
86 | |
---|
87 | if(baseQp < 0) |
---|
88 | { |
---|
89 | baseQp = baseQp + qpBdOffset; |
---|
90 | } |
---|
91 | else |
---|
92 | { |
---|
93 | baseQp = getScaledChromaQP(baseQp, chFmt) + qpBdOffset; |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | Qp =baseQp; |
---|
98 | per=baseQp/6; |
---|
99 | rem=baseQp%6; |
---|
100 | } |
---|
101 | |
---|
102 | QpParam::QpParam(const TComDataCU &cu, const ComponentID compID) |
---|
103 | { |
---|
104 | Int chromaQpOffset = 0; |
---|
105 | |
---|
106 | if (isChroma(compID)) |
---|
107 | { |
---|
108 | chromaQpOffset += cu.getSlice()->getPPS()->getQpOffset(compID); |
---|
109 | chromaQpOffset += cu.getSlice()->getSliceChromaQpDelta(compID); |
---|
110 | |
---|
111 | chromaQpOffset += cu.getSlice()->getPPS()->getChromaQpAdjTableAt(cu.getChromaQpAdj(0)).u.offset[Int(compID)-1]; |
---|
112 | } |
---|
113 | |
---|
114 | #if SVC_EXTENSION |
---|
115 | TComSlice* slice = const_cast<TComSlice*> (cu.getSlice()); |
---|
116 | #endif |
---|
117 | |
---|
118 | *this = QpParam(cu.getQP( 0 ), |
---|
119 | toChannelType(compID), |
---|
120 | #if SVC_EXTENSION |
---|
121 | isLuma(compID) ? slice->getQpBDOffsetY() : slice->getQpBDOffsetC(), |
---|
122 | #else |
---|
123 | cu.getSlice()->getSPS()->getQpBDOffset(toChannelType(compID)), |
---|
124 | #endif |
---|
125 | chromaQpOffset, |
---|
126 | cu.getPic()->getChromaFormat()); |
---|
127 | } |
---|
128 | |
---|
129 | |
---|
130 | // ==================================================================================================================== |
---|
131 | // TComTrQuant class member functions |
---|
132 | // ==================================================================================================================== |
---|
133 | |
---|
134 | TComTrQuant::TComTrQuant() |
---|
135 | { |
---|
136 | // allocate temporary buffers |
---|
137 | m_plTempCoeff = new TCoeff[ MAX_CU_SIZE*MAX_CU_SIZE ]; |
---|
138 | |
---|
139 | // allocate bit estimation class (for RDOQ) |
---|
140 | m_pcEstBitsSbac = new estBitsSbacStruct; |
---|
141 | initScalingList(); |
---|
142 | } |
---|
143 | |
---|
144 | TComTrQuant::~TComTrQuant() |
---|
145 | { |
---|
146 | // delete temporary buffers |
---|
147 | if ( m_plTempCoeff ) |
---|
148 | { |
---|
149 | delete [] m_plTempCoeff; |
---|
150 | m_plTempCoeff = NULL; |
---|
151 | } |
---|
152 | |
---|
153 | // delete bit estimation class |
---|
154 | if ( m_pcEstBitsSbac ) |
---|
155 | { |
---|
156 | delete m_pcEstBitsSbac; |
---|
157 | } |
---|
158 | destroyScalingList(); |
---|
159 | } |
---|
160 | |
---|
161 | #if ADAPTIVE_QP_SELECTION |
---|
162 | Void TComTrQuant::storeSliceQpNext(TComSlice* pcSlice) |
---|
163 | { |
---|
164 | // NOTE: does this work with negative QPs or when some blocks are transquant-bypass enabled? |
---|
165 | |
---|
166 | Int qpBase = pcSlice->getSliceQpBase(); |
---|
167 | Int sliceQpused = pcSlice->getSliceQp(); |
---|
168 | Int sliceQpnext; |
---|
169 | Double alpha = qpBase < 17 ? 0.5 : 1; |
---|
170 | |
---|
171 | Int cnt=0; |
---|
172 | for(Int u=1; u<=LEVEL_RANGE; u++) |
---|
173 | { |
---|
174 | cnt += m_sliceNsamples[u] ; |
---|
175 | } |
---|
176 | |
---|
177 | if( !m_useRDOQ ) |
---|
178 | { |
---|
179 | sliceQpused = qpBase; |
---|
180 | alpha = 0.5; |
---|
181 | } |
---|
182 | |
---|
183 | if( cnt > 120 ) |
---|
184 | { |
---|
185 | Double sum = 0; |
---|
186 | Int k = 0; |
---|
187 | for(Int u=1; u<LEVEL_RANGE; u++) |
---|
188 | { |
---|
189 | sum += u*m_sliceSumC[u]; |
---|
190 | k += u*u*m_sliceNsamples[u]; |
---|
191 | } |
---|
192 | |
---|
193 | Int v; |
---|
194 | Double q[MAX_QP+1] ; |
---|
195 | for(v=0; v<=MAX_QP; v++) |
---|
196 | { |
---|
197 | q[v] = (Double)(g_invQuantScales[v%6] * (1<<(v/6)))/64 ; |
---|
198 | } |
---|
199 | |
---|
200 | Double qnext = sum/k * q[sliceQpused] / (1<<ARL_C_PRECISION); |
---|
201 | |
---|
202 | for(v=0; v<MAX_QP; v++) |
---|
203 | { |
---|
204 | if(qnext < alpha * q[v] + (1 - alpha) * q[v+1] ) |
---|
205 | { |
---|
206 | break; |
---|
207 | } |
---|
208 | } |
---|
209 | sliceQpnext = Clip3(sliceQpused - 3, sliceQpused + 3, v); |
---|
210 | } |
---|
211 | else |
---|
212 | { |
---|
213 | sliceQpnext = sliceQpused; |
---|
214 | } |
---|
215 | |
---|
216 | m_qpDelta[qpBase] = sliceQpnext - qpBase; |
---|
217 | } |
---|
218 | |
---|
219 | Void TComTrQuant::initSliceQpDelta() |
---|
220 | { |
---|
221 | for(Int qp=0; qp<=MAX_QP; qp++) |
---|
222 | { |
---|
223 | m_qpDelta[qp] = qp < 17 ? 0 : 1; |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | Void TComTrQuant::clearSliceARLCnt() |
---|
228 | { |
---|
229 | memset(m_sliceSumC, 0, sizeof(Double)*(LEVEL_RANGE+1)); |
---|
230 | memset(m_sliceNsamples, 0, sizeof(Int)*(LEVEL_RANGE+1)); |
---|
231 | } |
---|
232 | #endif |
---|
233 | |
---|
234 | |
---|
235 | |
---|
236 | #if MATRIX_MULT |
---|
237 | /** NxN forward transform (2D) using brute force matrix multiplication (3 nested loops) |
---|
238 | * \param block pointer to input data (residual) |
---|
239 | * \param coeff pointer to output data (transform coefficients) |
---|
240 | * \param uiStride stride of input data |
---|
241 | * \param uiTrSize transform size (uiTrSize x uiTrSize) |
---|
242 | * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only |
---|
243 | */ |
---|
244 | Void xTr(Int bitDepth, Pel *block, TCoeff *coeff, UInt uiStride, UInt uiTrSize, Bool useDST, const Int maxTrDynamicRange) |
---|
245 | { |
---|
246 | UInt i,j,k; |
---|
247 | TCoeff iSum; |
---|
248 | TCoeff tmp[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
249 | const TMatrixCoeff *iT; |
---|
250 | UInt uiLog2TrSize = g_aucConvertToBit[ uiTrSize ] + 2; |
---|
251 | |
---|
252 | if (uiTrSize==4) |
---|
253 | { |
---|
254 | iT = (useDST ? g_as_DST_MAT_4[TRANSFORM_FORWARD][0] : g_aiT4[TRANSFORM_FORWARD][0]); |
---|
255 | } |
---|
256 | else if (uiTrSize==8) |
---|
257 | { |
---|
258 | iT = g_aiT8[TRANSFORM_FORWARD][0]; |
---|
259 | } |
---|
260 | else if (uiTrSize==16) |
---|
261 | { |
---|
262 | iT = g_aiT16[TRANSFORM_FORWARD][0]; |
---|
263 | } |
---|
264 | else if (uiTrSize==32) |
---|
265 | { |
---|
266 | iT = g_aiT32[TRANSFORM_FORWARD][0]; |
---|
267 | } |
---|
268 | else |
---|
269 | { |
---|
270 | assert(0); |
---|
271 | } |
---|
272 | |
---|
273 | static const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_FORWARD]; |
---|
274 | |
---|
275 | const Int shift_1st = (uiLog2TrSize + bitDepth + TRANSFORM_MATRIX_SHIFT) - maxTrDynamicRange; |
---|
276 | const Int shift_2nd = uiLog2TrSize + TRANSFORM_MATRIX_SHIFT; |
---|
277 | const Int add_1st = (shift_1st>0) ? (1<<(shift_1st-1)) : 0; |
---|
278 | const Int add_2nd = 1<<(shift_2nd-1); |
---|
279 | |
---|
280 | /* Horizontal transform */ |
---|
281 | |
---|
282 | for (i=0; i<uiTrSize; i++) |
---|
283 | { |
---|
284 | for (j=0; j<uiTrSize; j++) |
---|
285 | { |
---|
286 | iSum = 0; |
---|
287 | for (k=0; k<uiTrSize; k++) |
---|
288 | { |
---|
289 | iSum += iT[i*uiTrSize+k]*block[j*uiStride+k]; |
---|
290 | } |
---|
291 | tmp[i*uiTrSize+j] = (iSum + add_1st)>>shift_1st; |
---|
292 | } |
---|
293 | } |
---|
294 | |
---|
295 | /* Vertical transform */ |
---|
296 | for (i=0; i<uiTrSize; i++) |
---|
297 | { |
---|
298 | for (j=0; j<uiTrSize; j++) |
---|
299 | { |
---|
300 | iSum = 0; |
---|
301 | for (k=0; k<uiTrSize; k++) |
---|
302 | { |
---|
303 | iSum += iT[i*uiTrSize+k]*tmp[j*uiTrSize+k]; |
---|
304 | } |
---|
305 | coeff[i*uiTrSize+j] = (iSum + add_2nd)>>shift_2nd; |
---|
306 | } |
---|
307 | } |
---|
308 | } |
---|
309 | |
---|
310 | /** NxN inverse transform (2D) using brute force matrix multiplication (3 nested loops) |
---|
311 | * \param coeff pointer to input data (transform coefficients) |
---|
312 | * \param block pointer to output data (residual) |
---|
313 | * \param uiStride stride of output data |
---|
314 | * \param uiTrSize transform size (uiTrSize x uiTrSize) |
---|
315 | * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only |
---|
316 | */ |
---|
317 | Void xITr(Int bitDepth, TCoeff *coeff, Pel *block, UInt uiStride, UInt uiTrSize, Bool useDST, const Int maxTrDynamicRange) |
---|
318 | { |
---|
319 | UInt i,j,k; |
---|
320 | TCoeff iSum; |
---|
321 | TCoeff tmp[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
322 | const TMatrixCoeff *iT; |
---|
323 | |
---|
324 | if (uiTrSize==4) |
---|
325 | { |
---|
326 | iT = (useDST ? g_as_DST_MAT_4[TRANSFORM_INVERSE][0] : g_aiT4[TRANSFORM_INVERSE][0]); |
---|
327 | } |
---|
328 | else if (uiTrSize==8) |
---|
329 | { |
---|
330 | iT = g_aiT8[TRANSFORM_INVERSE][0]; |
---|
331 | } |
---|
332 | else if (uiTrSize==16) |
---|
333 | { |
---|
334 | iT = g_aiT16[TRANSFORM_INVERSE][0]; |
---|
335 | } |
---|
336 | else if (uiTrSize==32) |
---|
337 | { |
---|
338 | iT = g_aiT32[TRANSFORM_INVERSE][0]; |
---|
339 | } |
---|
340 | else |
---|
341 | { |
---|
342 | assert(0); |
---|
343 | } |
---|
344 | |
---|
345 | static const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_INVERSE]; |
---|
346 | |
---|
347 | const Int shift_1st = TRANSFORM_MATRIX_SHIFT + 1; //1 has been added to shift_1st at the expense of shift_2nd |
---|
348 | const Int shift_2nd = (TRANSFORM_MATRIX_SHIFT + maxTrDynamicRange - 1) - bitDepth; |
---|
349 | const TCoeff clipMinimum = -(1 << maxTrDynamicRange); |
---|
350 | const TCoeff clipMaximum = (1 << maxTrDynamicRange) - 1; |
---|
351 | assert(shift_2nd>=0); |
---|
352 | const Int add_1st = 1<<(shift_1st-1); |
---|
353 | const Int add_2nd = (shift_2nd>0) ? (1<<(shift_2nd-1)) : 0; |
---|
354 | |
---|
355 | /* Horizontal transform */ |
---|
356 | for (i=0; i<uiTrSize; i++) |
---|
357 | { |
---|
358 | for (j=0; j<uiTrSize; j++) |
---|
359 | { |
---|
360 | iSum = 0; |
---|
361 | for (k=0; k<uiTrSize; k++) |
---|
362 | { |
---|
363 | iSum += iT[k*uiTrSize+i]*coeff[k*uiTrSize+j]; |
---|
364 | } |
---|
365 | |
---|
366 | // Clipping here is not in the standard, but is used to protect the "Pel" data type into which the inverse-transformed samples will be copied |
---|
367 | tmp[i*uiTrSize+j] = Clip3<TCoeff>(clipMinimum, clipMaximum, (iSum + add_1st)>>shift_1st); |
---|
368 | } |
---|
369 | } |
---|
370 | |
---|
371 | /* Vertical transform */ |
---|
372 | for (i=0; i<uiTrSize; i++) |
---|
373 | { |
---|
374 | for (j=0; j<uiTrSize; j++) |
---|
375 | { |
---|
376 | iSum = 0; |
---|
377 | for (k=0; k<uiTrSize; k++) |
---|
378 | { |
---|
379 | iSum += iT[k*uiTrSize+j]*tmp[i*uiTrSize+k]; |
---|
380 | } |
---|
381 | |
---|
382 | block[i*uiStride+j] = Clip3<TCoeff>(std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max(), (iSum + add_2nd)>>shift_2nd); |
---|
383 | } |
---|
384 | } |
---|
385 | } |
---|
386 | |
---|
387 | #endif //MATRIX_MULT |
---|
388 | |
---|
389 | |
---|
390 | /** 4x4 forward transform implemented using partial butterfly structure (1D) |
---|
391 | * \param src input data (residual) |
---|
392 | * \param dst output data (transform coefficients) |
---|
393 | * \param shift specifies right shift after 1D transform |
---|
394 | */ |
---|
395 | Void partialButterfly4(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
396 | { |
---|
397 | Int j; |
---|
398 | TCoeff E[2],O[2]; |
---|
399 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
400 | |
---|
401 | for (j=0; j<line; j++) |
---|
402 | { |
---|
403 | /* E and O */ |
---|
404 | E[0] = src[0] + src[3]; |
---|
405 | O[0] = src[0] - src[3]; |
---|
406 | E[1] = src[1] + src[2]; |
---|
407 | O[1] = src[1] - src[2]; |
---|
408 | |
---|
409 | dst[0] = (g_aiT4[TRANSFORM_FORWARD][0][0]*E[0] + g_aiT4[TRANSFORM_FORWARD][0][1]*E[1] + add)>>shift; |
---|
410 | dst[2*line] = (g_aiT4[TRANSFORM_FORWARD][2][0]*E[0] + g_aiT4[TRANSFORM_FORWARD][2][1]*E[1] + add)>>shift; |
---|
411 | dst[line] = (g_aiT4[TRANSFORM_FORWARD][1][0]*O[0] + g_aiT4[TRANSFORM_FORWARD][1][1]*O[1] + add)>>shift; |
---|
412 | dst[3*line] = (g_aiT4[TRANSFORM_FORWARD][3][0]*O[0] + g_aiT4[TRANSFORM_FORWARD][3][1]*O[1] + add)>>shift; |
---|
413 | |
---|
414 | src += 4; |
---|
415 | dst ++; |
---|
416 | } |
---|
417 | } |
---|
418 | |
---|
419 | // Fast DST Algorithm. Full matrix multiplication for DST and Fast DST algorithm |
---|
420 | // give identical results |
---|
421 | Void fastForwardDst(TCoeff *block, TCoeff *coeff, Int shift) // input block, output coeff |
---|
422 | { |
---|
423 | Int i; |
---|
424 | TCoeff c[4]; |
---|
425 | TCoeff rnd_factor = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
426 | for (i=0; i<4; i++) |
---|
427 | { |
---|
428 | // Intermediate Variables |
---|
429 | c[0] = block[4*i+0]; |
---|
430 | c[1] = block[4*i+1]; |
---|
431 | c[2] = block[4*i+2]; |
---|
432 | c[3] = block[4*i+3]; |
---|
433 | |
---|
434 | for (Int row = 0; row < 4; row++) |
---|
435 | { |
---|
436 | TCoeff result = 0; |
---|
437 | for (Int column = 0; column < 4; column++) |
---|
438 | result += c[column] * g_as_DST_MAT_4[TRANSFORM_FORWARD][row][column]; // use the defined matrix, rather than hard-wired numbers |
---|
439 | |
---|
440 | coeff[(row * 4) + i] = rightShift((result + rnd_factor), shift); |
---|
441 | } |
---|
442 | } |
---|
443 | } |
---|
444 | |
---|
445 | Void fastInverseDst(TCoeff *tmp, TCoeff *block, Int shift, const TCoeff outputMinimum, const TCoeff outputMaximum) // input tmp, output block |
---|
446 | { |
---|
447 | Int i; |
---|
448 | TCoeff c[4]; |
---|
449 | TCoeff rnd_factor = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
450 | for (i=0; i<4; i++) |
---|
451 | { |
---|
452 | // Intermediate Variables |
---|
453 | c[0] = tmp[ i]; |
---|
454 | c[1] = tmp[4 +i]; |
---|
455 | c[2] = tmp[8 +i]; |
---|
456 | c[3] = tmp[12+i]; |
---|
457 | |
---|
458 | for (Int column = 0; column < 4; column++) |
---|
459 | { |
---|
460 | TCoeff &result = block[(i * 4) + column]; |
---|
461 | |
---|
462 | result = 0; |
---|
463 | for (Int row = 0; row < 4; row++) |
---|
464 | result += c[row] * g_as_DST_MAT_4[TRANSFORM_INVERSE][row][column]; // use the defined matrix, rather than hard-wired numbers |
---|
465 | |
---|
466 | result = Clip3( outputMinimum, outputMaximum, rightShift((result + rnd_factor), shift)); |
---|
467 | } |
---|
468 | } |
---|
469 | } |
---|
470 | |
---|
471 | /** 4x4 inverse transform implemented using partial butterfly structure (1D) |
---|
472 | * \param src input data (transform coefficients) |
---|
473 | * \param dst output data (residual) |
---|
474 | * \param shift specifies right shift after 1D transform |
---|
475 | */ |
---|
476 | Void partialButterflyInverse4(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
477 | { |
---|
478 | Int j; |
---|
479 | TCoeff E[2],O[2]; |
---|
480 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
481 | |
---|
482 | for (j=0; j<line; j++) |
---|
483 | { |
---|
484 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
485 | O[0] = g_aiT4[TRANSFORM_INVERSE][1][0]*src[line] + g_aiT4[TRANSFORM_INVERSE][3][0]*src[3*line]; |
---|
486 | O[1] = g_aiT4[TRANSFORM_INVERSE][1][1]*src[line] + g_aiT4[TRANSFORM_INVERSE][3][1]*src[3*line]; |
---|
487 | E[0] = g_aiT4[TRANSFORM_INVERSE][0][0]*src[0] + g_aiT4[TRANSFORM_INVERSE][2][0]*src[2*line]; |
---|
488 | E[1] = g_aiT4[TRANSFORM_INVERSE][0][1]*src[0] + g_aiT4[TRANSFORM_INVERSE][2][1]*src[2*line]; |
---|
489 | |
---|
490 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
491 | dst[0] = Clip3( outputMinimum, outputMaximum, (E[0] + O[0] + add)>>shift ); |
---|
492 | dst[1] = Clip3( outputMinimum, outputMaximum, (E[1] + O[1] + add)>>shift ); |
---|
493 | dst[2] = Clip3( outputMinimum, outputMaximum, (E[1] - O[1] + add)>>shift ); |
---|
494 | dst[3] = Clip3( outputMinimum, outputMaximum, (E[0] - O[0] + add)>>shift ); |
---|
495 | |
---|
496 | src ++; |
---|
497 | dst += 4; |
---|
498 | } |
---|
499 | } |
---|
500 | |
---|
501 | /** 8x8 forward transform implemented using partial butterfly structure (1D) |
---|
502 | * \param src input data (residual) |
---|
503 | * \param dst output data (transform coefficients) |
---|
504 | * \param shift specifies right shift after 1D transform |
---|
505 | */ |
---|
506 | Void partialButterfly8(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
507 | { |
---|
508 | Int j,k; |
---|
509 | TCoeff E[4],O[4]; |
---|
510 | TCoeff EE[2],EO[2]; |
---|
511 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
512 | |
---|
513 | for (j=0; j<line; j++) |
---|
514 | { |
---|
515 | /* E and O*/ |
---|
516 | for (k=0;k<4;k++) |
---|
517 | { |
---|
518 | E[k] = src[k] + src[7-k]; |
---|
519 | O[k] = src[k] - src[7-k]; |
---|
520 | } |
---|
521 | /* EE and EO */ |
---|
522 | EE[0] = E[0] + E[3]; |
---|
523 | EO[0] = E[0] - E[3]; |
---|
524 | EE[1] = E[1] + E[2]; |
---|
525 | EO[1] = E[1] - E[2]; |
---|
526 | |
---|
527 | dst[0] = (g_aiT8[TRANSFORM_FORWARD][0][0]*EE[0] + g_aiT8[TRANSFORM_FORWARD][0][1]*EE[1] + add)>>shift; |
---|
528 | dst[4*line] = (g_aiT8[TRANSFORM_FORWARD][4][0]*EE[0] + g_aiT8[TRANSFORM_FORWARD][4][1]*EE[1] + add)>>shift; |
---|
529 | dst[2*line] = (g_aiT8[TRANSFORM_FORWARD][2][0]*EO[0] + g_aiT8[TRANSFORM_FORWARD][2][1]*EO[1] + add)>>shift; |
---|
530 | dst[6*line] = (g_aiT8[TRANSFORM_FORWARD][6][0]*EO[0] + g_aiT8[TRANSFORM_FORWARD][6][1]*EO[1] + add)>>shift; |
---|
531 | |
---|
532 | dst[line] = (g_aiT8[TRANSFORM_FORWARD][1][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][1][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][1][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][1][3]*O[3] + add)>>shift; |
---|
533 | dst[3*line] = (g_aiT8[TRANSFORM_FORWARD][3][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][3][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][3][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][3][3]*O[3] + add)>>shift; |
---|
534 | dst[5*line] = (g_aiT8[TRANSFORM_FORWARD][5][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][5][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][5][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][5][3]*O[3] + add)>>shift; |
---|
535 | dst[7*line] = (g_aiT8[TRANSFORM_FORWARD][7][0]*O[0] + g_aiT8[TRANSFORM_FORWARD][7][1]*O[1] + g_aiT8[TRANSFORM_FORWARD][7][2]*O[2] + g_aiT8[TRANSFORM_FORWARD][7][3]*O[3] + add)>>shift; |
---|
536 | |
---|
537 | src += 8; |
---|
538 | dst ++; |
---|
539 | } |
---|
540 | } |
---|
541 | |
---|
542 | /** 8x8 inverse transform implemented using partial butterfly structure (1D) |
---|
543 | * \param src input data (transform coefficients) |
---|
544 | * \param dst output data (residual) |
---|
545 | * \param shift specifies right shift after 1D transform |
---|
546 | */ |
---|
547 | Void partialButterflyInverse8(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
548 | { |
---|
549 | Int j,k; |
---|
550 | TCoeff E[4],O[4]; |
---|
551 | TCoeff EE[2],EO[2]; |
---|
552 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
553 | |
---|
554 | for (j=0; j<line; j++) |
---|
555 | { |
---|
556 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
557 | for (k=0;k<4;k++) |
---|
558 | { |
---|
559 | O[k] = g_aiT8[TRANSFORM_INVERSE][ 1][k]*src[line] + g_aiT8[TRANSFORM_INVERSE][ 3][k]*src[3*line] + |
---|
560 | g_aiT8[TRANSFORM_INVERSE][ 5][k]*src[5*line] + g_aiT8[TRANSFORM_INVERSE][ 7][k]*src[7*line]; |
---|
561 | } |
---|
562 | |
---|
563 | EO[0] = g_aiT8[TRANSFORM_INVERSE][2][0]*src[ 2*line ] + g_aiT8[TRANSFORM_INVERSE][6][0]*src[ 6*line ]; |
---|
564 | EO[1] = g_aiT8[TRANSFORM_INVERSE][2][1]*src[ 2*line ] + g_aiT8[TRANSFORM_INVERSE][6][1]*src[ 6*line ]; |
---|
565 | EE[0] = g_aiT8[TRANSFORM_INVERSE][0][0]*src[ 0 ] + g_aiT8[TRANSFORM_INVERSE][4][0]*src[ 4*line ]; |
---|
566 | EE[1] = g_aiT8[TRANSFORM_INVERSE][0][1]*src[ 0 ] + g_aiT8[TRANSFORM_INVERSE][4][1]*src[ 4*line ]; |
---|
567 | |
---|
568 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
569 | E[0] = EE[0] + EO[0]; |
---|
570 | E[3] = EE[0] - EO[0]; |
---|
571 | E[1] = EE[1] + EO[1]; |
---|
572 | E[2] = EE[1] - EO[1]; |
---|
573 | for (k=0;k<4;k++) |
---|
574 | { |
---|
575 | dst[ k ] = Clip3( outputMinimum, outputMaximum, (E[k] + O[k] + add)>>shift ); |
---|
576 | dst[ k+4 ] = Clip3( outputMinimum, outputMaximum, (E[3-k] - O[3-k] + add)>>shift ); |
---|
577 | } |
---|
578 | src ++; |
---|
579 | dst += 8; |
---|
580 | } |
---|
581 | } |
---|
582 | |
---|
583 | /** 16x16 forward transform implemented using partial butterfly structure (1D) |
---|
584 | * \param src input data (residual) |
---|
585 | * \param dst output data (transform coefficients) |
---|
586 | * \param shift specifies right shift after 1D transform |
---|
587 | */ |
---|
588 | Void partialButterfly16(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
589 | { |
---|
590 | Int j,k; |
---|
591 | TCoeff E[8],O[8]; |
---|
592 | TCoeff EE[4],EO[4]; |
---|
593 | TCoeff EEE[2],EEO[2]; |
---|
594 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
595 | |
---|
596 | for (j=0; j<line; j++) |
---|
597 | { |
---|
598 | /* E and O*/ |
---|
599 | for (k=0;k<8;k++) |
---|
600 | { |
---|
601 | E[k] = src[k] + src[15-k]; |
---|
602 | O[k] = src[k] - src[15-k]; |
---|
603 | } |
---|
604 | /* EE and EO */ |
---|
605 | for (k=0;k<4;k++) |
---|
606 | { |
---|
607 | EE[k] = E[k] + E[7-k]; |
---|
608 | EO[k] = E[k] - E[7-k]; |
---|
609 | } |
---|
610 | /* EEE and EEO */ |
---|
611 | EEE[0] = EE[0] + EE[3]; |
---|
612 | EEO[0] = EE[0] - EE[3]; |
---|
613 | EEE[1] = EE[1] + EE[2]; |
---|
614 | EEO[1] = EE[1] - EE[2]; |
---|
615 | |
---|
616 | dst[ 0 ] = (g_aiT16[TRANSFORM_FORWARD][ 0][0]*EEE[0] + g_aiT16[TRANSFORM_FORWARD][ 0][1]*EEE[1] + add)>>shift; |
---|
617 | dst[ 8*line ] = (g_aiT16[TRANSFORM_FORWARD][ 8][0]*EEE[0] + g_aiT16[TRANSFORM_FORWARD][ 8][1]*EEE[1] + add)>>shift; |
---|
618 | dst[ 4*line ] = (g_aiT16[TRANSFORM_FORWARD][ 4][0]*EEO[0] + g_aiT16[TRANSFORM_FORWARD][ 4][1]*EEO[1] + add)>>shift; |
---|
619 | dst[ 12*line] = (g_aiT16[TRANSFORM_FORWARD][12][0]*EEO[0] + g_aiT16[TRANSFORM_FORWARD][12][1]*EEO[1] + add)>>shift; |
---|
620 | |
---|
621 | for (k=2;k<16;k+=4) |
---|
622 | { |
---|
623 | dst[ k*line ] = (g_aiT16[TRANSFORM_FORWARD][k][0]*EO[0] + g_aiT16[TRANSFORM_FORWARD][k][1]*EO[1] + |
---|
624 | g_aiT16[TRANSFORM_FORWARD][k][2]*EO[2] + g_aiT16[TRANSFORM_FORWARD][k][3]*EO[3] + add)>>shift; |
---|
625 | } |
---|
626 | |
---|
627 | for (k=1;k<16;k+=2) |
---|
628 | { |
---|
629 | dst[ k*line ] = (g_aiT16[TRANSFORM_FORWARD][k][0]*O[0] + g_aiT16[TRANSFORM_FORWARD][k][1]*O[1] + |
---|
630 | g_aiT16[TRANSFORM_FORWARD][k][2]*O[2] + g_aiT16[TRANSFORM_FORWARD][k][3]*O[3] + |
---|
631 | g_aiT16[TRANSFORM_FORWARD][k][4]*O[4] + g_aiT16[TRANSFORM_FORWARD][k][5]*O[5] + |
---|
632 | g_aiT16[TRANSFORM_FORWARD][k][6]*O[6] + g_aiT16[TRANSFORM_FORWARD][k][7]*O[7] + add)>>shift; |
---|
633 | } |
---|
634 | |
---|
635 | src += 16; |
---|
636 | dst ++; |
---|
637 | |
---|
638 | } |
---|
639 | } |
---|
640 | |
---|
641 | /** 16x16 inverse transform implemented using partial butterfly structure (1D) |
---|
642 | * \param src input data (transform coefficients) |
---|
643 | * \param dst output data (residual) |
---|
644 | * \param shift specifies right shift after 1D transform |
---|
645 | */ |
---|
646 | Void partialButterflyInverse16(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
647 | { |
---|
648 | Int j,k; |
---|
649 | TCoeff E[8],O[8]; |
---|
650 | TCoeff EE[4],EO[4]; |
---|
651 | TCoeff EEE[2],EEO[2]; |
---|
652 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
653 | |
---|
654 | for (j=0; j<line; j++) |
---|
655 | { |
---|
656 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
657 | for (k=0;k<8;k++) |
---|
658 | { |
---|
659 | O[k] = g_aiT16[TRANSFORM_INVERSE][ 1][k]*src[ line] + g_aiT16[TRANSFORM_INVERSE][ 3][k]*src[ 3*line] + |
---|
660 | g_aiT16[TRANSFORM_INVERSE][ 5][k]*src[ 5*line] + g_aiT16[TRANSFORM_INVERSE][ 7][k]*src[ 7*line] + |
---|
661 | g_aiT16[TRANSFORM_INVERSE][ 9][k]*src[ 9*line] + g_aiT16[TRANSFORM_INVERSE][11][k]*src[11*line] + |
---|
662 | g_aiT16[TRANSFORM_INVERSE][13][k]*src[13*line] + g_aiT16[TRANSFORM_INVERSE][15][k]*src[15*line]; |
---|
663 | } |
---|
664 | for (k=0;k<4;k++) |
---|
665 | { |
---|
666 | EO[k] = g_aiT16[TRANSFORM_INVERSE][ 2][k]*src[ 2*line] + g_aiT16[TRANSFORM_INVERSE][ 6][k]*src[ 6*line] + |
---|
667 | g_aiT16[TRANSFORM_INVERSE][10][k]*src[10*line] + g_aiT16[TRANSFORM_INVERSE][14][k]*src[14*line]; |
---|
668 | } |
---|
669 | EEO[0] = g_aiT16[TRANSFORM_INVERSE][4][0]*src[ 4*line ] + g_aiT16[TRANSFORM_INVERSE][12][0]*src[ 12*line ]; |
---|
670 | EEE[0] = g_aiT16[TRANSFORM_INVERSE][0][0]*src[ 0 ] + g_aiT16[TRANSFORM_INVERSE][ 8][0]*src[ 8*line ]; |
---|
671 | EEO[1] = g_aiT16[TRANSFORM_INVERSE][4][1]*src[ 4*line ] + g_aiT16[TRANSFORM_INVERSE][12][1]*src[ 12*line ]; |
---|
672 | EEE[1] = g_aiT16[TRANSFORM_INVERSE][0][1]*src[ 0 ] + g_aiT16[TRANSFORM_INVERSE][ 8][1]*src[ 8*line ]; |
---|
673 | |
---|
674 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
675 | for (k=0;k<2;k++) |
---|
676 | { |
---|
677 | EE[k] = EEE[k] + EEO[k]; |
---|
678 | EE[k+2] = EEE[1-k] - EEO[1-k]; |
---|
679 | } |
---|
680 | for (k=0;k<4;k++) |
---|
681 | { |
---|
682 | E[k] = EE[k] + EO[k]; |
---|
683 | E[k+4] = EE[3-k] - EO[3-k]; |
---|
684 | } |
---|
685 | for (k=0;k<8;k++) |
---|
686 | { |
---|
687 | dst[k] = Clip3( outputMinimum, outputMaximum, (E[k] + O[k] + add)>>shift ); |
---|
688 | dst[k+8] = Clip3( outputMinimum, outputMaximum, (E[7-k] - O[7-k] + add)>>shift ); |
---|
689 | } |
---|
690 | src ++; |
---|
691 | dst += 16; |
---|
692 | } |
---|
693 | } |
---|
694 | |
---|
695 | /** 32x32 forward transform implemented using partial butterfly structure (1D) |
---|
696 | * \param src input data (residual) |
---|
697 | * \param dst output data (transform coefficients) |
---|
698 | * \param shift specifies right shift after 1D transform |
---|
699 | */ |
---|
700 | Void partialButterfly32(TCoeff *src, TCoeff *dst, Int shift, Int line) |
---|
701 | { |
---|
702 | Int j,k; |
---|
703 | TCoeff E[16],O[16]; |
---|
704 | TCoeff EE[8],EO[8]; |
---|
705 | TCoeff EEE[4],EEO[4]; |
---|
706 | TCoeff EEEE[2],EEEO[2]; |
---|
707 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
708 | |
---|
709 | for (j=0; j<line; j++) |
---|
710 | { |
---|
711 | /* E and O*/ |
---|
712 | for (k=0;k<16;k++) |
---|
713 | { |
---|
714 | E[k] = src[k] + src[31-k]; |
---|
715 | O[k] = src[k] - src[31-k]; |
---|
716 | } |
---|
717 | /* EE and EO */ |
---|
718 | for (k=0;k<8;k++) |
---|
719 | { |
---|
720 | EE[k] = E[k] + E[15-k]; |
---|
721 | EO[k] = E[k] - E[15-k]; |
---|
722 | } |
---|
723 | /* EEE and EEO */ |
---|
724 | for (k=0;k<4;k++) |
---|
725 | { |
---|
726 | EEE[k] = EE[k] + EE[7-k]; |
---|
727 | EEO[k] = EE[k] - EE[7-k]; |
---|
728 | } |
---|
729 | /* EEEE and EEEO */ |
---|
730 | EEEE[0] = EEE[0] + EEE[3]; |
---|
731 | EEEO[0] = EEE[0] - EEE[3]; |
---|
732 | EEEE[1] = EEE[1] + EEE[2]; |
---|
733 | EEEO[1] = EEE[1] - EEE[2]; |
---|
734 | |
---|
735 | dst[ 0 ] = (g_aiT32[TRANSFORM_FORWARD][ 0][0]*EEEE[0] + g_aiT32[TRANSFORM_FORWARD][ 0][1]*EEEE[1] + add)>>shift; |
---|
736 | dst[ 16*line ] = (g_aiT32[TRANSFORM_FORWARD][16][0]*EEEE[0] + g_aiT32[TRANSFORM_FORWARD][16][1]*EEEE[1] + add)>>shift; |
---|
737 | dst[ 8*line ] = (g_aiT32[TRANSFORM_FORWARD][ 8][0]*EEEO[0] + g_aiT32[TRANSFORM_FORWARD][ 8][1]*EEEO[1] + add)>>shift; |
---|
738 | dst[ 24*line ] = (g_aiT32[TRANSFORM_FORWARD][24][0]*EEEO[0] + g_aiT32[TRANSFORM_FORWARD][24][1]*EEEO[1] + add)>>shift; |
---|
739 | for (k=4;k<32;k+=8) |
---|
740 | { |
---|
741 | dst[ k*line ] = (g_aiT32[TRANSFORM_FORWARD][k][0]*EEO[0] + g_aiT32[TRANSFORM_FORWARD][k][1]*EEO[1] + |
---|
742 | g_aiT32[TRANSFORM_FORWARD][k][2]*EEO[2] + g_aiT32[TRANSFORM_FORWARD][k][3]*EEO[3] + add)>>shift; |
---|
743 | } |
---|
744 | for (k=2;k<32;k+=4) |
---|
745 | { |
---|
746 | dst[ k*line ] = (g_aiT32[TRANSFORM_FORWARD][k][0]*EO[0] + g_aiT32[TRANSFORM_FORWARD][k][1]*EO[1] + |
---|
747 | g_aiT32[TRANSFORM_FORWARD][k][2]*EO[2] + g_aiT32[TRANSFORM_FORWARD][k][3]*EO[3] + |
---|
748 | g_aiT32[TRANSFORM_FORWARD][k][4]*EO[4] + g_aiT32[TRANSFORM_FORWARD][k][5]*EO[5] + |
---|
749 | g_aiT32[TRANSFORM_FORWARD][k][6]*EO[6] + g_aiT32[TRANSFORM_FORWARD][k][7]*EO[7] + add)>>shift; |
---|
750 | } |
---|
751 | for (k=1;k<32;k+=2) |
---|
752 | { |
---|
753 | dst[ k*line ] = (g_aiT32[TRANSFORM_FORWARD][k][ 0]*O[ 0] + g_aiT32[TRANSFORM_FORWARD][k][ 1]*O[ 1] + |
---|
754 | g_aiT32[TRANSFORM_FORWARD][k][ 2]*O[ 2] + g_aiT32[TRANSFORM_FORWARD][k][ 3]*O[ 3] + |
---|
755 | g_aiT32[TRANSFORM_FORWARD][k][ 4]*O[ 4] + g_aiT32[TRANSFORM_FORWARD][k][ 5]*O[ 5] + |
---|
756 | g_aiT32[TRANSFORM_FORWARD][k][ 6]*O[ 6] + g_aiT32[TRANSFORM_FORWARD][k][ 7]*O[ 7] + |
---|
757 | g_aiT32[TRANSFORM_FORWARD][k][ 8]*O[ 8] + g_aiT32[TRANSFORM_FORWARD][k][ 9]*O[ 9] + |
---|
758 | g_aiT32[TRANSFORM_FORWARD][k][10]*O[10] + g_aiT32[TRANSFORM_FORWARD][k][11]*O[11] + |
---|
759 | g_aiT32[TRANSFORM_FORWARD][k][12]*O[12] + g_aiT32[TRANSFORM_FORWARD][k][13]*O[13] + |
---|
760 | g_aiT32[TRANSFORM_FORWARD][k][14]*O[14] + g_aiT32[TRANSFORM_FORWARD][k][15]*O[15] + add)>>shift; |
---|
761 | } |
---|
762 | |
---|
763 | src += 32; |
---|
764 | dst ++; |
---|
765 | } |
---|
766 | } |
---|
767 | |
---|
768 | /** 32x32 inverse transform implemented using partial butterfly structure (1D) |
---|
769 | * \param src input data (transform coefficients) |
---|
770 | * \param dst output data (residual) |
---|
771 | * \param shift specifies right shift after 1D transform |
---|
772 | */ |
---|
773 | Void partialButterflyInverse32(TCoeff *src, TCoeff *dst, Int shift, Int line, const TCoeff outputMinimum, const TCoeff outputMaximum) |
---|
774 | { |
---|
775 | Int j,k; |
---|
776 | TCoeff E[16],O[16]; |
---|
777 | TCoeff EE[8],EO[8]; |
---|
778 | TCoeff EEE[4],EEO[4]; |
---|
779 | TCoeff EEEE[2],EEEO[2]; |
---|
780 | TCoeff add = (shift > 0) ? (1<<(shift-1)) : 0; |
---|
781 | |
---|
782 | for (j=0; j<line; j++) |
---|
783 | { |
---|
784 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
---|
785 | for (k=0;k<16;k++) |
---|
786 | { |
---|
787 | O[k] = g_aiT32[TRANSFORM_INVERSE][ 1][k]*src[ line ] + g_aiT32[TRANSFORM_INVERSE][ 3][k]*src[ 3*line ] + |
---|
788 | g_aiT32[TRANSFORM_INVERSE][ 5][k]*src[ 5*line ] + g_aiT32[TRANSFORM_INVERSE][ 7][k]*src[ 7*line ] + |
---|
789 | g_aiT32[TRANSFORM_INVERSE][ 9][k]*src[ 9*line ] + g_aiT32[TRANSFORM_INVERSE][11][k]*src[ 11*line ] + |
---|
790 | g_aiT32[TRANSFORM_INVERSE][13][k]*src[ 13*line ] + g_aiT32[TRANSFORM_INVERSE][15][k]*src[ 15*line ] + |
---|
791 | g_aiT32[TRANSFORM_INVERSE][17][k]*src[ 17*line ] + g_aiT32[TRANSFORM_INVERSE][19][k]*src[ 19*line ] + |
---|
792 | g_aiT32[TRANSFORM_INVERSE][21][k]*src[ 21*line ] + g_aiT32[TRANSFORM_INVERSE][23][k]*src[ 23*line ] + |
---|
793 | g_aiT32[TRANSFORM_INVERSE][25][k]*src[ 25*line ] + g_aiT32[TRANSFORM_INVERSE][27][k]*src[ 27*line ] + |
---|
794 | g_aiT32[TRANSFORM_INVERSE][29][k]*src[ 29*line ] + g_aiT32[TRANSFORM_INVERSE][31][k]*src[ 31*line ]; |
---|
795 | } |
---|
796 | for (k=0;k<8;k++) |
---|
797 | { |
---|
798 | EO[k] = g_aiT32[TRANSFORM_INVERSE][ 2][k]*src[ 2*line ] + g_aiT32[TRANSFORM_INVERSE][ 6][k]*src[ 6*line ] + |
---|
799 | g_aiT32[TRANSFORM_INVERSE][10][k]*src[ 10*line ] + g_aiT32[TRANSFORM_INVERSE][14][k]*src[ 14*line ] + |
---|
800 | g_aiT32[TRANSFORM_INVERSE][18][k]*src[ 18*line ] + g_aiT32[TRANSFORM_INVERSE][22][k]*src[ 22*line ] + |
---|
801 | g_aiT32[TRANSFORM_INVERSE][26][k]*src[ 26*line ] + g_aiT32[TRANSFORM_INVERSE][30][k]*src[ 30*line ]; |
---|
802 | } |
---|
803 | for (k=0;k<4;k++) |
---|
804 | { |
---|
805 | EEO[k] = g_aiT32[TRANSFORM_INVERSE][ 4][k]*src[ 4*line ] + g_aiT32[TRANSFORM_INVERSE][12][k]*src[ 12*line ] + |
---|
806 | g_aiT32[TRANSFORM_INVERSE][20][k]*src[ 20*line ] + g_aiT32[TRANSFORM_INVERSE][28][k]*src[ 28*line ]; |
---|
807 | } |
---|
808 | EEEO[0] = g_aiT32[TRANSFORM_INVERSE][8][0]*src[ 8*line ] + g_aiT32[TRANSFORM_INVERSE][24][0]*src[ 24*line ]; |
---|
809 | EEEO[1] = g_aiT32[TRANSFORM_INVERSE][8][1]*src[ 8*line ] + g_aiT32[TRANSFORM_INVERSE][24][1]*src[ 24*line ]; |
---|
810 | EEEE[0] = g_aiT32[TRANSFORM_INVERSE][0][0]*src[ 0 ] + g_aiT32[TRANSFORM_INVERSE][16][0]*src[ 16*line ]; |
---|
811 | EEEE[1] = g_aiT32[TRANSFORM_INVERSE][0][1]*src[ 0 ] + g_aiT32[TRANSFORM_INVERSE][16][1]*src[ 16*line ]; |
---|
812 | |
---|
813 | /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ |
---|
814 | EEE[0] = EEEE[0] + EEEO[0]; |
---|
815 | EEE[3] = EEEE[0] - EEEO[0]; |
---|
816 | EEE[1] = EEEE[1] + EEEO[1]; |
---|
817 | EEE[2] = EEEE[1] - EEEO[1]; |
---|
818 | for (k=0;k<4;k++) |
---|
819 | { |
---|
820 | EE[k] = EEE[k] + EEO[k]; |
---|
821 | EE[k+4] = EEE[3-k] - EEO[3-k]; |
---|
822 | } |
---|
823 | for (k=0;k<8;k++) |
---|
824 | { |
---|
825 | E[k] = EE[k] + EO[k]; |
---|
826 | E[k+8] = EE[7-k] - EO[7-k]; |
---|
827 | } |
---|
828 | for (k=0;k<16;k++) |
---|
829 | { |
---|
830 | dst[k] = Clip3( outputMinimum, outputMaximum, (E[k] + O[k] + add)>>shift ); |
---|
831 | dst[k+16] = Clip3( outputMinimum, outputMaximum, (E[15-k] - O[15-k] + add)>>shift ); |
---|
832 | } |
---|
833 | src ++; |
---|
834 | dst += 32; |
---|
835 | } |
---|
836 | } |
---|
837 | |
---|
838 | /** MxN forward transform (2D) |
---|
839 | * \param block input data (residual) |
---|
840 | * \param coeff output data (transform coefficients) |
---|
841 | * \param iWidth input data (width of transform) |
---|
842 | * \param iHeight input data (height of transform) |
---|
843 | */ |
---|
844 | Void xTrMxN(Int bitDepth, TCoeff *block, TCoeff *coeff, Int iWidth, Int iHeight, Bool useDST, const Int maxTrDynamicRange) |
---|
845 | { |
---|
846 | static const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_FORWARD]; |
---|
847 | |
---|
848 | const Int shift_1st = ((g_aucConvertToBit[iWidth] + 2) + bitDepth + TRANSFORM_MATRIX_SHIFT) - maxTrDynamicRange; |
---|
849 | const Int shift_2nd = (g_aucConvertToBit[iHeight] + 2) + TRANSFORM_MATRIX_SHIFT; |
---|
850 | |
---|
851 | assert(shift_1st >= 0); |
---|
852 | assert(shift_2nd >= 0); |
---|
853 | |
---|
854 | TCoeff tmp[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
855 | |
---|
856 | switch (iWidth) |
---|
857 | { |
---|
858 | case 4: |
---|
859 | { |
---|
860 | if ((iHeight == 4) && useDST) // Check for DCT or DST |
---|
861 | { |
---|
862 | fastForwardDst( block, tmp, shift_1st ); |
---|
863 | } |
---|
864 | else partialButterfly4 ( block, tmp, shift_1st, iHeight ); |
---|
865 | } |
---|
866 | break; |
---|
867 | |
---|
868 | case 8: partialButterfly8 ( block, tmp, shift_1st, iHeight ); break; |
---|
869 | case 16: partialButterfly16( block, tmp, shift_1st, iHeight ); break; |
---|
870 | case 32: partialButterfly32( block, tmp, shift_1st, iHeight ); break; |
---|
871 | default: |
---|
872 | assert(0); exit (1); break; |
---|
873 | } |
---|
874 | |
---|
875 | switch (iHeight) |
---|
876 | { |
---|
877 | case 4: |
---|
878 | { |
---|
879 | if ((iWidth == 4) && useDST) // Check for DCT or DST |
---|
880 | { |
---|
881 | fastForwardDst( tmp, coeff, shift_2nd ); |
---|
882 | } |
---|
883 | else partialButterfly4 ( tmp, coeff, shift_2nd, iWidth ); |
---|
884 | } |
---|
885 | break; |
---|
886 | |
---|
887 | case 8: partialButterfly8 ( tmp, coeff, shift_2nd, iWidth ); break; |
---|
888 | case 16: partialButterfly16( tmp, coeff, shift_2nd, iWidth ); break; |
---|
889 | case 32: partialButterfly32( tmp, coeff, shift_2nd, iWidth ); break; |
---|
890 | default: |
---|
891 | assert(0); exit (1); break; |
---|
892 | } |
---|
893 | } |
---|
894 | |
---|
895 | |
---|
896 | /** MxN inverse transform (2D) |
---|
897 | * \param coeff input data (transform coefficients) |
---|
898 | * \param block output data (residual) |
---|
899 | * \param iWidth input data (width of transform) |
---|
900 | * \param iHeight input data (height of transform) |
---|
901 | */ |
---|
902 | Void xITrMxN(Int bitDepth, TCoeff *coeff, TCoeff *block, Int iWidth, Int iHeight, Bool useDST, const Int maxTrDynamicRange) |
---|
903 | { |
---|
904 | static const Int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_INVERSE]; |
---|
905 | |
---|
906 | Int shift_1st = TRANSFORM_MATRIX_SHIFT + 1; //1 has been added to shift_1st at the expense of shift_2nd |
---|
907 | Int shift_2nd = (TRANSFORM_MATRIX_SHIFT + maxTrDynamicRange - 1) - bitDepth; |
---|
908 | const TCoeff clipMinimum = -(1 << maxTrDynamicRange); |
---|
909 | const TCoeff clipMaximum = (1 << maxTrDynamicRange) - 1; |
---|
910 | |
---|
911 | assert(shift_1st >= 0); |
---|
912 | assert(shift_2nd >= 0); |
---|
913 | |
---|
914 | TCoeff tmp[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
915 | |
---|
916 | switch (iHeight) |
---|
917 | { |
---|
918 | case 4: |
---|
919 | { |
---|
920 | if ((iWidth == 4) && useDST) // Check for DCT or DST |
---|
921 | { |
---|
922 | fastInverseDst( coeff, tmp, shift_1st, clipMinimum, clipMaximum); |
---|
923 | } |
---|
924 | else partialButterflyInverse4 ( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); |
---|
925 | } |
---|
926 | break; |
---|
927 | |
---|
928 | case 8: partialButterflyInverse8 ( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); break; |
---|
929 | case 16: partialButterflyInverse16( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); break; |
---|
930 | case 32: partialButterflyInverse32( coeff, tmp, shift_1st, iWidth, clipMinimum, clipMaximum); break; |
---|
931 | |
---|
932 | default: |
---|
933 | assert(0); exit (1); break; |
---|
934 | } |
---|
935 | |
---|
936 | switch (iWidth) |
---|
937 | { |
---|
938 | // Clipping here is not in the standard, but is used to protect the "Pel" data type into which the inverse-transformed samples will be copied |
---|
939 | case 4: |
---|
940 | { |
---|
941 | if ((iHeight == 4) && useDST) // Check for DCT or DST |
---|
942 | { |
---|
943 | fastInverseDst( tmp, block, shift_2nd, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max() ); |
---|
944 | } |
---|
945 | else partialButterflyInverse4 ( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); |
---|
946 | } |
---|
947 | break; |
---|
948 | |
---|
949 | case 8: partialButterflyInverse8 ( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); break; |
---|
950 | case 16: partialButterflyInverse16( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); break; |
---|
951 | case 32: partialButterflyInverse32( tmp, block, shift_2nd, iHeight, std::numeric_limits<Pel>::min(), std::numeric_limits<Pel>::max()); break; |
---|
952 | |
---|
953 | default: |
---|
954 | assert(0); exit (1); break; |
---|
955 | } |
---|
956 | } |
---|
957 | |
---|
958 | |
---|
959 | // To minimize the distortion only. No rate is considered. |
---|
960 | Void TComTrQuant::signBitHidingHDQ( const ComponentID compID, TCoeff* pQCoef, TCoeff* pCoef, TCoeff* deltaU, const TUEntropyCodingParameters &codingParameters ) |
---|
961 | { |
---|
962 | const UInt width = codingParameters.widthInGroups << MLS_CG_LOG2_WIDTH; |
---|
963 | const UInt height = codingParameters.heightInGroups << MLS_CG_LOG2_HEIGHT; |
---|
964 | const UInt groupSize = 1 << MLS_CG_SIZE; |
---|
965 | |
---|
966 | const TCoeff entropyCodingMinimum = -(1 << g_maxTrDynamicRange[toChannelType(compID)]); |
---|
967 | const TCoeff entropyCodingMaximum = (1 << g_maxTrDynamicRange[toChannelType(compID)]) - 1; |
---|
968 | |
---|
969 | Int lastCG = -1; |
---|
970 | Int absSum = 0 ; |
---|
971 | Int n ; |
---|
972 | |
---|
973 | for( Int subSet = (width*height-1) >> MLS_CG_SIZE; subSet >= 0; subSet-- ) |
---|
974 | { |
---|
975 | Int subPos = subSet << MLS_CG_SIZE; |
---|
976 | Int firstNZPosInCG=groupSize , lastNZPosInCG=-1 ; |
---|
977 | absSum = 0 ; |
---|
978 | |
---|
979 | for(n = groupSize-1; n >= 0; --n ) |
---|
980 | { |
---|
981 | if( pQCoef[ codingParameters.scan[ n + subPos ]] ) |
---|
982 | { |
---|
983 | lastNZPosInCG = n; |
---|
984 | break; |
---|
985 | } |
---|
986 | } |
---|
987 | |
---|
988 | for(n = 0; n <groupSize; n++ ) |
---|
989 | { |
---|
990 | if( pQCoef[ codingParameters.scan[ n + subPos ]] ) |
---|
991 | { |
---|
992 | firstNZPosInCG = n; |
---|
993 | break; |
---|
994 | } |
---|
995 | } |
---|
996 | |
---|
997 | for(n = firstNZPosInCG; n <=lastNZPosInCG; n++ ) |
---|
998 | { |
---|
999 | absSum += Int(pQCoef[ codingParameters.scan[ n + subPos ]]); |
---|
1000 | } |
---|
1001 | |
---|
1002 | if(lastNZPosInCG>=0 && lastCG==-1) |
---|
1003 | { |
---|
1004 | lastCG = 1 ; |
---|
1005 | } |
---|
1006 | |
---|
1007 | if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD ) |
---|
1008 | { |
---|
1009 | UInt signbit = (pQCoef[codingParameters.scan[subPos+firstNZPosInCG]]>0?0:1) ; |
---|
1010 | if( signbit!=(absSum&0x1) ) //compare signbit with sum_parity |
---|
1011 | { |
---|
1012 | TCoeff curCost = std::numeric_limits<TCoeff>::max(); |
---|
1013 | TCoeff minCostInc = std::numeric_limits<TCoeff>::max(); |
---|
1014 | Int minPos =-1, finalChange=0, curChange=0; |
---|
1015 | |
---|
1016 | for( n = (lastCG==1?lastNZPosInCG:groupSize-1) ; n >= 0; --n ) |
---|
1017 | { |
---|
1018 | UInt blkPos = codingParameters.scan[ n+subPos ]; |
---|
1019 | if(pQCoef[ blkPos ] != 0 ) |
---|
1020 | { |
---|
1021 | if(deltaU[blkPos]>0) |
---|
1022 | { |
---|
1023 | curCost = - deltaU[blkPos]; |
---|
1024 | curChange=1 ; |
---|
1025 | } |
---|
1026 | else |
---|
1027 | { |
---|
1028 | //curChange =-1; |
---|
1029 | if(n==firstNZPosInCG && abs(pQCoef[blkPos])==1) |
---|
1030 | { |
---|
1031 | curCost = std::numeric_limits<TCoeff>::max(); |
---|
1032 | } |
---|
1033 | else |
---|
1034 | { |
---|
1035 | curCost = deltaU[blkPos]; |
---|
1036 | curChange =-1; |
---|
1037 | } |
---|
1038 | } |
---|
1039 | } |
---|
1040 | else |
---|
1041 | { |
---|
1042 | if(n<firstNZPosInCG) |
---|
1043 | { |
---|
1044 | UInt thisSignBit = (pCoef[blkPos]>=0?0:1); |
---|
1045 | if(thisSignBit != signbit ) |
---|
1046 | { |
---|
1047 | curCost = std::numeric_limits<TCoeff>::max(); |
---|
1048 | } |
---|
1049 | else |
---|
1050 | { |
---|
1051 | curCost = - (deltaU[blkPos]) ; |
---|
1052 | curChange = 1 ; |
---|
1053 | } |
---|
1054 | } |
---|
1055 | else |
---|
1056 | { |
---|
1057 | curCost = - (deltaU[blkPos]) ; |
---|
1058 | curChange = 1 ; |
---|
1059 | } |
---|
1060 | } |
---|
1061 | |
---|
1062 | if( curCost<minCostInc) |
---|
1063 | { |
---|
1064 | minCostInc = curCost ; |
---|
1065 | finalChange = curChange ; |
---|
1066 | minPos = blkPos ; |
---|
1067 | } |
---|
1068 | } //CG loop |
---|
1069 | |
---|
1070 | if(pQCoef[minPos] == entropyCodingMaximum || pQCoef[minPos] == entropyCodingMinimum) |
---|
1071 | { |
---|
1072 | finalChange = -1; |
---|
1073 | } |
---|
1074 | |
---|
1075 | if(pCoef[minPos]>=0) |
---|
1076 | { |
---|
1077 | pQCoef[minPos] += finalChange ; |
---|
1078 | } |
---|
1079 | else |
---|
1080 | { |
---|
1081 | pQCoef[minPos] -= finalChange ; |
---|
1082 | } |
---|
1083 | } // Hide |
---|
1084 | } |
---|
1085 | if(lastCG==1) |
---|
1086 | { |
---|
1087 | lastCG=0 ; |
---|
1088 | } |
---|
1089 | } // TU loop |
---|
1090 | |
---|
1091 | return; |
---|
1092 | } |
---|
1093 | |
---|
1094 | |
---|
1095 | Void TComTrQuant::xQuant( TComTU &rTu, |
---|
1096 | TCoeff * pSrc, |
---|
1097 | TCoeff * pDes, |
---|
1098 | #if ADAPTIVE_QP_SELECTION |
---|
1099 | TCoeff *pArlDes, |
---|
1100 | #endif |
---|
1101 | TCoeff &uiAbsSum, |
---|
1102 | const ComponentID compID, |
---|
1103 | const QpParam &cQP ) |
---|
1104 | { |
---|
1105 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1106 | const UInt uiWidth = rect.width; |
---|
1107 | const UInt uiHeight = rect.height; |
---|
1108 | TComDataCU* pcCU = rTu.getCU(); |
---|
1109 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1110 | |
---|
1111 | TCoeff* piCoef = pSrc; |
---|
1112 | TCoeff* piQCoef = pDes; |
---|
1113 | #if ADAPTIVE_QP_SELECTION |
---|
1114 | TCoeff* piArlCCoef = pArlDes; |
---|
1115 | #endif |
---|
1116 | |
---|
1117 | const Bool useTransformSkip = pcCU->getTransformSkip(uiAbsPartIdx, compID); |
---|
1118 | |
---|
1119 | Bool useRDOQ = useTransformSkip ? m_useRDOQTS : m_useRDOQ; |
---|
1120 | if ( useRDOQ && (isLuma(compID) || RDOQ_CHROMA) ) |
---|
1121 | { |
---|
1122 | #if ADAPTIVE_QP_SELECTION |
---|
1123 | xRateDistOptQuant( rTu, piCoef, pDes, pArlDes, uiAbsSum, compID, cQP ); |
---|
1124 | #else |
---|
1125 | xRateDistOptQuant( rTu, piCoef, pDes, uiAbsSum, compID, cQP ); |
---|
1126 | #endif |
---|
1127 | } |
---|
1128 | else |
---|
1129 | { |
---|
1130 | TUEntropyCodingParameters codingParameters; |
---|
1131 | getTUEntropyCodingParameters(codingParameters, rTu, compID); |
---|
1132 | |
---|
1133 | const TCoeff entropyCodingMinimum = -(1 << g_maxTrDynamicRange[toChannelType(compID)]); |
---|
1134 | const TCoeff entropyCodingMaximum = (1 << g_maxTrDynamicRange[toChannelType(compID)]) - 1; |
---|
1135 | |
---|
1136 | TCoeff deltaU[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
1137 | |
---|
1138 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
1139 | |
---|
1140 | Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
1141 | assert(scalingListType < SCALING_LIST_NUM); |
---|
1142 | Int *piQuantCoeff = getQuantCoeff(scalingListType, cQP.rem, uiLog2TrSize-2); |
---|
1143 | |
---|
1144 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0)); |
---|
1145 | const Int defaultQuantisationCoefficient = g_quantScales[cQP.rem]; |
---|
1146 | |
---|
1147 | /* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be |
---|
1148 | * implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the |
---|
1149 | * uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller) |
---|
1150 | * Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result |
---|
1151 | */ |
---|
1152 | |
---|
1153 | // Represents scaling through forward transform |
---|
1154 | Int iTransformShift = getTransformShift(toChannelType(compID), uiLog2TrSize); |
---|
1155 | if (useTransformSkip && pcCU->getSlice()->getSPS()->getUseExtendedPrecision()) |
---|
1156 | { |
---|
1157 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
1158 | } |
---|
1159 | |
---|
1160 | const Int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; |
---|
1161 | // QBits will be OK for any internal bit depth as the reduction in transform shift is balanced by an increase in Qp_per due to QpBDOffset |
---|
1162 | |
---|
1163 | #if ADAPTIVE_QP_SELECTION |
---|
1164 | Int iQBitsC = MAX_INT; |
---|
1165 | Int iAddC = MAX_INT; |
---|
1166 | |
---|
1167 | if (m_bUseAdaptQpSelect) |
---|
1168 | { |
---|
1169 | iQBitsC = iQBits - ARL_C_PRECISION; |
---|
1170 | iAddC = 1 << (iQBitsC-1); |
---|
1171 | } |
---|
1172 | #endif |
---|
1173 | |
---|
1174 | const Int iAdd = (pcCU->getSlice()->getSliceType()==I_SLICE ? 171 : 85) << (iQBits-9); |
---|
1175 | const Int qBits8 = iQBits - 8; |
---|
1176 | |
---|
1177 | for( Int uiBlockPos = 0; uiBlockPos < uiWidth*uiHeight; uiBlockPos++ ) |
---|
1178 | { |
---|
1179 | const TCoeff iLevel = piCoef[uiBlockPos]; |
---|
1180 | const TCoeff iSign = (iLevel < 0 ? -1: 1); |
---|
1181 | |
---|
1182 | const Int64 tmpLevel = (Int64)abs(iLevel) * (enableScalingLists ? piQuantCoeff[uiBlockPos] : defaultQuantisationCoefficient); |
---|
1183 | |
---|
1184 | #if ADAPTIVE_QP_SELECTION |
---|
1185 | if( m_bUseAdaptQpSelect ) |
---|
1186 | { |
---|
1187 | piArlCCoef[uiBlockPos] = (TCoeff)((tmpLevel + iAddC ) >> iQBitsC); |
---|
1188 | } |
---|
1189 | #endif |
---|
1190 | |
---|
1191 | const TCoeff quantisedMagnitude = TCoeff((tmpLevel + iAdd ) >> iQBits); |
---|
1192 | deltaU[uiBlockPos] = (TCoeff)((tmpLevel - (quantisedMagnitude<<iQBits) )>> qBits8); |
---|
1193 | |
---|
1194 | uiAbsSum += quantisedMagnitude; |
---|
1195 | const TCoeff quantisedCoefficient = quantisedMagnitude * iSign; |
---|
1196 | |
---|
1197 | piQCoef[uiBlockPos] = Clip3<TCoeff>( entropyCodingMinimum, entropyCodingMaximum, quantisedCoefficient ); |
---|
1198 | } // for n |
---|
1199 | |
---|
1200 | if( pcCU->getSlice()->getPPS()->getSignHideFlag() ) |
---|
1201 | { |
---|
1202 | if(uiAbsSum >= 2) //this prevents TUs with only one coefficient of value 1 from being tested |
---|
1203 | { |
---|
1204 | signBitHidingHDQ( compID, piQCoef, piCoef, deltaU, codingParameters ) ; |
---|
1205 | } |
---|
1206 | } |
---|
1207 | } //if RDOQ |
---|
1208 | //return; |
---|
1209 | } |
---|
1210 | |
---|
1211 | Void TComTrQuant::xDeQuant( TComTU &rTu, |
---|
1212 | const TCoeff * pSrc, |
---|
1213 | TCoeff * pDes, |
---|
1214 | const ComponentID compID, |
---|
1215 | const QpParam &cQP ) |
---|
1216 | { |
---|
1217 | assert(compID<MAX_NUM_COMPONENT); |
---|
1218 | |
---|
1219 | TComDataCU *pcCU = rTu.getCU(); |
---|
1220 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1221 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1222 | const UInt uiWidth = rect.width; |
---|
1223 | const UInt uiHeight = rect.height; |
---|
1224 | const TCoeff *const piQCoef = pSrc; |
---|
1225 | TCoeff *const piCoef = pDes; |
---|
1226 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
1227 | const UInt numSamplesInBlock = uiWidth*uiHeight; |
---|
1228 | const TCoeff transformMinimum = -(1 << g_maxTrDynamicRange[toChannelType(compID)]); |
---|
1229 | const TCoeff transformMaximum = (1 << g_maxTrDynamicRange[toChannelType(compID)]) - 1; |
---|
1230 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0)); |
---|
1231 | const Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
1232 | |
---|
1233 | assert (scalingListType < SCALING_LIST_NUM); |
---|
1234 | assert ( uiWidth <= m_uiMaxTrSize ); |
---|
1235 | |
---|
1236 | // Represents scaling through forward transform |
---|
1237 | const Bool bClipTransformShiftTo0 = (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0) && pcCU->getSlice()->getSPS()->getUseExtendedPrecision(); |
---|
1238 | const Int originalTransformShift = getTransformShift(toChannelType(compID), uiLog2TrSize); |
---|
1239 | const Int iTransformShift = bClipTransformShiftTo0 ? std::max<Int>(0, originalTransformShift) : originalTransformShift; |
---|
1240 | |
---|
1241 | const Int QP_per = cQP.per; |
---|
1242 | const Int QP_rem = cQP.rem; |
---|
1243 | |
---|
1244 | const Int rightShift = (IQUANT_SHIFT - (iTransformShift + QP_per)) + (enableScalingLists ? LOG2_SCALING_LIST_NEUTRAL_VALUE : 0); |
---|
1245 | |
---|
1246 | if(enableScalingLists) |
---|
1247 | { |
---|
1248 | //from the dequantisation equation: |
---|
1249 | //iCoeffQ = ((Intermediate_Int(clipQCoef) * piDequantCoef[deQuantIdx]) + iAdd ) >> rightShift |
---|
1250 | //(sizeof(Intermediate_Int) * 8) = inputBitDepth + dequantCoefBits - rightShift |
---|
1251 | const UInt dequantCoefBits = 1 + IQUANT_SHIFT + SCALING_LIST_BITS; |
---|
1252 | const UInt targetInputBitDepth = std::min<UInt>((g_maxTrDynamicRange[toChannelType(compID)] + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - dequantCoefBits)); |
---|
1253 | |
---|
1254 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
1255 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
1256 | |
---|
1257 | Int *piDequantCoef = getDequantCoeff(scalingListType,QP_rem,uiLog2TrSize-2); |
---|
1258 | |
---|
1259 | if(rightShift > 0) |
---|
1260 | { |
---|
1261 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
1262 | |
---|
1263 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1264 | { |
---|
1265 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1266 | const Intermediate_Int iCoeffQ = ((Intermediate_Int(clipQCoef) * piDequantCoef[n]) + iAdd ) >> rightShift; |
---|
1267 | |
---|
1268 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1269 | } |
---|
1270 | } |
---|
1271 | else |
---|
1272 | { |
---|
1273 | const Int leftShift = -rightShift; |
---|
1274 | |
---|
1275 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1276 | { |
---|
1277 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1278 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * piDequantCoef[n]) << leftShift; |
---|
1279 | |
---|
1280 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1281 | } |
---|
1282 | } |
---|
1283 | } |
---|
1284 | else |
---|
1285 | { |
---|
1286 | const Int scale = g_invQuantScales[QP_rem]; |
---|
1287 | const Int scaleBits = (IQUANT_SHIFT + 1) ; |
---|
1288 | |
---|
1289 | //from the dequantisation equation: |
---|
1290 | //iCoeffQ = Intermediate_Int((Int64(clipQCoef) * scale + iAdd) >> rightShift); |
---|
1291 | //(sizeof(Intermediate_Int) * 8) = inputBitDepth + scaleBits - rightShift |
---|
1292 | const UInt targetInputBitDepth = std::min<UInt>((g_maxTrDynamicRange[toChannelType(compID)] + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - scaleBits)); |
---|
1293 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
1294 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
1295 | |
---|
1296 | if (rightShift > 0) |
---|
1297 | { |
---|
1298 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
1299 | |
---|
1300 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1301 | { |
---|
1302 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1303 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale + iAdd) >> rightShift; |
---|
1304 | |
---|
1305 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1306 | } |
---|
1307 | } |
---|
1308 | else |
---|
1309 | { |
---|
1310 | const Int leftShift = -rightShift; |
---|
1311 | |
---|
1312 | for( Int n = 0; n < numSamplesInBlock; n++ ) |
---|
1313 | { |
---|
1314 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, piQCoef[n])); |
---|
1315 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale) << leftShift; |
---|
1316 | |
---|
1317 | piCoef[n] = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
1318 | } |
---|
1319 | } |
---|
1320 | } |
---|
1321 | } |
---|
1322 | |
---|
1323 | |
---|
1324 | Void TComTrQuant::init( UInt uiMaxTrSize, |
---|
1325 | Bool bUseRDOQ, |
---|
1326 | Bool bUseRDOQTS, |
---|
1327 | Bool bEnc, |
---|
1328 | Bool useTransformSkipFast |
---|
1329 | #if ADAPTIVE_QP_SELECTION |
---|
1330 | , Bool bUseAdaptQpSelect |
---|
1331 | #endif |
---|
1332 | ) |
---|
1333 | { |
---|
1334 | m_uiMaxTrSize = uiMaxTrSize; |
---|
1335 | m_bEnc = bEnc; |
---|
1336 | m_useRDOQ = bUseRDOQ; |
---|
1337 | m_useRDOQTS = bUseRDOQTS; |
---|
1338 | #if ADAPTIVE_QP_SELECTION |
---|
1339 | m_bUseAdaptQpSelect = bUseAdaptQpSelect; |
---|
1340 | #endif |
---|
1341 | m_useTransformSkipFast = useTransformSkipFast; |
---|
1342 | } |
---|
1343 | |
---|
1344 | |
---|
1345 | Void TComTrQuant::transformNxN( TComTU & rTu, |
---|
1346 | const ComponentID compID, |
---|
1347 | Pel * pcResidual, |
---|
1348 | const UInt uiStride, |
---|
1349 | TCoeff * rpcCoeff, |
---|
1350 | #if ADAPTIVE_QP_SELECTION |
---|
1351 | TCoeff * pcArlCoeff, |
---|
1352 | #endif |
---|
1353 | TCoeff & uiAbsSum, |
---|
1354 | const QpParam & cQP |
---|
1355 | ) |
---|
1356 | { |
---|
1357 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1358 | const UInt uiWidth = rect.width; |
---|
1359 | const UInt uiHeight = rect.height; |
---|
1360 | TComDataCU* pcCU = rTu.getCU(); |
---|
1361 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1362 | const UInt uiOrgTrDepth = rTu.GetTransformDepthRel(); |
---|
1363 | |
---|
1364 | uiAbsSum=0; |
---|
1365 | |
---|
1366 | RDPCMMode rdpcmMode = RDPCM_OFF; |
---|
1367 | rdpcmNxN( rTu, compID, pcResidual, uiStride, cQP, rpcCoeff, uiAbsSum, rdpcmMode ); |
---|
1368 | |
---|
1369 | if (rdpcmMode == RDPCM_OFF) |
---|
1370 | { |
---|
1371 | uiAbsSum = 0; |
---|
1372 | //transform and quantise |
---|
1373 | if(pcCU->getCUTransquantBypass(uiAbsPartIdx)) |
---|
1374 | { |
---|
1375 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(compID); |
---|
1376 | const UInt uiSizeMinus1 = (uiWidth * uiHeight) - 1; |
---|
1377 | |
---|
1378 | for (UInt y = 0, coefficientIndex = 0; y<uiHeight; y++) |
---|
1379 | { |
---|
1380 | for (UInt x = 0; x<uiWidth; x++, coefficientIndex++) |
---|
1381 | { |
---|
1382 | const Pel currentSample = pcResidual[(y * uiStride) + x]; |
---|
1383 | |
---|
1384 | rpcCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] = currentSample; |
---|
1385 | uiAbsSum += TCoeff(abs(currentSample)); |
---|
1386 | } |
---|
1387 | } |
---|
1388 | } |
---|
1389 | else |
---|
1390 | { |
---|
1391 | #ifdef DEBUG_TRANSFORM_AND_QUANTISE |
---|
1392 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at input to transform\n"; |
---|
1393 | printBlock(pcResidual, uiWidth, uiHeight, uiStride); |
---|
1394 | #endif |
---|
1395 | |
---|
1396 | assert( (pcCU->getSlice()->getSPS()->getMaxTrSize() >= uiWidth) ); |
---|
1397 | |
---|
1398 | if(pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0) |
---|
1399 | { |
---|
1400 | xTransformSkip( pcResidual, uiStride, m_plTempCoeff, rTu, compID ); |
---|
1401 | } |
---|
1402 | else |
---|
1403 | { |
---|
1404 | xT( compID, rTu.useDST(compID), pcResidual, uiStride, m_plTempCoeff, uiWidth, uiHeight ); |
---|
1405 | } |
---|
1406 | |
---|
1407 | #ifdef DEBUG_TRANSFORM_AND_QUANTISE |
---|
1408 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU between transform and quantiser\n"; |
---|
1409 | printBlock(m_plTempCoeff, uiWidth, uiHeight, uiWidth); |
---|
1410 | #endif |
---|
1411 | |
---|
1412 | xQuant( rTu, m_plTempCoeff, rpcCoeff, |
---|
1413 | |
---|
1414 | #if ADAPTIVE_QP_SELECTION |
---|
1415 | pcArlCoeff, |
---|
1416 | #endif |
---|
1417 | uiAbsSum, compID, cQP ); |
---|
1418 | |
---|
1419 | #ifdef DEBUG_TRANSFORM_AND_QUANTISE |
---|
1420 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at output of quantiser\n"; |
---|
1421 | printBlock(rpcCoeff, uiWidth, uiHeight, uiWidth); |
---|
1422 | #endif |
---|
1423 | } |
---|
1424 | } |
---|
1425 | |
---|
1426 | //set the CBF |
---|
1427 | pcCU->setCbfPartRange((((uiAbsSum > 0) ? 1 : 0) << uiOrgTrDepth), compID, uiAbsPartIdx, rTu.GetAbsPartIdxNumParts(compID)); |
---|
1428 | } |
---|
1429 | |
---|
1430 | |
---|
1431 | Void TComTrQuant::invTransformNxN( TComTU &rTu, |
---|
1432 | const ComponentID compID, |
---|
1433 | Pel *pcResidual, |
---|
1434 | const UInt uiStride, |
---|
1435 | TCoeff * pcCoeff, |
---|
1436 | const QpParam &cQP |
---|
1437 | DEBUG_STRING_FN_DECLAREP(psDebug)) |
---|
1438 | { |
---|
1439 | TComDataCU* pcCU=rTu.getCU(); |
---|
1440 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1441 | const TComRectangle &rect = rTu.getRect(compID); |
---|
1442 | const UInt uiWidth = rect.width; |
---|
1443 | const UInt uiHeight = rect.height; |
---|
1444 | |
---|
1445 | if (uiWidth != uiHeight) //for intra, the TU will have been split above this level, so this condition won't be true, hence this only affects inter |
---|
1446 | { |
---|
1447 | //------------------------------------------------ |
---|
1448 | |
---|
1449 | //recurse deeper |
---|
1450 | |
---|
1451 | TComTURecurse subTURecurse(rTu, false, TComTU::VERTICAL_SPLIT, true, compID); |
---|
1452 | |
---|
1453 | do |
---|
1454 | { |
---|
1455 | //------------------ |
---|
1456 | |
---|
1457 | const UInt lineOffset = subTURecurse.GetSectionNumber() * subTURecurse.getRect(compID).height; |
---|
1458 | |
---|
1459 | Pel *subTUResidual = pcResidual + (lineOffset * uiStride); |
---|
1460 | TCoeff *subTUCoefficients = pcCoeff + (lineOffset * subTURecurse.getRect(compID).width); |
---|
1461 | |
---|
1462 | invTransformNxN(subTURecurse, compID, subTUResidual, uiStride, subTUCoefficients, cQP DEBUG_STRING_PASS_INTO(psDebug)); |
---|
1463 | |
---|
1464 | //------------------ |
---|
1465 | |
---|
1466 | } |
---|
1467 | while (subTURecurse.nextSection(rTu)); |
---|
1468 | |
---|
1469 | //------------------------------------------------ |
---|
1470 | |
---|
1471 | return; |
---|
1472 | } |
---|
1473 | |
---|
1474 | #if defined DEBUG_STRING |
---|
1475 | if (psDebug) |
---|
1476 | { |
---|
1477 | std::stringstream ss(stringstream::out); |
---|
1478 | printBlockToStream(ss, (compID==0)?"###InvTran ip Ch0: " : ((compID==1)?"###InvTran ip Ch1: ":"###InvTran ip Ch2: "), pcCoeff, uiWidth, uiHeight, uiWidth); |
---|
1479 | DEBUG_STRING_APPEND((*psDebug), ss.str()) |
---|
1480 | } |
---|
1481 | #endif |
---|
1482 | |
---|
1483 | if(pcCU->getCUTransquantBypass(uiAbsPartIdx)) |
---|
1484 | { |
---|
1485 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(compID); |
---|
1486 | const UInt uiSizeMinus1 = (uiWidth * uiHeight) - 1; |
---|
1487 | |
---|
1488 | for (UInt y = 0, coefficientIndex = 0; y<uiHeight; y++) |
---|
1489 | { |
---|
1490 | for (UInt x = 0; x<uiWidth; x++, coefficientIndex++) |
---|
1491 | { |
---|
1492 | pcResidual[(y * uiStride) + x] = Pel(pcCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex]); |
---|
1493 | } |
---|
1494 | } |
---|
1495 | } |
---|
1496 | else |
---|
1497 | { |
---|
1498 | #ifdef DEBUG_TRANSFORM_AND_QUANTISE |
---|
1499 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at input to dequantiser\n"; |
---|
1500 | printBlock(pcCoeff, uiWidth, uiHeight, uiWidth); |
---|
1501 | #endif |
---|
1502 | |
---|
1503 | xDeQuant(rTu, pcCoeff, m_plTempCoeff, compID, cQP); |
---|
1504 | |
---|
1505 | #ifdef DEBUG_TRANSFORM_AND_QUANTISE |
---|
1506 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU between dequantiser and inverse-transform\n"; |
---|
1507 | printBlock(m_plTempCoeff, uiWidth, uiHeight, uiWidth); |
---|
1508 | #endif |
---|
1509 | |
---|
1510 | #if defined DEBUG_STRING |
---|
1511 | if (psDebug) |
---|
1512 | { |
---|
1513 | std::stringstream ss(stringstream::out); |
---|
1514 | printBlockToStream(ss, "###InvTran deq: ", m_plTempCoeff, uiWidth, uiHeight, uiWidth); |
---|
1515 | (*psDebug)+=ss.str(); |
---|
1516 | } |
---|
1517 | #endif |
---|
1518 | |
---|
1519 | if(pcCU->getTransformSkip(uiAbsPartIdx, compID)) |
---|
1520 | { |
---|
1521 | xITransformSkip( m_plTempCoeff, pcResidual, uiStride, rTu, compID ); |
---|
1522 | |
---|
1523 | #if defined DEBUG_STRING |
---|
1524 | if (psDebug) |
---|
1525 | { |
---|
1526 | std::stringstream ss(stringstream::out); |
---|
1527 | printBlockToStream(ss, "###InvTran resi: ", pcResidual, uiWidth, uiHeight, uiStride); |
---|
1528 | (*psDebug)+=ss.str(); |
---|
1529 | (*psDebug)+="(<- was a Transform-skipped block)\n"; |
---|
1530 | } |
---|
1531 | #endif |
---|
1532 | } |
---|
1533 | else |
---|
1534 | { |
---|
1535 | xIT( compID, rTu.useDST(compID), m_plTempCoeff, pcResidual, uiStride, uiWidth, uiHeight ); |
---|
1536 | |
---|
1537 | #if defined DEBUG_STRING |
---|
1538 | if (psDebug) |
---|
1539 | { |
---|
1540 | std::stringstream ss(stringstream::out); |
---|
1541 | printBlockToStream(ss, "###InvTran resi: ", pcResidual, uiWidth, uiHeight, uiStride); |
---|
1542 | (*psDebug)+=ss.str(); |
---|
1543 | (*psDebug)+="(<- was a Transformed block)\n"; |
---|
1544 | } |
---|
1545 | #endif |
---|
1546 | } |
---|
1547 | |
---|
1548 | #ifdef DEBUG_TRANSFORM_AND_QUANTISE |
---|
1549 | std::cout << g_debugCounter << ": " << uiWidth << "x" << uiHeight << " channel " << compID << " TU at output of inverse-transform\n"; |
---|
1550 | printBlock(pcResidual, uiWidth, uiHeight, uiStride); |
---|
1551 | g_debugCounter++; |
---|
1552 | #endif |
---|
1553 | } |
---|
1554 | |
---|
1555 | invRdpcmNxN( rTu, compID, pcResidual, uiStride ); |
---|
1556 | } |
---|
1557 | |
---|
1558 | Void TComTrQuant::invRecurTransformNxN( const ComponentID compID, |
---|
1559 | TComYuv *pResidual, |
---|
1560 | TComTU &rTu) |
---|
1561 | { |
---|
1562 | if (!rTu.ProcessComponentSection(compID)) return; |
---|
1563 | |
---|
1564 | TComDataCU* pcCU = rTu.getCU(); |
---|
1565 | UInt absPartIdxTU = rTu.GetAbsPartIdxTU(); |
---|
1566 | UInt uiTrMode=rTu.GetTransformDepthRel(); |
---|
1567 | if( (pcCU->getCbf(absPartIdxTU, compID, uiTrMode) == 0) && (isLuma(compID) || !pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction()) ) |
---|
1568 | { |
---|
1569 | return; |
---|
1570 | } |
---|
1571 | |
---|
1572 | if( uiTrMode == pcCU->getTransformIdx( absPartIdxTU ) ) |
---|
1573 | { |
---|
1574 | const TComRectangle &tuRect = rTu.getRect(compID); |
---|
1575 | const Int uiStride = pResidual->getStride( compID ); |
---|
1576 | Pel *rpcResidual = pResidual->getAddr( compID ); |
---|
1577 | UInt uiAddr = (tuRect.x0 + uiStride*tuRect.y0); |
---|
1578 | Pel *pResi = rpcResidual + uiAddr; |
---|
1579 | TCoeff *pcCoeff = pcCU->getCoeff(compID) + rTu.getCoefficientOffset(compID); |
---|
1580 | |
---|
1581 | const QpParam cQP(*pcCU, compID); |
---|
1582 | |
---|
1583 | if(pcCU->getCbf(absPartIdxTU, compID, uiTrMode) != 0) |
---|
1584 | { |
---|
1585 | DEBUG_STRING_NEW(sTemp) |
---|
1586 | #ifdef DEBUG_STRING |
---|
1587 | std::string *psDebug=((DebugOptionList::DebugString_InvTran.getInt()&(pcCU->isIntra(absPartIdxTU)?1:(pcCU->isInter(absPartIdxTU)?2:4)))!=0) ? &sTemp : 0; |
---|
1588 | #endif |
---|
1589 | |
---|
1590 | invTransformNxN( rTu, compID, pResi, uiStride, pcCoeff, cQP DEBUG_STRING_PASS_INTO(psDebug) ); |
---|
1591 | |
---|
1592 | #ifdef DEBUG_STRING |
---|
1593 | if (psDebug != 0) |
---|
1594 | std::cout << (*psDebug); |
---|
1595 | #endif |
---|
1596 | } |
---|
1597 | |
---|
1598 | if (isChroma(compID) && (pcCU->getCrossComponentPredictionAlpha(absPartIdxTU, compID) != 0)) |
---|
1599 | { |
---|
1600 | const Pel *piResiLuma = pResidual->getAddr( COMPONENT_Y ); |
---|
1601 | const Int strideLuma = pResidual->getStride( COMPONENT_Y ); |
---|
1602 | const Int tuWidth = rTu.getRect( compID ).width; |
---|
1603 | const Int tuHeight = rTu.getRect( compID ).height; |
---|
1604 | |
---|
1605 | if(pcCU->getCbf(absPartIdxTU, COMPONENT_Y, uiTrMode) != 0) |
---|
1606 | { |
---|
1607 | pResi = rpcResidual + uiAddr; |
---|
1608 | const Pel *pResiLuma = piResiLuma + uiAddr; |
---|
1609 | |
---|
1610 | crossComponentPrediction( rTu, compID, pResiLuma, pResi, pResi, tuWidth, tuHeight, strideLuma, uiStride, uiStride, true ); |
---|
1611 | } |
---|
1612 | } |
---|
1613 | } |
---|
1614 | else |
---|
1615 | { |
---|
1616 | TComTURecurse tuRecurseChild(rTu, false); |
---|
1617 | do |
---|
1618 | { |
---|
1619 | invRecurTransformNxN( compID, pResidual, tuRecurseChild ); |
---|
1620 | } |
---|
1621 | while (tuRecurseChild.nextSection(rTu)); |
---|
1622 | } |
---|
1623 | } |
---|
1624 | |
---|
1625 | Void TComTrQuant::applyForwardRDPCM( TComTU& rTu, const ComponentID compID, Pel* pcResidual, const UInt uiStride, const QpParam& cQP, TCoeff* pcCoeff, TCoeff &uiAbsSum, const RDPCMMode mode ) |
---|
1626 | { |
---|
1627 | TComDataCU *pcCU=rTu.getCU(); |
---|
1628 | const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); |
---|
1629 | |
---|
1630 | const Bool bLossless = pcCU->getCUTransquantBypass( uiAbsPartIdx ); |
---|
1631 | const UInt uiWidth = rTu.getRect(compID).width; |
---|
1632 | const UInt uiHeight = rTu.getRect(compID).height; |
---|
1633 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(compID); |
---|
1634 | const UInt uiSizeMinus1 = (uiWidth * uiHeight) - 1; |
---|
1635 | |
---|
1636 | Pel reconstructedResi[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
1637 | |
---|
1638 | UInt uiX = 0; |
---|
1639 | UInt uiY = 0; |
---|
1640 | |
---|
1641 | UInt &majorAxis = (mode == RDPCM_HOR) ? uiX : uiY; |
---|
1642 | UInt &minorAxis = (mode == RDPCM_HOR) ? uiY : uiX; |
---|
1643 | const UInt majorAxisLimit = (mode == RDPCM_HOR) ? uiWidth : uiHeight; |
---|
1644 | const UInt minorAxisLimit = (mode == RDPCM_HOR) ? uiHeight : uiWidth; |
---|
1645 | const UInt referenceSampleOffset = (mode == RDPCM_HOR) ? 1 : uiWidth; |
---|
1646 | |
---|
1647 | const Bool bUseHalfRoundingPoint = (mode != RDPCM_OFF); |
---|
1648 | |
---|
1649 | uiAbsSum = 0; |
---|
1650 | |
---|
1651 | for ( majorAxis = 0; majorAxis < majorAxisLimit; majorAxis++ ) |
---|
1652 | { |
---|
1653 | for ( minorAxis = 0; minorAxis < minorAxisLimit; minorAxis++ ) |
---|
1654 | { |
---|
1655 | const UInt sampleIndex = (uiY * uiWidth) + uiX; |
---|
1656 | const UInt coefficientIndex = (rotateResidual ? (uiSizeMinus1-sampleIndex) : sampleIndex); |
---|
1657 | const Pel currentSample = pcResidual[(uiY * uiStride) + uiX]; |
---|
1658 | const Pel referenceSample = ((mode != RDPCM_OFF) && (majorAxis > 0)) ? reconstructedResi[sampleIndex - referenceSampleOffset] : 0; |
---|
1659 | |
---|
1660 | const Pel encoderSideDelta = currentSample - referenceSample; |
---|
1661 | |
---|
1662 | Pel reconstructedDelta; |
---|
1663 | if ( bLossless ) |
---|
1664 | { |
---|
1665 | pcCoeff[coefficientIndex] = encoderSideDelta; |
---|
1666 | reconstructedDelta = encoderSideDelta; |
---|
1667 | } |
---|
1668 | else |
---|
1669 | { |
---|
1670 | transformSkipQuantOneSample(rTu, compID, encoderSideDelta, pcCoeff, coefficientIndex, cQP, bUseHalfRoundingPoint); |
---|
1671 | invTrSkipDeQuantOneSample (rTu, compID, pcCoeff[coefficientIndex], reconstructedDelta, cQP, coefficientIndex); |
---|
1672 | } |
---|
1673 | |
---|
1674 | uiAbsSum += abs(pcCoeff[coefficientIndex]); |
---|
1675 | |
---|
1676 | reconstructedResi[sampleIndex] = reconstructedDelta + referenceSample; |
---|
1677 | } |
---|
1678 | } |
---|
1679 | } |
---|
1680 | |
---|
1681 | Void TComTrQuant::rdpcmNxN ( TComTU& rTu, const ComponentID compID, Pel* pcResidual, const UInt uiStride, const QpParam& cQP, TCoeff* pcCoeff, TCoeff &uiAbsSum, RDPCMMode& rdpcmMode ) |
---|
1682 | { |
---|
1683 | TComDataCU *pcCU=rTu.getCU(); |
---|
1684 | const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); |
---|
1685 | |
---|
1686 | if (!pcCU->isRDPCMEnabled(uiAbsPartIdx) || ((pcCU->getTransformSkip(uiAbsPartIdx, compID) == 0) && !pcCU->getCUTransquantBypass(uiAbsPartIdx))) |
---|
1687 | { |
---|
1688 | rdpcmMode = RDPCM_OFF; |
---|
1689 | } |
---|
1690 | else if ( pcCU->isIntra( uiAbsPartIdx ) ) |
---|
1691 | { |
---|
1692 | const ChromaFormat chFmt = pcCU->getPic()->getPicYuvOrg()->getChromaFormat(); |
---|
1693 | const ChannelType chType = toChannelType(compID); |
---|
1694 | const UInt uiChPredMode = pcCU->getIntraDir( chType, uiAbsPartIdx ); |
---|
1695 | const UInt uiChCodedMode = (uiChPredMode==DM_CHROMA_IDX && isChroma(compID)) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, chFmt)) : uiChPredMode; |
---|
1696 | const UInt uiChFinalMode = ((chFmt == CHROMA_422) && isChroma(compID)) ? g_chroma422IntraAngleMappingTable[uiChCodedMode] : uiChCodedMode; |
---|
1697 | |
---|
1698 | if (uiChFinalMode == VER_IDX || uiChFinalMode == HOR_IDX) |
---|
1699 | { |
---|
1700 | rdpcmMode = (uiChFinalMode == VER_IDX) ? RDPCM_VER : RDPCM_HOR; |
---|
1701 | applyForwardRDPCM( rTu, compID, pcResidual, uiStride, cQP, pcCoeff, uiAbsSum, rdpcmMode ); |
---|
1702 | } |
---|
1703 | else rdpcmMode = RDPCM_OFF; |
---|
1704 | } |
---|
1705 | else // not intra, need to select the best mode |
---|
1706 | { |
---|
1707 | const UInt uiWidth = rTu.getRect(compID).width; |
---|
1708 | const UInt uiHeight = rTu.getRect(compID).height; |
---|
1709 | |
---|
1710 | RDPCMMode bestMode = NUMBER_OF_RDPCM_MODES; |
---|
1711 | TCoeff bestAbsSum = std::numeric_limits<TCoeff>::max(); |
---|
1712 | TCoeff bestCoefficients[MAX_TU_SIZE * MAX_TU_SIZE]; |
---|
1713 | |
---|
1714 | for (UInt modeIndex = 0; modeIndex < NUMBER_OF_RDPCM_MODES; modeIndex++) |
---|
1715 | { |
---|
1716 | const RDPCMMode mode = RDPCMMode(modeIndex); |
---|
1717 | |
---|
1718 | TCoeff currAbsSum = 0; |
---|
1719 | |
---|
1720 | applyForwardRDPCM( rTu, compID, pcResidual, uiStride, cQP, pcCoeff, currAbsSum, mode ); |
---|
1721 | |
---|
1722 | if (currAbsSum < bestAbsSum) |
---|
1723 | { |
---|
1724 | bestMode = mode; |
---|
1725 | bestAbsSum = currAbsSum; |
---|
1726 | if (mode != RDPCM_OFF) |
---|
1727 | { |
---|
1728 | memcpy(bestCoefficients, pcCoeff, (uiWidth * uiHeight * sizeof(TCoeff))); |
---|
1729 | } |
---|
1730 | } |
---|
1731 | } |
---|
1732 | |
---|
1733 | rdpcmMode = bestMode; |
---|
1734 | uiAbsSum = bestAbsSum; |
---|
1735 | |
---|
1736 | if (rdpcmMode != RDPCM_OFF) //the TU is re-transformed and quantised if DPCM_OFF is returned, so there is no need to preserve it here |
---|
1737 | { |
---|
1738 | memcpy(pcCoeff, bestCoefficients, (uiWidth * uiHeight * sizeof(TCoeff))); |
---|
1739 | } |
---|
1740 | } |
---|
1741 | |
---|
1742 | pcCU->setExplicitRdpcmModePartRange(rdpcmMode, compID, uiAbsPartIdx, rTu.GetAbsPartIdxNumParts(compID)); |
---|
1743 | } |
---|
1744 | |
---|
1745 | Void TComTrQuant::invRdpcmNxN( TComTU& rTu, const ComponentID compID, Pel* pcResidual, const UInt uiStride ) |
---|
1746 | { |
---|
1747 | TComDataCU *pcCU=rTu.getCU(); |
---|
1748 | const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); |
---|
1749 | |
---|
1750 | if (pcCU->isRDPCMEnabled( uiAbsPartIdx ) && ((pcCU->getTransformSkip(uiAbsPartIdx, compID ) != 0) || pcCU->getCUTransquantBypass(uiAbsPartIdx))) |
---|
1751 | { |
---|
1752 | const UInt uiWidth = rTu.getRect(compID).width; |
---|
1753 | const UInt uiHeight = rTu.getRect(compID).height; |
---|
1754 | |
---|
1755 | RDPCMMode rdpcmMode = RDPCM_OFF; |
---|
1756 | |
---|
1757 | if ( pcCU->isIntra( uiAbsPartIdx ) ) |
---|
1758 | { |
---|
1759 | const ChromaFormat chFmt = pcCU->getPic()->getPicYuvRec()->getChromaFormat(); |
---|
1760 | const ChannelType chType = toChannelType(compID); |
---|
1761 | const UInt uiChPredMode = pcCU->getIntraDir( chType, uiAbsPartIdx ); |
---|
1762 | const UInt uiChCodedMode = (uiChPredMode==DM_CHROMA_IDX && isChroma(compID)) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, chFmt)) : uiChPredMode; |
---|
1763 | const UInt uiChFinalMode = ((chFmt == CHROMA_422) && isChroma(compID)) ? g_chroma422IntraAngleMappingTable[uiChCodedMode] : uiChCodedMode; |
---|
1764 | |
---|
1765 | if (uiChFinalMode == VER_IDX || uiChFinalMode == HOR_IDX) |
---|
1766 | { |
---|
1767 | rdpcmMode = (uiChFinalMode == VER_IDX) ? RDPCM_VER : RDPCM_HOR; |
---|
1768 | } |
---|
1769 | } |
---|
1770 | else // not intra case |
---|
1771 | { |
---|
1772 | rdpcmMode = RDPCMMode(pcCU->getExplicitRdpcmMode( compID, uiAbsPartIdx )); |
---|
1773 | } |
---|
1774 | |
---|
1775 | if (rdpcmMode == RDPCM_VER) |
---|
1776 | { |
---|
1777 | pcResidual += uiStride; //start from row 1 |
---|
1778 | |
---|
1779 | for( UInt uiY = 1; uiY < uiHeight; uiY++ ) |
---|
1780 | { |
---|
1781 | for( UInt uiX = 0; uiX < uiWidth; uiX++ ) |
---|
1782 | { |
---|
1783 | pcResidual[ uiX ] = pcResidual[ uiX ] + pcResidual [ (Int)uiX - (Int)uiStride ]; |
---|
1784 | } |
---|
1785 | pcResidual += uiStride; |
---|
1786 | } |
---|
1787 | } |
---|
1788 | else if (rdpcmMode == RDPCM_HOR) |
---|
1789 | { |
---|
1790 | for( UInt uiY = 0; uiY < uiHeight; uiY++ ) |
---|
1791 | { |
---|
1792 | for( UInt uiX = 1; uiX < uiWidth; uiX++ ) |
---|
1793 | { |
---|
1794 | pcResidual[ uiX ] = pcResidual[ uiX ] + pcResidual [ (Int)uiX-1 ]; |
---|
1795 | } |
---|
1796 | pcResidual += uiStride; |
---|
1797 | } |
---|
1798 | } |
---|
1799 | } |
---|
1800 | } |
---|
1801 | |
---|
1802 | // ------------------------------------------------------------------------------------------------ |
---|
1803 | // Logical transform |
---|
1804 | // ------------------------------------------------------------------------------------------------ |
---|
1805 | |
---|
1806 | /** Wrapper function between HM interface and core NxN forward transform (2D) |
---|
1807 | * \param piBlkResi input data (residual) |
---|
1808 | * \param psCoeff output data (transform coefficients) |
---|
1809 | * \param uiStride stride of input residual data |
---|
1810 | * \param iSize transform size (iSize x iSize) |
---|
1811 | * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only |
---|
1812 | */ |
---|
1813 | Void TComTrQuant::xT( const ComponentID compID, Bool useDST, Pel* piBlkResi, UInt uiStride, TCoeff* psCoeff, Int iWidth, Int iHeight ) |
---|
1814 | { |
---|
1815 | #if MATRIX_MULT |
---|
1816 | if( iWidth == iHeight) |
---|
1817 | { |
---|
1818 | xTr(g_bitDepth[toChannelType(compID)], piBlkResi, psCoeff, uiStride, (UInt)iWidth, useDST, g_maxTrDynamicRange[toChannelType(compID)]); |
---|
1819 | return; |
---|
1820 | } |
---|
1821 | #endif |
---|
1822 | |
---|
1823 | TCoeff block[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
1824 | TCoeff coeff[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
1825 | |
---|
1826 | for (Int y = 0; y < iHeight; y++) |
---|
1827 | for (Int x = 0; x < iWidth; x++) |
---|
1828 | { |
---|
1829 | block[(y * iWidth) + x] = piBlkResi[(y * uiStride) + x]; |
---|
1830 | } |
---|
1831 | |
---|
1832 | xTrMxN( g_bitDepth[toChannelType(compID)], block, coeff, iWidth, iHeight, useDST, g_maxTrDynamicRange[toChannelType(compID)] ); |
---|
1833 | |
---|
1834 | memcpy(psCoeff, coeff, (iWidth * iHeight * sizeof(TCoeff))); |
---|
1835 | } |
---|
1836 | |
---|
1837 | /** Wrapper function between HM interface and core NxN inverse transform (2D) |
---|
1838 | * \param plCoef input data (transform coefficients) |
---|
1839 | * \param pResidual output data (residual) |
---|
1840 | * \param uiStride stride of input residual data |
---|
1841 | * \param iSize transform size (iSize x iSize) |
---|
1842 | * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only |
---|
1843 | */ |
---|
1844 | Void TComTrQuant::xIT( const ComponentID compID, Bool useDST, TCoeff* plCoef, Pel* pResidual, UInt uiStride, Int iWidth, Int iHeight ) |
---|
1845 | { |
---|
1846 | #if MATRIX_MULT |
---|
1847 | if( iWidth == iHeight ) |
---|
1848 | { |
---|
1849 | #if O0043_BEST_EFFORT_DECODING |
---|
1850 | xITr(g_bitDepthInStream[toChannelType(compID)], plCoef, pResidual, uiStride, (UInt)iWidth, useDST, g_maxTrDynamicRange[toChannelType(compID)]); |
---|
1851 | #else |
---|
1852 | xITr(g_bitDepth[toChannelType(compID)], plCoef, pResidual, uiStride, (UInt)iWidth, useDST, g_maxTrDynamicRange[toChannelType(compID)]); |
---|
1853 | #endif |
---|
1854 | return; |
---|
1855 | } |
---|
1856 | #endif |
---|
1857 | |
---|
1858 | TCoeff block[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
1859 | TCoeff coeff[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
1860 | |
---|
1861 | memcpy(coeff, plCoef, (iWidth * iHeight * sizeof(TCoeff))); |
---|
1862 | |
---|
1863 | #if O0043_BEST_EFFORT_DECODING |
---|
1864 | xITrMxN( g_bitDepthInStream[toChannelType(compID)], coeff, block, iWidth, iHeight, useDST, g_maxTrDynamicRange[toChannelType(compID)] ); |
---|
1865 | #else |
---|
1866 | xITrMxN( g_bitDepth[toChannelType(compID)], coeff, block, iWidth, iHeight, useDST, g_maxTrDynamicRange[toChannelType(compID)] ); |
---|
1867 | #endif |
---|
1868 | |
---|
1869 | for (Int y = 0; y < iHeight; y++) |
---|
1870 | for (Int x = 0; x < iWidth; x++) |
---|
1871 | { |
---|
1872 | pResidual[(y * uiStride) + x] = Pel(block[(y * iWidth) + x]); |
---|
1873 | } |
---|
1874 | } |
---|
1875 | |
---|
1876 | /** Wrapper function between HM interface and core 4x4 transform skipping |
---|
1877 | * \param piBlkResi input data (residual) |
---|
1878 | * \param psCoeff output data (transform coefficients) |
---|
1879 | * \param uiStride stride of input residual data |
---|
1880 | * \param iSize transform size (iSize x iSize) |
---|
1881 | */ |
---|
1882 | Void TComTrQuant::xTransformSkip( Pel* piBlkResi, UInt uiStride, TCoeff* psCoeff, TComTU &rTu, const ComponentID component ) |
---|
1883 | { |
---|
1884 | const TComRectangle &rect = rTu.getRect(component); |
---|
1885 | const Int width = rect.width; |
---|
1886 | const Int height = rect.height; |
---|
1887 | |
---|
1888 | Int iTransformShift = getTransformShift(toChannelType(component), rTu.GetEquivalentLog2TrSize(component)); |
---|
1889 | if (rTu.getCU()->getSlice()->getSPS()->getUseExtendedPrecision()) |
---|
1890 | { |
---|
1891 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
1892 | } |
---|
1893 | |
---|
1894 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(component); |
---|
1895 | const UInt uiSizeMinus1 = (width * height) - 1; |
---|
1896 | |
---|
1897 | if (iTransformShift >= 0) |
---|
1898 | { |
---|
1899 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
1900 | { |
---|
1901 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
1902 | { |
---|
1903 | psCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] = TCoeff(piBlkResi[(y * uiStride) + x]) << iTransformShift; |
---|
1904 | } |
---|
1905 | } |
---|
1906 | } |
---|
1907 | else //for very high bit depths |
---|
1908 | { |
---|
1909 | iTransformShift = -iTransformShift; |
---|
1910 | const TCoeff offset = 1 << (iTransformShift - 1); |
---|
1911 | |
---|
1912 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
1913 | { |
---|
1914 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
1915 | { |
---|
1916 | psCoeff[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] = (TCoeff(piBlkResi[(y * uiStride) + x]) + offset) >> iTransformShift; |
---|
1917 | } |
---|
1918 | } |
---|
1919 | } |
---|
1920 | } |
---|
1921 | |
---|
1922 | /** Wrapper function between HM interface and core NxN transform skipping |
---|
1923 | * \param plCoef input data (coefficients) |
---|
1924 | * \param pResidual output data (residual) |
---|
1925 | * \param uiStride stride of input residual data |
---|
1926 | * \param iSize transform size (iSize x iSize) |
---|
1927 | */ |
---|
1928 | Void TComTrQuant::xITransformSkip( TCoeff* plCoef, Pel* pResidual, UInt uiStride, TComTU &rTu, const ComponentID component ) |
---|
1929 | { |
---|
1930 | const TComRectangle &rect = rTu.getRect(component); |
---|
1931 | const Int width = rect.width; |
---|
1932 | const Int height = rect.height; |
---|
1933 | |
---|
1934 | Int iTransformShift = getTransformShift(toChannelType(component), rTu.GetEquivalentLog2TrSize(component)); |
---|
1935 | if (rTu.getCU()->getSlice()->getSPS()->getUseExtendedPrecision()) |
---|
1936 | { |
---|
1937 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
1938 | } |
---|
1939 | |
---|
1940 | const Bool rotateResidual = rTu.isNonTransformedResidualRotated(component); |
---|
1941 | const UInt uiSizeMinus1 = (width * height) - 1; |
---|
1942 | |
---|
1943 | if (iTransformShift >= 0) |
---|
1944 | { |
---|
1945 | const TCoeff offset = iTransformShift==0 ? 0 : (1 << (iTransformShift - 1)); |
---|
1946 | |
---|
1947 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
1948 | { |
---|
1949 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
1950 | { |
---|
1951 | pResidual[(y * uiStride) + x] = Pel((plCoef[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] + offset) >> iTransformShift); |
---|
1952 | } |
---|
1953 | } |
---|
1954 | } |
---|
1955 | else //for very high bit depths |
---|
1956 | { |
---|
1957 | iTransformShift = -iTransformShift; |
---|
1958 | |
---|
1959 | for (UInt y = 0, coefficientIndex = 0; y < height; y++) |
---|
1960 | { |
---|
1961 | for (UInt x = 0; x < width; x++, coefficientIndex++) |
---|
1962 | { |
---|
1963 | pResidual[(y * uiStride) + x] = Pel(plCoef[rotateResidual ? (uiSizeMinus1 - coefficientIndex) : coefficientIndex] << iTransformShift); |
---|
1964 | } |
---|
1965 | } |
---|
1966 | } |
---|
1967 | } |
---|
1968 | |
---|
1969 | /** RDOQ with CABAC |
---|
1970 | * \param pcCU pointer to coding unit structure |
---|
1971 | * \param plSrcCoeff pointer to input buffer |
---|
1972 | * \param piDstCoeff reference to pointer to output buffer |
---|
1973 | * \param uiWidth block width |
---|
1974 | * \param uiHeight block height |
---|
1975 | * \param uiAbsSum reference to absolute sum of quantized transform coefficient |
---|
1976 | * \param eTType plane type / luminance or chrominance |
---|
1977 | * \param uiAbsPartIdx absolute partition index |
---|
1978 | * \returns Void |
---|
1979 | * Rate distortion optimized quantization for entropy |
---|
1980 | * coding engines using probability models like CABAC |
---|
1981 | */ |
---|
1982 | Void TComTrQuant::xRateDistOptQuant ( TComTU &rTu, |
---|
1983 | TCoeff * plSrcCoeff, |
---|
1984 | TCoeff * piDstCoeff, |
---|
1985 | #if ADAPTIVE_QP_SELECTION |
---|
1986 | TCoeff * piArlDstCoeff, |
---|
1987 | #endif |
---|
1988 | TCoeff &uiAbsSum, |
---|
1989 | const ComponentID compID, |
---|
1990 | const QpParam &cQP ) |
---|
1991 | { |
---|
1992 | const TComRectangle & rect = rTu.getRect(compID); |
---|
1993 | const UInt uiWidth = rect.width; |
---|
1994 | const UInt uiHeight = rect.height; |
---|
1995 | TComDataCU * pcCU = rTu.getCU(); |
---|
1996 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
1997 | const ChannelType channelType = toChannelType(compID); |
---|
1998 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
1999 | |
---|
2000 | const Bool extendedPrecision = pcCU->getSlice()->getSPS()->getUseExtendedPrecision(); |
---|
2001 | |
---|
2002 | /* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be |
---|
2003 | * implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the |
---|
2004 | * uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller) |
---|
2005 | * Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result |
---|
2006 | */ |
---|
2007 | |
---|
2008 | // Represents scaling through forward transform |
---|
2009 | Int iTransformShift = getTransformShift(channelType, uiLog2TrSize); |
---|
2010 | if ((pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0) && pcCU->getSlice()->getSPS()->getUseExtendedPrecision()) |
---|
2011 | { |
---|
2012 | iTransformShift = std::max<Int>(0, iTransformShift); |
---|
2013 | } |
---|
2014 | |
---|
2015 | const Bool bUseGolombRiceParameterAdaptation = pcCU->getSlice()->getSPS()->getUseGolombRiceParameterAdaptation(); |
---|
2016 | const UInt initialGolombRiceParameter = m_pcEstBitsSbac->golombRiceAdaptationStatistics[rTu.getGolombRiceStatisticsIndex(compID)] / RExt__GOLOMB_RICE_INCREMENT_DIVISOR; |
---|
2017 | UInt uiGoRiceParam = initialGolombRiceParameter; |
---|
2018 | Double d64BlockUncodedCost = 0; |
---|
2019 | const UInt uiLog2BlockWidth = g_aucConvertToBit[ uiWidth ] + 2; |
---|
2020 | const UInt uiLog2BlockHeight = g_aucConvertToBit[ uiHeight ] + 2; |
---|
2021 | const UInt uiMaxNumCoeff = uiWidth * uiHeight; |
---|
2022 | assert(compID<MAX_NUM_COMPONENT); |
---|
2023 | |
---|
2024 | Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
2025 | assert(scalingListType < SCALING_LIST_NUM); |
---|
2026 | |
---|
2027 | #if ADAPTIVE_QP_SELECTION |
---|
2028 | memset(piArlDstCoeff, 0, sizeof(TCoeff) * uiMaxNumCoeff); |
---|
2029 | #endif |
---|
2030 | |
---|
2031 | Double pdCostCoeff [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2032 | Double pdCostSig [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2033 | Double pdCostCoeff0[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2034 | memset( pdCostCoeff, 0, sizeof(Double) * uiMaxNumCoeff ); |
---|
2035 | memset( pdCostSig, 0, sizeof(Double) * uiMaxNumCoeff ); |
---|
2036 | Int rateIncUp [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2037 | Int rateIncDown [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2038 | Int sigRateDelta[ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2039 | TCoeff deltaU [ MAX_TU_SIZE * MAX_TU_SIZE ]; |
---|
2040 | memset( rateIncUp, 0, sizeof(Int ) * uiMaxNumCoeff ); |
---|
2041 | memset( rateIncDown, 0, sizeof(Int ) * uiMaxNumCoeff ); |
---|
2042 | memset( sigRateDelta, 0, sizeof(Int ) * uiMaxNumCoeff ); |
---|
2043 | memset( deltaU, 0, sizeof(TCoeff) * uiMaxNumCoeff ); |
---|
2044 | |
---|
2045 | const Int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits |
---|
2046 | const Double *const pdErrScale = getErrScaleCoeff(scalingListType, (uiLog2TrSize-2), cQP.rem); |
---|
2047 | const Int *const piQCoef = getQuantCoeff(scalingListType, cQP.rem, (uiLog2TrSize-2)); |
---|
2048 | |
---|
2049 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, (pcCU->getTransformSkip(uiAbsPartIdx, compID) != 0)); |
---|
2050 | const Int defaultQuantisationCoefficient = g_quantScales[cQP.rem]; |
---|
2051 | const Double defaultErrorScale = getErrScaleCoeffNoScalingList(scalingListType, (uiLog2TrSize-2), cQP.rem); |
---|
2052 | |
---|
2053 | const TCoeff entropyCodingMinimum = -(1 << g_maxTrDynamicRange[toChannelType(compID)]); |
---|
2054 | const TCoeff entropyCodingMaximum = (1 << g_maxTrDynamicRange[toChannelType(compID)]) - 1; |
---|
2055 | |
---|
2056 | #if ADAPTIVE_QP_SELECTION |
---|
2057 | Int iQBitsC = iQBits - ARL_C_PRECISION; |
---|
2058 | Int iAddC = 1 << (iQBitsC-1); |
---|
2059 | #endif |
---|
2060 | |
---|
2061 | TUEntropyCodingParameters codingParameters; |
---|
2062 | getTUEntropyCodingParameters(codingParameters, rTu, compID); |
---|
2063 | const UInt uiCGSize = (1 << MLS_CG_SIZE); |
---|
2064 | |
---|
2065 | Double pdCostCoeffGroupSig[ MLS_GRP_NUM ]; |
---|
2066 | UInt uiSigCoeffGroupFlag[ MLS_GRP_NUM ]; |
---|
2067 | Int iCGLastScanPos = -1; |
---|
2068 | |
---|
2069 | UInt uiCtxSet = 0; |
---|
2070 | Int c1 = 1; |
---|
2071 | Int c2 = 0; |
---|
2072 | Double d64BaseCost = 0; |
---|
2073 | Int iLastScanPos = -1; |
---|
2074 | |
---|
2075 | UInt c1Idx = 0; |
---|
2076 | UInt c2Idx = 0; |
---|
2077 | Int baseLevel; |
---|
2078 | |
---|
2079 | memset( pdCostCoeffGroupSig, 0, sizeof(Double) * MLS_GRP_NUM ); |
---|
2080 | memset( uiSigCoeffGroupFlag, 0, sizeof(UInt) * MLS_GRP_NUM ); |
---|
2081 | |
---|
2082 | UInt uiCGNum = uiWidth * uiHeight >> MLS_CG_SIZE; |
---|
2083 | Int iScanPos; |
---|
2084 | coeffGroupRDStats rdStats; |
---|
2085 | |
---|
2086 | const UInt significanceMapContextOffset = getSignificanceMapContextOffset(compID); |
---|
2087 | |
---|
2088 | for (Int iCGScanPos = uiCGNum-1; iCGScanPos >= 0; iCGScanPos--) |
---|
2089 | { |
---|
2090 | UInt uiCGBlkPos = codingParameters.scanCG[ iCGScanPos ]; |
---|
2091 | UInt uiCGPosY = uiCGBlkPos / codingParameters.widthInGroups; |
---|
2092 | UInt uiCGPosX = uiCGBlkPos - (uiCGPosY * codingParameters.widthInGroups); |
---|
2093 | |
---|
2094 | memset( &rdStats, 0, sizeof (coeffGroupRDStats)); |
---|
2095 | |
---|
2096 | const Int patternSigCtx = TComTrQuant::calcPatternSigCtx(uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups); |
---|
2097 | |
---|
2098 | for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) |
---|
2099 | { |
---|
2100 | iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; |
---|
2101 | //===== quantization ===== |
---|
2102 | UInt uiBlkPos = codingParameters.scan[iScanPos]; |
---|
2103 | // set coeff |
---|
2104 | |
---|
2105 | const Int quantisationCoefficient = (enableScalingLists) ? piQCoef [uiBlkPos] : defaultQuantisationCoefficient; |
---|
2106 | const Double errorScale = (enableScalingLists) ? pdErrScale[uiBlkPos] : defaultErrorScale; |
---|
2107 | |
---|
2108 | const Int64 tmpLevel = Int64(abs(plSrcCoeff[ uiBlkPos ])) * quantisationCoefficient; |
---|
2109 | |
---|
2110 | const Intermediate_Int lLevelDouble = (Intermediate_Int)min<Int64>(tmpLevel, MAX_INTERMEDIATE_INT - (Intermediate_Int(1) << (iQBits - 1))); |
---|
2111 | |
---|
2112 | #if ADAPTIVE_QP_SELECTION |
---|
2113 | if( m_bUseAdaptQpSelect ) |
---|
2114 | { |
---|
2115 | piArlDstCoeff[uiBlkPos] = (TCoeff)(( lLevelDouble + iAddC) >> iQBitsC ); |
---|
2116 | } |
---|
2117 | #endif |
---|
2118 | const UInt uiMaxAbsLevel = std::min<UInt>(UInt(entropyCodingMaximum), UInt((lLevelDouble + (Intermediate_Int(1) << (iQBits - 1))) >> iQBits)); |
---|
2119 | |
---|
2120 | const Double dErr = Double( lLevelDouble ); |
---|
2121 | pdCostCoeff0[ iScanPos ] = dErr * dErr * errorScale; |
---|
2122 | d64BlockUncodedCost += pdCostCoeff0[ iScanPos ]; |
---|
2123 | piDstCoeff[ uiBlkPos ] = uiMaxAbsLevel; |
---|
2124 | |
---|
2125 | if ( uiMaxAbsLevel > 0 && iLastScanPos < 0 ) |
---|
2126 | { |
---|
2127 | iLastScanPos = iScanPos; |
---|
2128 | uiCtxSet = getContextSetIndex(compID, (iScanPos >> MLS_CG_SIZE), 0); |
---|
2129 | iCGLastScanPos = iCGScanPos; |
---|
2130 | } |
---|
2131 | |
---|
2132 | if ( iLastScanPos >= 0 ) |
---|
2133 | { |
---|
2134 | //===== coefficient level estimation ===== |
---|
2135 | UInt uiLevel; |
---|
2136 | UInt uiOneCtx = (NUM_ONE_FLAG_CTX_PER_SET * uiCtxSet) + c1; |
---|
2137 | UInt uiAbsCtx = (NUM_ABS_FLAG_CTX_PER_SET * uiCtxSet) + c2; |
---|
2138 | |
---|
2139 | if( iScanPos == iLastScanPos ) |
---|
2140 | { |
---|
2141 | uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ], |
---|
2142 | lLevelDouble, uiMaxAbsLevel, significanceMapContextOffset, uiOneCtx, uiAbsCtx, uiGoRiceParam, |
---|
2143 | c1Idx, c2Idx, iQBits, errorScale, 1, extendedPrecision, channelType |
---|
2144 | ); |
---|
2145 | } |
---|
2146 | else |
---|
2147 | { |
---|
2148 | UShort uiCtxSig = significanceMapContextOffset + getSigCtxInc( patternSigCtx, codingParameters, iScanPos, uiLog2BlockWidth, uiLog2BlockHeight, channelType ); |
---|
2149 | |
---|
2150 | uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ], |
---|
2151 | lLevelDouble, uiMaxAbsLevel, uiCtxSig, uiOneCtx, uiAbsCtx, uiGoRiceParam, |
---|
2152 | c1Idx, c2Idx, iQBits, errorScale, 0, extendedPrecision, channelType |
---|
2153 | ); |
---|
2154 | |
---|
2155 | sigRateDelta[ uiBlkPos ] = m_pcEstBitsSbac->significantBits[ uiCtxSig ][ 1 ] - m_pcEstBitsSbac->significantBits[ uiCtxSig ][ 0 ]; |
---|
2156 | } |
---|
2157 | |
---|
2158 | deltaU[ uiBlkPos ] = TCoeff((lLevelDouble - (Intermediate_Int(uiLevel) << iQBits)) >> (iQBits-8)); |
---|
2159 | |
---|
2160 | if( uiLevel > 0 ) |
---|
2161 | { |
---|
2162 | Int rateNow = xGetICRate( uiLevel, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, extendedPrecision, channelType ); |
---|
2163 | rateIncUp [ uiBlkPos ] = xGetICRate( uiLevel+1, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, extendedPrecision, channelType ) - rateNow; |
---|
2164 | rateIncDown [ uiBlkPos ] = xGetICRate( uiLevel-1, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, extendedPrecision, channelType ) - rateNow; |
---|
2165 | } |
---|
2166 | else // uiLevel == 0 |
---|
2167 | { |
---|
2168 | rateIncUp [ uiBlkPos ] = m_pcEstBitsSbac->m_greaterOneBits[ uiOneCtx ][ 0 ]; |
---|
2169 | } |
---|
2170 | piDstCoeff[ uiBlkPos ] = uiLevel; |
---|
2171 | d64BaseCost += pdCostCoeff [ iScanPos ]; |
---|
2172 | |
---|
2173 | baseLevel = (c1Idx < C1FLAG_NUMBER) ? (2 + (c2Idx < C2FLAG_NUMBER)) : 1; |
---|
2174 | if( uiLevel >= baseLevel ) |
---|
2175 | { |
---|
2176 | if (uiLevel > 3*(1<<uiGoRiceParam)) |
---|
2177 | { |
---|
2178 | uiGoRiceParam = bUseGolombRiceParameterAdaptation ? (uiGoRiceParam + 1) : (std::min<UInt>((uiGoRiceParam + 1), 4)); |
---|
2179 | } |
---|
2180 | } |
---|
2181 | if ( uiLevel >= 1) |
---|
2182 | { |
---|
2183 | c1Idx ++; |
---|
2184 | } |
---|
2185 | |
---|
2186 | //===== update bin model ===== |
---|
2187 | if( uiLevel > 1 ) |
---|
2188 | { |
---|
2189 | c1 = 0; |
---|
2190 | c2 += (c2 < 2); |
---|
2191 | c2Idx ++; |
---|
2192 | } |
---|
2193 | else if( (c1 < 3) && (c1 > 0) && uiLevel) |
---|
2194 | { |
---|
2195 | c1++; |
---|
2196 | } |
---|
2197 | |
---|
2198 | //===== context set update ===== |
---|
2199 | if( ( iScanPos % uiCGSize == 0 ) && ( iScanPos > 0 ) ) |
---|
2200 | { |
---|
2201 | uiCtxSet = getContextSetIndex(compID, ((iScanPos - 1) >> MLS_CG_SIZE), (c1 == 0)); //(iScanPos - 1) because we do this **before** entering the final group |
---|
2202 | c1 = 1; |
---|
2203 | c2 = 0; |
---|
2204 | c1Idx = 0; |
---|
2205 | c2Idx = 0; |
---|
2206 | uiGoRiceParam = initialGolombRiceParameter; |
---|
2207 | } |
---|
2208 | } |
---|
2209 | else |
---|
2210 | { |
---|
2211 | d64BaseCost += pdCostCoeff0[ iScanPos ]; |
---|
2212 | } |
---|
2213 | rdStats.d64SigCost += pdCostSig[ iScanPos ]; |
---|
2214 | if (iScanPosinCG == 0 ) |
---|
2215 | { |
---|
2216 | rdStats.d64SigCost_0 = pdCostSig[ iScanPos ]; |
---|
2217 | } |
---|
2218 | if (piDstCoeff[ uiBlkPos ] ) |
---|
2219 | { |
---|
2220 | uiSigCoeffGroupFlag[ uiCGBlkPos ] = 1; |
---|
2221 | rdStats.d64CodedLevelandDist += pdCostCoeff[ iScanPos ] - pdCostSig[ iScanPos ]; |
---|
2222 | rdStats.d64UncodedDist += pdCostCoeff0[ iScanPos ]; |
---|
2223 | if ( iScanPosinCG != 0 ) |
---|
2224 | { |
---|
2225 | rdStats.iNNZbeforePos0++; |
---|
2226 | } |
---|
2227 | } |
---|
2228 | } //end for (iScanPosinCG) |
---|
2229 | |
---|
2230 | if (iCGLastScanPos >= 0) |
---|
2231 | { |
---|
2232 | if( iCGScanPos ) |
---|
2233 | { |
---|
2234 | if (uiSigCoeffGroupFlag[ uiCGBlkPos ] == 0) |
---|
2235 | { |
---|
2236 | UInt uiCtxSig = getSigCoeffGroupCtxInc( uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups ); |
---|
2237 | d64BaseCost += xGetRateSigCoeffGroup(0, uiCtxSig) - rdStats.d64SigCost;; |
---|
2238 | pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(0, uiCtxSig); |
---|
2239 | } |
---|
2240 | else |
---|
2241 | { |
---|
2242 | if (iCGScanPos < iCGLastScanPos) //skip the last coefficient group, which will be handled together with last position below. |
---|
2243 | { |
---|
2244 | if ( rdStats.iNNZbeforePos0 == 0 ) |
---|
2245 | { |
---|
2246 | d64BaseCost -= rdStats.d64SigCost_0; |
---|
2247 | rdStats.d64SigCost -= rdStats.d64SigCost_0; |
---|
2248 | } |
---|
2249 | // rd-cost if SigCoeffGroupFlag = 0, initialization |
---|
2250 | Double d64CostZeroCG = d64BaseCost; |
---|
2251 | |
---|
2252 | // add SigCoeffGroupFlag cost to total cost |
---|
2253 | UInt uiCtxSig = getSigCoeffGroupCtxInc( uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups ); |
---|
2254 | |
---|
2255 | if (iCGScanPos < iCGLastScanPos) |
---|
2256 | { |
---|
2257 | d64BaseCost += xGetRateSigCoeffGroup(1, uiCtxSig); |
---|
2258 | d64CostZeroCG += xGetRateSigCoeffGroup(0, uiCtxSig); |
---|
2259 | pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(1, uiCtxSig); |
---|
2260 | } |
---|
2261 | |
---|
2262 | // try to convert the current coeff group from non-zero to all-zero |
---|
2263 | d64CostZeroCG += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels |
---|
2264 | d64CostZeroCG -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels |
---|
2265 | d64CostZeroCG -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels |
---|
2266 | |
---|
2267 | // if we can save cost, change this block to all-zero block |
---|
2268 | if ( d64CostZeroCG < d64BaseCost ) |
---|
2269 | { |
---|
2270 | uiSigCoeffGroupFlag[ uiCGBlkPos ] = 0; |
---|
2271 | d64BaseCost = d64CostZeroCG; |
---|
2272 | if (iCGScanPos < iCGLastScanPos) |
---|
2273 | { |
---|
2274 | pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(0, uiCtxSig); |
---|
2275 | } |
---|
2276 | // reset coeffs to 0 in this block |
---|
2277 | for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) |
---|
2278 | { |
---|
2279 | iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; |
---|
2280 | UInt uiBlkPos = codingParameters.scan[ iScanPos ]; |
---|
2281 | |
---|
2282 | if (piDstCoeff[ uiBlkPos ]) |
---|
2283 | { |
---|
2284 | piDstCoeff [ uiBlkPos ] = 0; |
---|
2285 | pdCostCoeff[ iScanPos ] = pdCostCoeff0[ iScanPos ]; |
---|
2286 | pdCostSig [ iScanPos ] = 0; |
---|
2287 | } |
---|
2288 | } |
---|
2289 | } // end if ( d64CostAllZeros < d64BaseCost ) |
---|
2290 | } |
---|
2291 | } // end if if (uiSigCoeffGroupFlag[ uiCGBlkPos ] == 0) |
---|
2292 | } |
---|
2293 | else |
---|
2294 | { |
---|
2295 | uiSigCoeffGroupFlag[ uiCGBlkPos ] = 1; |
---|
2296 | } |
---|
2297 | } |
---|
2298 | } //end for (iCGScanPos) |
---|
2299 | |
---|
2300 | //===== estimate last position ===== |
---|
2301 | if ( iLastScanPos < 0 ) |
---|
2302 | { |
---|
2303 | return; |
---|
2304 | } |
---|
2305 | |
---|
2306 | Double d64BestCost = 0; |
---|
2307 | Int ui16CtxCbf = 0; |
---|
2308 | Int iBestLastIdxP1 = 0; |
---|
2309 | if( !pcCU->isIntra( uiAbsPartIdx ) && isLuma(compID) && pcCU->getTransformIdx( uiAbsPartIdx ) == 0 ) |
---|
2310 | { |
---|
2311 | ui16CtxCbf = 0; |
---|
2312 | d64BestCost = d64BlockUncodedCost + xGetICost( m_pcEstBitsSbac->blockRootCbpBits[ ui16CtxCbf ][ 0 ] ); |
---|
2313 | d64BaseCost += xGetICost( m_pcEstBitsSbac->blockRootCbpBits[ ui16CtxCbf ][ 1 ] ); |
---|
2314 | } |
---|
2315 | else |
---|
2316 | { |
---|
2317 | ui16CtxCbf = pcCU->getCtxQtCbf( rTu, channelType ); |
---|
2318 | ui16CtxCbf += getCBFContextOffset(compID); |
---|
2319 | d64BestCost = d64BlockUncodedCost + xGetICost( m_pcEstBitsSbac->blockCbpBits[ ui16CtxCbf ][ 0 ] ); |
---|
2320 | d64BaseCost += xGetICost( m_pcEstBitsSbac->blockCbpBits[ ui16CtxCbf ][ 1 ] ); |
---|
2321 | } |
---|
2322 | |
---|
2323 | |
---|
2324 | Bool bFoundLast = false; |
---|
2325 | for (Int iCGScanPos = iCGLastScanPos; iCGScanPos >= 0; iCGScanPos--) |
---|
2326 | { |
---|
2327 | UInt uiCGBlkPos = codingParameters.scanCG[ iCGScanPos ]; |
---|
2328 | |
---|
2329 | d64BaseCost -= pdCostCoeffGroupSig [ iCGScanPos ]; |
---|
2330 | if (uiSigCoeffGroupFlag[ uiCGBlkPos ]) |
---|
2331 | { |
---|
2332 | for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) |
---|
2333 | { |
---|
2334 | iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; |
---|
2335 | |
---|
2336 | if (iScanPos > iLastScanPos) continue; |
---|
2337 | UInt uiBlkPos = codingParameters.scan[iScanPos]; |
---|
2338 | |
---|
2339 | if( piDstCoeff[ uiBlkPos ] ) |
---|
2340 | { |
---|
2341 | UInt uiPosY = uiBlkPos >> uiLog2BlockWidth; |
---|
2342 | UInt uiPosX = uiBlkPos - ( uiPosY << uiLog2BlockWidth ); |
---|
2343 | |
---|
2344 | Double d64CostLast= codingParameters.scanType == SCAN_VER ? xGetRateLast( uiPosY, uiPosX, compID ) : xGetRateLast( uiPosX, uiPosY, compID ); |
---|
2345 | Double totalCost = d64BaseCost + d64CostLast - pdCostSig[ iScanPos ]; |
---|
2346 | |
---|
2347 | if( totalCost < d64BestCost ) |
---|
2348 | { |
---|
2349 | iBestLastIdxP1 = iScanPos + 1; |
---|
2350 | d64BestCost = totalCost; |
---|
2351 | } |
---|
2352 | if( piDstCoeff[ uiBlkPos ] > 1 ) |
---|
2353 | { |
---|
2354 | bFoundLast = true; |
---|
2355 | break; |
---|
2356 | } |
---|
2357 | d64BaseCost -= pdCostCoeff[ iScanPos ]; |
---|
2358 | d64BaseCost += pdCostCoeff0[ iScanPos ]; |
---|
2359 | } |
---|
2360 | else |
---|
2361 | { |
---|
2362 | d64BaseCost -= pdCostSig[ iScanPos ]; |
---|
2363 | } |
---|
2364 | } //end for |
---|
2365 | if (bFoundLast) |
---|
2366 | { |
---|
2367 | break; |
---|
2368 | } |
---|
2369 | } // end if (uiSigCoeffGroupFlag[ uiCGBlkPos ]) |
---|
2370 | } // end for |
---|
2371 | |
---|
2372 | |
---|
2373 | for ( Int scanPos = 0; scanPos < iBestLastIdxP1; scanPos++ ) |
---|
2374 | { |
---|
2375 | Int blkPos = codingParameters.scan[ scanPos ]; |
---|
2376 | TCoeff level = piDstCoeff[ blkPos ]; |
---|
2377 | uiAbsSum += level; |
---|
2378 | piDstCoeff[ blkPos ] = ( plSrcCoeff[ blkPos ] < 0 ) ? -level : level; |
---|
2379 | } |
---|
2380 | |
---|
2381 | //===== clean uncoded coefficients ===== |
---|
2382 | for ( Int scanPos = iBestLastIdxP1; scanPos <= iLastScanPos; scanPos++ ) |
---|
2383 | { |
---|
2384 | piDstCoeff[ codingParameters.scan[ scanPos ] ] = 0; |
---|
2385 | } |
---|
2386 | |
---|
2387 | |
---|
2388 | if( pcCU->getSlice()->getPPS()->getSignHideFlag() && uiAbsSum>=2) |
---|
2389 | { |
---|
2390 | const Double inverseQuantScale = Double(g_invQuantScales[cQP.rem]); |
---|
2391 | Int64 rdFactor = (Int64)(inverseQuantScale * inverseQuantScale * (1 << (2 * cQP.per)) |
---|
2392 | / m_dLambda / 16 / (1 << (2 * DISTORTION_PRECISION_ADJUSTMENT(g_bitDepth[channelType] - 8))) |
---|
2393 | + 0.5); |
---|
2394 | |
---|
2395 | Int lastCG = -1; |
---|
2396 | Int absSum = 0 ; |
---|
2397 | Int n ; |
---|
2398 | |
---|
2399 | for( Int subSet = (uiWidth*uiHeight-1) >> MLS_CG_SIZE; subSet >= 0; subSet-- ) |
---|
2400 | { |
---|
2401 | Int subPos = subSet << MLS_CG_SIZE; |
---|
2402 | Int firstNZPosInCG=uiCGSize , lastNZPosInCG=-1 ; |
---|
2403 | absSum = 0 ; |
---|
2404 | |
---|
2405 | for(n = uiCGSize-1; n >= 0; --n ) |
---|
2406 | { |
---|
2407 | if( piDstCoeff[ codingParameters.scan[ n + subPos ]] ) |
---|
2408 | { |
---|
2409 | lastNZPosInCG = n; |
---|
2410 | break; |
---|
2411 | } |
---|
2412 | } |
---|
2413 | |
---|
2414 | for(n = 0; n <uiCGSize; n++ ) |
---|
2415 | { |
---|
2416 | if( piDstCoeff[ codingParameters.scan[ n + subPos ]] ) |
---|
2417 | { |
---|
2418 | firstNZPosInCG = n; |
---|
2419 | break; |
---|
2420 | } |
---|
2421 | } |
---|
2422 | |
---|
2423 | for(n = firstNZPosInCG; n <=lastNZPosInCG; n++ ) |
---|
2424 | { |
---|
2425 | absSum += Int(piDstCoeff[ codingParameters.scan[ n + subPos ]]); |
---|
2426 | } |
---|
2427 | |
---|
2428 | if(lastNZPosInCG>=0 && lastCG==-1) |
---|
2429 | { |
---|
2430 | lastCG = 1; |
---|
2431 | } |
---|
2432 | |
---|
2433 | if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD ) |
---|
2434 | { |
---|
2435 | UInt signbit = (piDstCoeff[codingParameters.scan[subPos+firstNZPosInCG]]>0?0:1); |
---|
2436 | if( signbit!=(absSum&0x1) ) // hide but need tune |
---|
2437 | { |
---|
2438 | // calculate the cost |
---|
2439 | Int64 minCostInc = MAX_INT64, curCost = MAX_INT64; |
---|
2440 | Int minPos = -1, finalChange = 0, curChange = 0; |
---|
2441 | |
---|
2442 | for( n = (lastCG==1?lastNZPosInCG:uiCGSize-1) ; n >= 0; --n ) |
---|
2443 | { |
---|
2444 | UInt uiBlkPos = codingParameters.scan[ n + subPos ]; |
---|
2445 | if(piDstCoeff[ uiBlkPos ] != 0 ) |
---|
2446 | { |
---|
2447 | Int64 costUp = rdFactor * ( - deltaU[uiBlkPos] ) + rateIncUp[uiBlkPos]; |
---|
2448 | Int64 costDown = rdFactor * ( deltaU[uiBlkPos] ) + rateIncDown[uiBlkPos] |
---|
2449 | - ((abs(piDstCoeff[uiBlkPos]) == 1) ? sigRateDelta[uiBlkPos] : 0); |
---|
2450 | |
---|
2451 | if(lastCG==1 && lastNZPosInCG==n && abs(piDstCoeff[uiBlkPos])==1) |
---|
2452 | { |
---|
2453 | costDown -= (4<<15); |
---|
2454 | } |
---|
2455 | |
---|
2456 | if(costUp<costDown) |
---|
2457 | { |
---|
2458 | curCost = costUp; |
---|
2459 | curChange = 1; |
---|
2460 | } |
---|
2461 | else |
---|
2462 | { |
---|
2463 | curChange = -1; |
---|
2464 | if(n==firstNZPosInCG && abs(piDstCoeff[uiBlkPos])==1) |
---|
2465 | { |
---|
2466 | curCost = MAX_INT64; |
---|
2467 | } |
---|
2468 | else |
---|
2469 | { |
---|
2470 | curCost = costDown; |
---|
2471 | } |
---|
2472 | } |
---|
2473 | } |
---|
2474 | else |
---|
2475 | { |
---|
2476 | curCost = rdFactor * ( - (abs(deltaU[uiBlkPos])) ) + (1<<15) + rateIncUp[uiBlkPos] + sigRateDelta[uiBlkPos] ; |
---|
2477 | curChange = 1 ; |
---|
2478 | |
---|
2479 | if(n<firstNZPosInCG) |
---|
2480 | { |
---|
2481 | UInt thissignbit = (plSrcCoeff[uiBlkPos]>=0?0:1); |
---|
2482 | if(thissignbit != signbit ) |
---|
2483 | { |
---|
2484 | curCost = MAX_INT64; |
---|
2485 | } |
---|
2486 | } |
---|
2487 | } |
---|
2488 | |
---|
2489 | if( curCost<minCostInc) |
---|
2490 | { |
---|
2491 | minCostInc = curCost; |
---|
2492 | finalChange = curChange; |
---|
2493 | minPos = uiBlkPos; |
---|
2494 | } |
---|
2495 | } |
---|
2496 | |
---|
2497 | if(piDstCoeff[minPos] == entropyCodingMaximum || piDstCoeff[minPos] == entropyCodingMinimum) |
---|
2498 | { |
---|
2499 | finalChange = -1; |
---|
2500 | } |
---|
2501 | |
---|
2502 | if(plSrcCoeff[minPos]>=0) |
---|
2503 | { |
---|
2504 | piDstCoeff[minPos] += finalChange ; |
---|
2505 | } |
---|
2506 | else |
---|
2507 | { |
---|
2508 | piDstCoeff[minPos] -= finalChange ; |
---|
2509 | } |
---|
2510 | } |
---|
2511 | } |
---|
2512 | |
---|
2513 | if(lastCG==1) |
---|
2514 | { |
---|
2515 | lastCG=0 ; |
---|
2516 | } |
---|
2517 | } |
---|
2518 | } |
---|
2519 | } |
---|
2520 | |
---|
2521 | |
---|
2522 | /** Pattern decision for context derivation process of significant_coeff_flag |
---|
2523 | * \param sigCoeffGroupFlag pointer to prior coded significant coeff group |
---|
2524 | * \param uiCGPosX column of current coefficient group |
---|
2525 | * \param uiCGPosY row of current coefficient group |
---|
2526 | * \param width width of the block |
---|
2527 | * \param height height of the block |
---|
2528 | * \returns pattern for current coefficient group |
---|
2529 | */ |
---|
2530 | Int TComTrQuant::calcPatternSigCtx( const UInt* sigCoeffGroupFlag, UInt uiCGPosX, UInt uiCGPosY, UInt widthInGroups, UInt heightInGroups ) |
---|
2531 | { |
---|
2532 | if ((widthInGroups <= 1) && (heightInGroups <= 1)) return 0; |
---|
2533 | |
---|
2534 | const Bool rightAvailable = uiCGPosX < (widthInGroups - 1); |
---|
2535 | const Bool belowAvailable = uiCGPosY < (heightInGroups - 1); |
---|
2536 | |
---|
2537 | UInt sigRight = 0; |
---|
2538 | UInt sigLower = 0; |
---|
2539 | |
---|
2540 | if (rightAvailable) sigRight = ((sigCoeffGroupFlag[ (uiCGPosY * widthInGroups) + uiCGPosX + 1 ] != 0) ? 1 : 0); |
---|
2541 | if (belowAvailable) sigLower = ((sigCoeffGroupFlag[ (uiCGPosY + 1) * widthInGroups + uiCGPosX ] != 0) ? 1 : 0); |
---|
2542 | |
---|
2543 | return sigRight + (sigLower << 1); |
---|
2544 | } |
---|
2545 | |
---|
2546 | |
---|
2547 | /** Context derivation process of coeff_abs_significant_flag |
---|
2548 | * \param patternSigCtx pattern for current coefficient group |
---|
2549 | * \param codingParameters coding parmeters for the TU (includes the scan) |
---|
2550 | * \param scanPosition current position in scan order |
---|
2551 | * \param log2BlockWidth log2 width of the block |
---|
2552 | * \param log2BlockHeight log2 height of the block |
---|
2553 | * \param ChannelType channel type (CHANNEL_TYPE_LUMA/CHROMA) |
---|
2554 | * \returns ctxInc for current scan position |
---|
2555 | */ |
---|
2556 | Int TComTrQuant::getSigCtxInc ( Int patternSigCtx, |
---|
2557 | const TUEntropyCodingParameters &codingParameters, |
---|
2558 | const Int scanPosition, |
---|
2559 | const Int log2BlockWidth, |
---|
2560 | const Int log2BlockHeight, |
---|
2561 | const ChannelType chanType) |
---|
2562 | { |
---|
2563 | if (codingParameters.firstSignificanceMapContext == significanceMapContextSetStart[chanType][CONTEXT_TYPE_SINGLE]) |
---|
2564 | { |
---|
2565 | //single context mode |
---|
2566 | return significanceMapContextSetStart[chanType][CONTEXT_TYPE_SINGLE]; |
---|
2567 | } |
---|
2568 | |
---|
2569 | const UInt rasterPosition = codingParameters.scan[scanPosition]; |
---|
2570 | const UInt posY = rasterPosition >> log2BlockWidth; |
---|
2571 | const UInt posX = rasterPosition - (posY << log2BlockWidth); |
---|
2572 | |
---|
2573 | if ((posX + posY) == 0) return 0; //special case for the DC context variable |
---|
2574 | |
---|
2575 | Int offset = MAX_INT; |
---|
2576 | |
---|
2577 | if ((log2BlockWidth == 2) && (log2BlockHeight == 2)) //4x4 |
---|
2578 | { |
---|
2579 | offset = ctxIndMap4x4[ (4 * posY) + posX ]; |
---|
2580 | } |
---|
2581 | else |
---|
2582 | { |
---|
2583 | Int cnt = 0; |
---|
2584 | |
---|
2585 | switch (patternSigCtx) |
---|
2586 | { |
---|
2587 | //------------------ |
---|
2588 | |
---|
2589 | case 0: //neither neighbouring group is significant |
---|
2590 | { |
---|
2591 | const Int posXinSubset = posX & ((1 << MLS_CG_LOG2_WIDTH) - 1); |
---|
2592 | const Int posYinSubset = posY & ((1 << MLS_CG_LOG2_HEIGHT) - 1); |
---|
2593 | const Int posTotalInSubset = posXinSubset + posYinSubset; |
---|
2594 | |
---|
2595 | //first N coefficients in scan order use 2; the next few use 1; the rest use 0. |
---|
2596 | const UInt context1Threshold = NEIGHBOURHOOD_00_CONTEXT_1_THRESHOLD_4x4; |
---|
2597 | const UInt context2Threshold = NEIGHBOURHOOD_00_CONTEXT_2_THRESHOLD_4x4; |
---|
2598 | |
---|
2599 | cnt = (posTotalInSubset >= context1Threshold) ? 0 : ((posTotalInSubset >= context2Threshold) ? 1 : 2); |
---|
2600 | } |
---|
2601 | break; |
---|
2602 | |
---|
2603 | //------------------ |
---|
2604 | |
---|
2605 | case 1: //right group is significant, below is not |
---|
2606 | { |
---|
2607 | const Int posYinSubset = posY & ((1 << MLS_CG_LOG2_HEIGHT) - 1); |
---|
2608 | const Int groupHeight = 1 << MLS_CG_LOG2_HEIGHT; |
---|
2609 | |
---|
2610 | cnt = (posYinSubset >= (groupHeight >> 1)) ? 0 : ((posYinSubset >= (groupHeight >> 2)) ? 1 : 2); //top quarter uses 2; second-from-top quarter uses 1; bottom half uses 0 |
---|
2611 | } |
---|
2612 | break; |
---|
2613 | |
---|
2614 | //------------------ |
---|
2615 | |
---|
2616 | case 2: //below group is significant, right is not |
---|
2617 | { |
---|
2618 | const Int posXinSubset = posX & ((1 << MLS_CG_LOG2_WIDTH) - 1); |
---|
2619 | const Int groupWidth = 1 << MLS_CG_LOG2_WIDTH; |
---|
2620 | |
---|
2621 | cnt = (posXinSubset >= (groupWidth >> 1)) ? 0 : ((posXinSubset >= (groupWidth >> 2)) ? 1 : 2); //left quarter uses 2; second-from-left quarter uses 1; right half uses 0 |
---|
2622 | } |
---|
2623 | break; |
---|
2624 | |
---|
2625 | //------------------ |
---|
2626 | |
---|
2627 | case 3: //both neighbouring groups are significant |
---|
2628 | { |
---|
2629 | cnt = 2; |
---|
2630 | } |
---|
2631 | break; |
---|
2632 | |
---|
2633 | //------------------ |
---|
2634 | |
---|
2635 | default: |
---|
2636 | std::cerr << "ERROR: Invalid patternSigCtx \"" << Int(patternSigCtx) << "\" in getSigCtxInc" << std::endl; |
---|
2637 | exit(1); |
---|
2638 | break; |
---|
2639 | } |
---|
2640 | |
---|
2641 | //------------------------------------------------ |
---|
2642 | |
---|
2643 | const Bool notFirstGroup = ((posX >> MLS_CG_LOG2_WIDTH) + (posY >> MLS_CG_LOG2_HEIGHT)) > 0; |
---|
2644 | |
---|
2645 | offset = (notFirstGroup ? notFirstGroupNeighbourhoodContextOffset[chanType] : 0) + cnt; |
---|
2646 | } |
---|
2647 | |
---|
2648 | return codingParameters.firstSignificanceMapContext + offset; |
---|
2649 | } |
---|
2650 | |
---|
2651 | |
---|
2652 | /** Get the best level in RD sense |
---|
2653 | * \param rd64CodedCost reference to coded cost |
---|
2654 | * \param rd64CodedCost0 reference to cost when coefficient is 0 |
---|
2655 | * \param rd64CodedCostSig reference to cost of significant coefficient |
---|
2656 | * \param lLevelDouble reference to unscaled quantized level |
---|
2657 | * \param uiMaxAbsLevel scaled quantized level |
---|
2658 | * \param ui16CtxNumSig current ctxInc for coeff_abs_significant_flag |
---|
2659 | * \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) |
---|
2660 | * \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) |
---|
2661 | * \param ui16AbsGoRice current Rice parameter for coeff_abs_level_minus3 |
---|
2662 | * \param iQBits quantization step size |
---|
2663 | * \param dTemp correction factor |
---|
2664 | * \param bLast indicates if the coefficient is the last significant |
---|
2665 | * \returns best quantized transform level for given scan position |
---|
2666 | * This method calculates the best quantized transform level for a given scan position. |
---|
2667 | */ |
---|
2668 | __inline UInt TComTrQuant::xGetCodedLevel ( Double& rd64CodedCost, |
---|
2669 | Double& rd64CodedCost0, |
---|
2670 | Double& rd64CodedCostSig, |
---|
2671 | Intermediate_Int lLevelDouble, |
---|
2672 | UInt uiMaxAbsLevel, |
---|
2673 | UShort ui16CtxNumSig, |
---|
2674 | UShort ui16CtxNumOne, |
---|
2675 | UShort ui16CtxNumAbs, |
---|
2676 | UShort ui16AbsGoRice, |
---|
2677 | UInt c1Idx, |
---|
2678 | UInt c2Idx, |
---|
2679 | Int iQBits, |
---|
2680 | Double errorScale, |
---|
2681 | Bool bLast, |
---|
2682 | Bool useLimitedPrefixLength, |
---|
2683 | ChannelType channelType |
---|
2684 | ) const |
---|
2685 | { |
---|
2686 | Double dCurrCostSig = 0; |
---|
2687 | UInt uiBestAbsLevel = 0; |
---|
2688 | |
---|
2689 | if( !bLast && uiMaxAbsLevel < 3 ) |
---|
2690 | { |
---|
2691 | rd64CodedCostSig = xGetRateSigCoef( 0, ui16CtxNumSig ); |
---|
2692 | rd64CodedCost = rd64CodedCost0 + rd64CodedCostSig; |
---|
2693 | if( uiMaxAbsLevel == 0 ) |
---|
2694 | { |
---|
2695 | return uiBestAbsLevel; |
---|
2696 | } |
---|
2697 | } |
---|
2698 | else |
---|
2699 | { |
---|
2700 | rd64CodedCost = MAX_DOUBLE; |
---|
2701 | } |
---|
2702 | |
---|
2703 | if( !bLast ) |
---|
2704 | { |
---|
2705 | dCurrCostSig = xGetRateSigCoef( 1, ui16CtxNumSig ); |
---|
2706 | } |
---|
2707 | |
---|
2708 | UInt uiMinAbsLevel = ( uiMaxAbsLevel > 1 ? uiMaxAbsLevel - 1 : 1 ); |
---|
2709 | for( Int uiAbsLevel = uiMaxAbsLevel; uiAbsLevel >= uiMinAbsLevel ; uiAbsLevel-- ) |
---|
2710 | { |
---|
2711 | Double dErr = Double( lLevelDouble - ( Intermediate_Int(uiAbsLevel) << iQBits ) ); |
---|
2712 | Double dCurrCost = dErr * dErr * errorScale + xGetICost( xGetICRate( uiAbsLevel, ui16CtxNumOne, ui16CtxNumAbs, ui16AbsGoRice, c1Idx, c2Idx, useLimitedPrefixLength, channelType ) ); |
---|
2713 | dCurrCost += dCurrCostSig; |
---|
2714 | |
---|
2715 | if( dCurrCost < rd64CodedCost ) |
---|
2716 | { |
---|
2717 | uiBestAbsLevel = uiAbsLevel; |
---|
2718 | rd64CodedCost = dCurrCost; |
---|
2719 | rd64CodedCostSig = dCurrCostSig; |
---|
2720 | } |
---|
2721 | } |
---|
2722 | |
---|
2723 | return uiBestAbsLevel; |
---|
2724 | } |
---|
2725 | |
---|
2726 | /** Calculates the cost for specific absolute transform level |
---|
2727 | * \param uiAbsLevel scaled quantized level |
---|
2728 | * \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) |
---|
2729 | * \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) |
---|
2730 | * \param ui16AbsGoRice Rice parameter for coeff_abs_level_minus3 |
---|
2731 | * \returns cost of given absolute transform level |
---|
2732 | */ |
---|
2733 | __inline Int TComTrQuant::xGetICRate ( UInt uiAbsLevel, |
---|
2734 | UShort ui16CtxNumOne, |
---|
2735 | UShort ui16CtxNumAbs, |
---|
2736 | UShort ui16AbsGoRice, |
---|
2737 | UInt c1Idx, |
---|
2738 | UInt c2Idx, |
---|
2739 | Bool useLimitedPrefixLength, |
---|
2740 | ChannelType channelType |
---|
2741 | ) const |
---|
2742 | { |
---|
2743 | Int iRate = Int(xGetIEPRate()); // cost of sign bit |
---|
2744 | UInt baseLevel = (c1Idx < C1FLAG_NUMBER) ? (2 + (c2Idx < C2FLAG_NUMBER)) : 1; |
---|
2745 | |
---|
2746 | if ( uiAbsLevel >= baseLevel ) |
---|
2747 | { |
---|
2748 | UInt symbol = uiAbsLevel - baseLevel; |
---|
2749 | UInt length; |
---|
2750 | if (symbol < (COEF_REMAIN_BIN_REDUCTION << ui16AbsGoRice)) |
---|
2751 | { |
---|
2752 | length = symbol>>ui16AbsGoRice; |
---|
2753 | iRate += (length+1+ui16AbsGoRice)<< 15; |
---|
2754 | } |
---|
2755 | else if (useLimitedPrefixLength) |
---|
2756 | { |
---|
2757 | const UInt maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + g_maxTrDynamicRange[channelType])); |
---|
2758 | |
---|
2759 | UInt prefixLength = 0; |
---|
2760 | UInt suffix = (symbol >> ui16AbsGoRice) - COEF_REMAIN_BIN_REDUCTION; |
---|
2761 | |
---|
2762 | while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2))) |
---|
2763 | { |
---|
2764 | prefixLength++; |
---|
2765 | } |
---|
2766 | |
---|
2767 | const UInt suffixLength = (prefixLength == maximumPrefixLength) ? (g_maxTrDynamicRange[channelType] - ui16AbsGoRice) : (prefixLength + 1/*separator*/); |
---|
2768 | |
---|
2769 | iRate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ui16AbsGoRice) << 15; |
---|
2770 | } |
---|
2771 | else |
---|
2772 | { |
---|
2773 | length = ui16AbsGoRice; |
---|
2774 | symbol = symbol - ( COEF_REMAIN_BIN_REDUCTION << ui16AbsGoRice); |
---|
2775 | while (symbol >= (1<<length)) |
---|
2776 | { |
---|
2777 | symbol -= (1<<(length++)); |
---|
2778 | } |
---|
2779 | iRate += (COEF_REMAIN_BIN_REDUCTION+length+1-ui16AbsGoRice+length)<< 15; |
---|
2780 | } |
---|
2781 | |
---|
2782 | if (c1Idx < C1FLAG_NUMBER) |
---|
2783 | { |
---|
2784 | iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 1 ]; |
---|
2785 | |
---|
2786 | if (c2Idx < C2FLAG_NUMBER) |
---|
2787 | { |
---|
2788 | iRate += m_pcEstBitsSbac->m_levelAbsBits[ ui16CtxNumAbs ][ 1 ]; |
---|
2789 | } |
---|
2790 | } |
---|
2791 | } |
---|
2792 | else if( uiAbsLevel == 1 ) |
---|
2793 | { |
---|
2794 | iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 0 ]; |
---|
2795 | } |
---|
2796 | else if( uiAbsLevel == 2 ) |
---|
2797 | { |
---|
2798 | iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 1 ]; |
---|
2799 | iRate += m_pcEstBitsSbac->m_levelAbsBits[ ui16CtxNumAbs ][ 0 ]; |
---|
2800 | } |
---|
2801 | else |
---|
2802 | { |
---|
2803 | iRate = 0; |
---|
2804 | } |
---|
2805 | |
---|
2806 | return iRate; |
---|
2807 | } |
---|
2808 | |
---|
2809 | __inline Double TComTrQuant::xGetRateSigCoeffGroup ( UShort uiSignificanceCoeffGroup, |
---|
2810 | UShort ui16CtxNumSig ) const |
---|
2811 | { |
---|
2812 | return xGetICost( m_pcEstBitsSbac->significantCoeffGroupBits[ ui16CtxNumSig ][ uiSignificanceCoeffGroup ] ); |
---|
2813 | } |
---|
2814 | |
---|
2815 | /** Calculates the cost of signaling the last significant coefficient in the block |
---|
2816 | * \param uiPosX X coordinate of the last significant coefficient |
---|
2817 | * \param uiPosY Y coordinate of the last significant coefficient |
---|
2818 | * \returns cost of last significant coefficient |
---|
2819 | */ |
---|
2820 | /* |
---|
2821 | * \param uiWidth width of the transform unit (TU) |
---|
2822 | */ |
---|
2823 | __inline Double TComTrQuant::xGetRateLast ( const UInt uiPosX, |
---|
2824 | const UInt uiPosY, |
---|
2825 | const ComponentID component ) const |
---|
2826 | { |
---|
2827 | UInt uiCtxX = g_uiGroupIdx[uiPosX]; |
---|
2828 | UInt uiCtxY = g_uiGroupIdx[uiPosY]; |
---|
2829 | |
---|
2830 | Double uiCost = m_pcEstBitsSbac->lastXBits[toChannelType(component)][ uiCtxX ] + m_pcEstBitsSbac->lastYBits[toChannelType(component)][ uiCtxY ]; |
---|
2831 | |
---|
2832 | if( uiCtxX > 3 ) |
---|
2833 | { |
---|
2834 | uiCost += xGetIEPRate() * ((uiCtxX-2)>>1); |
---|
2835 | } |
---|
2836 | if( uiCtxY > 3 ) |
---|
2837 | { |
---|
2838 | uiCost += xGetIEPRate() * ((uiCtxY-2)>>1); |
---|
2839 | } |
---|
2840 | return xGetICost( uiCost ); |
---|
2841 | } |
---|
2842 | |
---|
2843 | /** Calculates the cost for specific absolute transform level |
---|
2844 | * \param uiAbsLevel scaled quantized level |
---|
2845 | * \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) |
---|
2846 | * \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) |
---|
2847 | * \param ui16CtxBase current global offset for coeff_abs_level_greater1 and coeff_abs_level_greater2 |
---|
2848 | * \returns cost of given absolute transform level |
---|
2849 | */ |
---|
2850 | __inline Double TComTrQuant::xGetRateSigCoef ( UShort uiSignificance, |
---|
2851 | UShort ui16CtxNumSig ) const |
---|
2852 | { |
---|
2853 | return xGetICost( m_pcEstBitsSbac->significantBits[ ui16CtxNumSig ][ uiSignificance ] ); |
---|
2854 | } |
---|
2855 | |
---|
2856 | /** Get the cost for a specific rate |
---|
2857 | * \param dRate rate of a bit |
---|
2858 | * \returns cost at the specific rate |
---|
2859 | */ |
---|
2860 | __inline Double TComTrQuant::xGetICost ( Double dRate ) const |
---|
2861 | { |
---|
2862 | return m_dLambda * dRate; |
---|
2863 | } |
---|
2864 | |
---|
2865 | /** Get the cost of an equal probable bit |
---|
2866 | * \returns cost of equal probable bit |
---|
2867 | */ |
---|
2868 | __inline Double TComTrQuant::xGetIEPRate ( ) const |
---|
2869 | { |
---|
2870 | return 32768; |
---|
2871 | } |
---|
2872 | |
---|
2873 | /** Context derivation process of coeff_abs_significant_flag |
---|
2874 | * \param uiSigCoeffGroupFlag significance map of L1 |
---|
2875 | * \param uiBlkX column of current scan position |
---|
2876 | * \param uiBlkY row of current scan position |
---|
2877 | * \param uiLog2BlkSize log2 value of block size |
---|
2878 | * \returns ctxInc for current scan position |
---|
2879 | */ |
---|
2880 | UInt TComTrQuant::getSigCoeffGroupCtxInc (const UInt* uiSigCoeffGroupFlag, |
---|
2881 | const UInt uiCGPosX, |
---|
2882 | const UInt uiCGPosY, |
---|
2883 | const UInt widthInGroups, |
---|
2884 | const UInt heightInGroups) |
---|
2885 | { |
---|
2886 | UInt sigRight = 0; |
---|
2887 | UInt sigLower = 0; |
---|
2888 | |
---|
2889 | if (uiCGPosX < (widthInGroups - 1)) sigRight = ((uiSigCoeffGroupFlag[ (uiCGPosY * widthInGroups) + uiCGPosX + 1 ] != 0) ? 1 : 0); |
---|
2890 | if (uiCGPosY < (heightInGroups - 1)) sigLower = ((uiSigCoeffGroupFlag[ (uiCGPosY + 1) * widthInGroups + uiCGPosX ] != 0) ? 1 : 0); |
---|
2891 | |
---|
2892 | return ((sigRight + sigLower) != 0) ? 1 : 0; |
---|
2893 | } |
---|
2894 | |
---|
2895 | |
---|
2896 | /** set quantized matrix coefficient for encode |
---|
2897 | * \param scalingList quantaized matrix address |
---|
2898 | */ |
---|
2899 | Void TComTrQuant::setScalingList(TComScalingList *scalingList, const ChromaFormat format) |
---|
2900 | { |
---|
2901 | const Int minimumQp = 0; |
---|
2902 | const Int maximumQp = SCALING_LIST_REM_NUM; |
---|
2903 | |
---|
2904 | for(UInt size = 0; size < SCALING_LIST_SIZE_NUM; size++) |
---|
2905 | { |
---|
2906 | for(UInt list = 0; list < SCALING_LIST_NUM; list++) |
---|
2907 | { |
---|
2908 | for(Int qp = minimumQp; qp < maximumQp; qp++) |
---|
2909 | { |
---|
2910 | xSetScalingListEnc(scalingList,list,size,qp,format); |
---|
2911 | xSetScalingListDec(scalingList,list,size,qp,format); |
---|
2912 | setErrScaleCoeff(list,size,qp); |
---|
2913 | } |
---|
2914 | } |
---|
2915 | } |
---|
2916 | } |
---|
2917 | /** set quantized matrix coefficient for decode |
---|
2918 | * \param scalingList quantaized matrix address |
---|
2919 | */ |
---|
2920 | Void TComTrQuant::setScalingListDec(TComScalingList *scalingList, const ChromaFormat format) |
---|
2921 | { |
---|
2922 | const Int minimumQp = 0; |
---|
2923 | const Int maximumQp = SCALING_LIST_REM_NUM; |
---|
2924 | |
---|
2925 | for(UInt size = 0; size < SCALING_LIST_SIZE_NUM; size++) |
---|
2926 | { |
---|
2927 | for(UInt list = 0; list < SCALING_LIST_NUM; list++) |
---|
2928 | { |
---|
2929 | for(Int qp = minimumQp; qp < maximumQp; qp++) |
---|
2930 | { |
---|
2931 | xSetScalingListDec(scalingList,list,size,qp,format); |
---|
2932 | } |
---|
2933 | } |
---|
2934 | } |
---|
2935 | } |
---|
2936 | /** set error scale coefficients |
---|
2937 | * \param list List ID |
---|
2938 | * \param uiSize Size |
---|
2939 | * \param uiQP Quantization parameter |
---|
2940 | */ |
---|
2941 | Void TComTrQuant::setErrScaleCoeff(UInt list, UInt size, Int qp) |
---|
2942 | { |
---|
2943 | const UInt uiLog2TrSize = g_aucConvertToBit[ g_scalingListSizeX[size] ] + 2; |
---|
2944 | const ChannelType channelType = ((list == 0) || (list == MAX_NUM_COMPONENT)) ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA; |
---|
2945 | |
---|
2946 | const Int iTransformShift = getTransformShift(channelType, uiLog2TrSize); // Represents scaling through forward transform |
---|
2947 | |
---|
2948 | UInt i,uiMaxNumCoeff = g_scalingListSize[size]; |
---|
2949 | Int *piQuantcoeff; |
---|
2950 | Double *pdErrScale; |
---|
2951 | piQuantcoeff = getQuantCoeff(list, qp,size); |
---|
2952 | pdErrScale = getErrScaleCoeff(list, size, qp); |
---|
2953 | |
---|
2954 | Double dErrScale = (Double)(1<<SCALE_BITS); // Compensate for scaling of bitcount in Lagrange cost function |
---|
2955 | dErrScale = dErrScale*pow(2.0,(-2.0*iTransformShift)); // Compensate for scaling through forward transform |
---|
2956 | |
---|
2957 | for(i=0;i<uiMaxNumCoeff;i++) |
---|
2958 | { |
---|
2959 | pdErrScale[i] = dErrScale / piQuantcoeff[i] / piQuantcoeff[i] / (1 << DISTORTION_PRECISION_ADJUSTMENT(2 * (g_bitDepth[channelType] - 8))); |
---|
2960 | } |
---|
2961 | |
---|
2962 | getErrScaleCoeffNoScalingList(list, size, qp) = dErrScale / g_quantScales[qp] / g_quantScales[qp] / (1 << DISTORTION_PRECISION_ADJUSTMENT(2 * (g_bitDepth[channelType] - 8))); |
---|
2963 | } |
---|
2964 | |
---|
2965 | /** set quantized matrix coefficient for encode |
---|
2966 | * \param scalingList quantaized matrix address |
---|
2967 | * \param listId List index |
---|
2968 | * \param sizeId size index |
---|
2969 | * \param uiQP Quantization parameter |
---|
2970 | */ |
---|
2971 | Void TComTrQuant::xSetScalingListEnc(TComScalingList *scalingList, UInt listId, UInt sizeId, Int qp, const ChromaFormat format) |
---|
2972 | { |
---|
2973 | UInt width = g_scalingListSizeX[sizeId]; |
---|
2974 | UInt height = g_scalingListSizeX[sizeId]; |
---|
2975 | UInt ratio = g_scalingListSizeX[sizeId]/min(MAX_MATRIX_SIZE_NUM,(Int)g_scalingListSizeX[sizeId]); |
---|
2976 | Int *quantcoeff; |
---|
2977 | Int *coeff = scalingList->getScalingListAddress(sizeId,listId); |
---|
2978 | quantcoeff = getQuantCoeff(listId, qp, sizeId); |
---|
2979 | |
---|
2980 | Int quantScales = g_quantScales[qp]; |
---|
2981 | |
---|
2982 | processScalingListEnc(coeff, |
---|
2983 | quantcoeff, |
---|
2984 | (quantScales << LOG2_SCALING_LIST_NEUTRAL_VALUE), |
---|
2985 | height, width, ratio, |
---|
2986 | min(MAX_MATRIX_SIZE_NUM, (Int)g_scalingListSizeX[sizeId]), |
---|
2987 | scalingList->getScalingListDC(sizeId,listId)); |
---|
2988 | } |
---|
2989 | |
---|
2990 | /** set quantized matrix coefficient for decode |
---|
2991 | * \param scalingList quantaized matrix address |
---|
2992 | * \param list List index |
---|
2993 | * \param size size index |
---|
2994 | * \param uiQP Quantization parameter |
---|
2995 | */ |
---|
2996 | Void TComTrQuant::xSetScalingListDec(TComScalingList *scalingList, UInt listId, UInt sizeId, Int qp, const ChromaFormat format) |
---|
2997 | { |
---|
2998 | UInt width = g_scalingListSizeX[sizeId]; |
---|
2999 | UInt height = g_scalingListSizeX[sizeId]; |
---|
3000 | UInt ratio = g_scalingListSizeX[sizeId]/min(MAX_MATRIX_SIZE_NUM,(Int)g_scalingListSizeX[sizeId]); |
---|
3001 | Int *dequantcoeff; |
---|
3002 | Int *coeff = scalingList->getScalingListAddress(sizeId,listId); |
---|
3003 | |
---|
3004 | dequantcoeff = getDequantCoeff(listId, qp, sizeId); |
---|
3005 | |
---|
3006 | Int invQuantScale = g_invQuantScales[qp]; |
---|
3007 | |
---|
3008 | processScalingListDec(coeff, |
---|
3009 | dequantcoeff, |
---|
3010 | invQuantScale, |
---|
3011 | height, width, ratio, |
---|
3012 | min(MAX_MATRIX_SIZE_NUM, (Int)g_scalingListSizeX[sizeId]), |
---|
3013 | scalingList->getScalingListDC(sizeId,listId)); |
---|
3014 | } |
---|
3015 | |
---|
3016 | /** set flat matrix value to quantized coefficient |
---|
3017 | */ |
---|
3018 | Void TComTrQuant::setFlatScalingList(const ChromaFormat format) |
---|
3019 | { |
---|
3020 | const Int minimumQp = 0; |
---|
3021 | const Int maximumQp = SCALING_LIST_REM_NUM; |
---|
3022 | |
---|
3023 | for(UInt size = 0; size < SCALING_LIST_SIZE_NUM; size++) |
---|
3024 | { |
---|
3025 | for(UInt list = 0; list < SCALING_LIST_NUM; list++) |
---|
3026 | { |
---|
3027 | for(Int qp = minimumQp; qp < maximumQp; qp++) |
---|
3028 | { |
---|
3029 | xsetFlatScalingList(list,size,qp,format); |
---|
3030 | setErrScaleCoeff(list,size,qp); |
---|
3031 | } |
---|
3032 | } |
---|
3033 | } |
---|
3034 | } |
---|
3035 | |
---|
3036 | /** set flat matrix value to quantized coefficient |
---|
3037 | * \param list List ID |
---|
3038 | * \param uiQP Quantization parameter |
---|
3039 | * \param uiSize Size |
---|
3040 | */ |
---|
3041 | Void TComTrQuant::xsetFlatScalingList(UInt list, UInt size, Int qp, const ChromaFormat format) |
---|
3042 | { |
---|
3043 | UInt i,num = g_scalingListSize[size]; |
---|
3044 | Int *quantcoeff; |
---|
3045 | Int *dequantcoeff; |
---|
3046 | |
---|
3047 | Int quantScales = g_quantScales [qp]; |
---|
3048 | Int invQuantScales = g_invQuantScales[qp] << 4; |
---|
3049 | |
---|
3050 | quantcoeff = getQuantCoeff(list, qp, size); |
---|
3051 | dequantcoeff = getDequantCoeff(list, qp, size); |
---|
3052 | |
---|
3053 | for(i=0;i<num;i++) |
---|
3054 | { |
---|
3055 | *quantcoeff++ = quantScales; |
---|
3056 | *dequantcoeff++ = invQuantScales; |
---|
3057 | } |
---|
3058 | } |
---|
3059 | |
---|
3060 | /** set quantized matrix coefficient for encode |
---|
3061 | * \param coeff quantaized matrix address |
---|
3062 | * \param quantcoeff quantaized matrix address |
---|
3063 | * \param quantScales Q(QP%6) |
---|
3064 | * \param height height |
---|
3065 | * \param width width |
---|
3066 | * \param ratio ratio for upscale |
---|
3067 | * \param sizuNum matrix size |
---|
3068 | * \param dc dc parameter |
---|
3069 | */ |
---|
3070 | Void TComTrQuant::processScalingListEnc( Int *coeff, Int *quantcoeff, Int quantScales, UInt height, UInt width, UInt ratio, Int sizuNum, UInt dc) |
---|
3071 | { |
---|
3072 | for(UInt j=0;j<height;j++) |
---|
3073 | { |
---|
3074 | for(UInt i=0;i<width;i++) |
---|
3075 | { |
---|
3076 | quantcoeff[j*width + i] = quantScales / coeff[sizuNum * (j / ratio) + i / ratio]; |
---|
3077 | } |
---|
3078 | } |
---|
3079 | |
---|
3080 | if(ratio > 1) |
---|
3081 | { |
---|
3082 | quantcoeff[0] = quantScales / dc; |
---|
3083 | } |
---|
3084 | } |
---|
3085 | |
---|
3086 | /** set quantized matrix coefficient for decode |
---|
3087 | * \param coeff quantaized matrix address |
---|
3088 | * \param dequantcoeff quantaized matrix address |
---|
3089 | * \param invQuantScales IQ(QP%6)) |
---|
3090 | * \param height height |
---|
3091 | * \param width width |
---|
3092 | * \param ratio ratio for upscale |
---|
3093 | * \param sizuNum matrix size |
---|
3094 | * \param dc dc parameter |
---|
3095 | */ |
---|
3096 | Void TComTrQuant::processScalingListDec( Int *coeff, Int *dequantcoeff, Int invQuantScales, UInt height, UInt width, UInt ratio, Int sizuNum, UInt dc) |
---|
3097 | { |
---|
3098 | for(UInt j=0;j<height;j++) |
---|
3099 | { |
---|
3100 | for(UInt i=0;i<width;i++) |
---|
3101 | { |
---|
3102 | dequantcoeff[j*width + i] = invQuantScales * coeff[sizuNum * (j / ratio) + i / ratio]; |
---|
3103 | } |
---|
3104 | } |
---|
3105 | |
---|
3106 | if(ratio > 1) |
---|
3107 | { |
---|
3108 | dequantcoeff[0] = invQuantScales * dc; |
---|
3109 | } |
---|
3110 | } |
---|
3111 | |
---|
3112 | /** initialization process of scaling list array |
---|
3113 | */ |
---|
3114 | Void TComTrQuant::initScalingList() |
---|
3115 | { |
---|
3116 | for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) |
---|
3117 | { |
---|
3118 | for(UInt qp = 0; qp < SCALING_LIST_REM_NUM; qp++) |
---|
3119 | { |
---|
3120 | for(UInt listId = 0; listId < SCALING_LIST_NUM; listId++) |
---|
3121 | { |
---|
3122 | m_quantCoef [sizeId][listId][qp] = new Int [g_scalingListSize[sizeId]]; |
---|
3123 | m_dequantCoef [sizeId][listId][qp] = new Int [g_scalingListSize[sizeId]]; |
---|
3124 | m_errScale [sizeId][listId][qp] = new Double [g_scalingListSize[sizeId]]; |
---|
3125 | } // listID loop |
---|
3126 | } |
---|
3127 | } |
---|
3128 | } |
---|
3129 | |
---|
3130 | /** destroy quantization matrix array |
---|
3131 | */ |
---|
3132 | Void TComTrQuant::destroyScalingList() |
---|
3133 | { |
---|
3134 | for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) |
---|
3135 | { |
---|
3136 | for(UInt listId = 0; listId < SCALING_LIST_NUM; listId++) |
---|
3137 | { |
---|
3138 | for(UInt qp = 0; qp < SCALING_LIST_REM_NUM; qp++) |
---|
3139 | { |
---|
3140 | if(m_quantCoef [sizeId][listId][qp]) delete [] m_quantCoef [sizeId][listId][qp]; |
---|
3141 | if(m_dequantCoef [sizeId][listId][qp]) delete [] m_dequantCoef [sizeId][listId][qp]; |
---|
3142 | if(m_errScale [sizeId][listId][qp]) delete [] m_errScale [sizeId][listId][qp]; |
---|
3143 | } |
---|
3144 | } |
---|
3145 | } |
---|
3146 | } |
---|
3147 | |
---|
3148 | Void TComTrQuant::transformSkipQuantOneSample(TComTU &rTu, const ComponentID compID, const Pel resiDiff, TCoeff* pcCoeff, const UInt uiPos, const QpParam &cQP, const Bool bUseHalfRoundingPoint) |
---|
3149 | { |
---|
3150 | TComDataCU *pcCU = rTu.getCU(); |
---|
3151 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
3152 | const TComRectangle &rect = rTu.getRect(compID); |
---|
3153 | const UInt uiWidth = rect.width; |
---|
3154 | const UInt uiHeight = rect.height; |
---|
3155 | const Int iTransformShift = getTransformShift(toChannelType(compID), rTu.GetEquivalentLog2TrSize(compID)); |
---|
3156 | const Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
3157 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, true); |
---|
3158 | const Int defaultQuantisationCoefficient = g_quantScales[cQP.rem]; |
---|
3159 | |
---|
3160 | assert( scalingListType < SCALING_LIST_NUM ); |
---|
3161 | const Int *const piQuantCoeff = getQuantCoeff( scalingListType, cQP.rem, (rTu.GetEquivalentLog2TrSize(compID)-2) ); |
---|
3162 | |
---|
3163 | |
---|
3164 | /* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be |
---|
3165 | * implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the |
---|
3166 | * uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller) |
---|
3167 | * Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result |
---|
3168 | */ |
---|
3169 | |
---|
3170 | const Int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; |
---|
3171 | // QBits will be OK for any internal bit depth as the reduction in transform shift is balanced by an increase in Qp_per due to QpBDOffset |
---|
3172 | |
---|
3173 | const Int iAdd = ( bUseHalfRoundingPoint ? 256 : (pcCU->getSlice()->getSliceType() == I_SLICE ? 171 : 85) ) << (iQBits - 9); |
---|
3174 | |
---|
3175 | TCoeff transformedCoefficient; |
---|
3176 | |
---|
3177 | // transform-skip |
---|
3178 | if (iTransformShift >= 0) |
---|
3179 | { |
---|
3180 | transformedCoefficient = resiDiff << iTransformShift; |
---|
3181 | } |
---|
3182 | else // for very high bit depths |
---|
3183 | { |
---|
3184 | const Int iTrShiftNeg = -iTransformShift; |
---|
3185 | const Int offset = 1 << (iTrShiftNeg - 1); |
---|
3186 | transformedCoefficient = ( resiDiff + offset ) >> iTrShiftNeg; |
---|
3187 | } |
---|
3188 | |
---|
3189 | // quantization |
---|
3190 | const TCoeff iSign = (transformedCoefficient < 0 ? -1: 1); |
---|
3191 | |
---|
3192 | const Int quantisationCoefficient = enableScalingLists ? piQuantCoeff[uiPos] : defaultQuantisationCoefficient; |
---|
3193 | |
---|
3194 | const Int64 tmpLevel = (Int64)abs(transformedCoefficient) * quantisationCoefficient; |
---|
3195 | |
---|
3196 | const TCoeff quantisedCoefficient = (TCoeff((tmpLevel + iAdd ) >> iQBits)) * iSign; |
---|
3197 | |
---|
3198 | const TCoeff entropyCodingMinimum = -(1 << g_maxTrDynamicRange[toChannelType(compID)]); |
---|
3199 | const TCoeff entropyCodingMaximum = (1 << g_maxTrDynamicRange[toChannelType(compID)]) - 1; |
---|
3200 | pcCoeff[ uiPos ] = Clip3<TCoeff>( entropyCodingMinimum, entropyCodingMaximum, quantisedCoefficient ); |
---|
3201 | } |
---|
3202 | |
---|
3203 | |
---|
3204 | Void TComTrQuant::invTrSkipDeQuantOneSample( TComTU &rTu, ComponentID compID, TCoeff inSample, Pel &reconSample, const QpParam &cQP, UInt uiPos ) |
---|
3205 | { |
---|
3206 | TComDataCU *pcCU = rTu.getCU(); |
---|
3207 | const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(); |
---|
3208 | const TComRectangle &rect = rTu.getRect(compID); |
---|
3209 | const UInt uiWidth = rect.width; |
---|
3210 | const UInt uiHeight = rect.height; |
---|
3211 | const Int QP_per = cQP.per; |
---|
3212 | const Int QP_rem = cQP.rem; |
---|
3213 | const Int iTransformShift = getTransformShift(toChannelType(compID), rTu.GetEquivalentLog2TrSize(compID)); |
---|
3214 | const Int scalingListType = getScalingListType(pcCU->getPredictionMode(uiAbsPartIdx), compID); |
---|
3215 | const Bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, true); |
---|
3216 | const UInt uiLog2TrSize = rTu.GetEquivalentLog2TrSize(compID); |
---|
3217 | |
---|
3218 | assert( scalingListType < SCALING_LIST_NUM ); |
---|
3219 | |
---|
3220 | const Int rightShift = (IQUANT_SHIFT - (iTransformShift + QP_per)) + (enableScalingLists ? LOG2_SCALING_LIST_NEUTRAL_VALUE : 0); |
---|
3221 | |
---|
3222 | const TCoeff transformMinimum = -(1 << g_maxTrDynamicRange[toChannelType(compID)]); |
---|
3223 | const TCoeff transformMaximum = (1 << g_maxTrDynamicRange[toChannelType(compID)]) - 1; |
---|
3224 | |
---|
3225 | // Dequantisation |
---|
3226 | |
---|
3227 | TCoeff dequantisedSample; |
---|
3228 | |
---|
3229 | if(enableScalingLists) |
---|
3230 | { |
---|
3231 | const UInt dequantCoefBits = 1 + IQUANT_SHIFT + SCALING_LIST_BITS; |
---|
3232 | const UInt targetInputBitDepth = std::min<UInt>((g_maxTrDynamicRange[toChannelType(compID)] + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - dequantCoefBits)); |
---|
3233 | |
---|
3234 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
3235 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
3236 | |
---|
3237 | Int *piDequantCoef = getDequantCoeff(scalingListType,QP_rem,uiLog2TrSize-2); |
---|
3238 | |
---|
3239 | if(rightShift > 0) |
---|
3240 | { |
---|
3241 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
3242 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3243 | const Intermediate_Int iCoeffQ = ((Intermediate_Int(clipQCoef) * piDequantCoef[uiPos]) + iAdd ) >> rightShift; |
---|
3244 | |
---|
3245 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3246 | } |
---|
3247 | else |
---|
3248 | { |
---|
3249 | const Int leftShift = -rightShift; |
---|
3250 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3251 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * piDequantCoef[uiPos]) << leftShift; |
---|
3252 | |
---|
3253 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3254 | } |
---|
3255 | } |
---|
3256 | else |
---|
3257 | { |
---|
3258 | const Int scale = g_invQuantScales[QP_rem]; |
---|
3259 | const Int scaleBits = (IQUANT_SHIFT + 1) ; |
---|
3260 | |
---|
3261 | const UInt targetInputBitDepth = std::min<UInt>((g_maxTrDynamicRange[toChannelType(compID)] + 1), (((sizeof(Intermediate_Int) * 8) + rightShift) - scaleBits)); |
---|
3262 | const Intermediate_Int inputMinimum = -(1 << (targetInputBitDepth - 1)); |
---|
3263 | const Intermediate_Int inputMaximum = (1 << (targetInputBitDepth - 1)) - 1; |
---|
3264 | |
---|
3265 | if (rightShift > 0) |
---|
3266 | { |
---|
3267 | const Intermediate_Int iAdd = 1 << (rightShift - 1); |
---|
3268 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3269 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale + iAdd) >> rightShift; |
---|
3270 | |
---|
3271 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3272 | } |
---|
3273 | else |
---|
3274 | { |
---|
3275 | const Int leftShift = -rightShift; |
---|
3276 | const TCoeff clipQCoef = TCoeff(Clip3<Intermediate_Int>(inputMinimum, inputMaximum, inSample)); |
---|
3277 | const Intermediate_Int iCoeffQ = (Intermediate_Int(clipQCoef) * scale) << leftShift; |
---|
3278 | |
---|
3279 | dequantisedSample = TCoeff(Clip3<Intermediate_Int>(transformMinimum,transformMaximum,iCoeffQ)); |
---|
3280 | } |
---|
3281 | } |
---|
3282 | |
---|
3283 | // Inverse transform-skip |
---|
3284 | |
---|
3285 | if (iTransformShift >= 0) |
---|
3286 | { |
---|
3287 | const TCoeff offset = iTransformShift==0 ? 0 : (1 << (iTransformShift - 1)); |
---|
3288 | reconSample = Pel(( dequantisedSample + offset ) >> iTransformShift); |
---|
3289 | } |
---|
3290 | else //for very high bit depths |
---|
3291 | { |
---|
3292 | const Int iTrShiftNeg = -iTransformShift; |
---|
3293 | reconSample = Pel(dequantisedSample << iTrShiftNeg); |
---|
3294 | } |
---|
3295 | } |
---|
3296 | |
---|
3297 | |
---|
3298 | Void TComTrQuant::crossComponentPrediction( TComTU & rTu, |
---|
3299 | const ComponentID compID, |
---|
3300 | const Pel * piResiL, |
---|
3301 | const Pel * piResiC, |
---|
3302 | Pel * piResiT, |
---|
3303 | const Int width, |
---|
3304 | const Int height, |
---|
3305 | const Int strideL, |
---|
3306 | const Int strideC, |
---|
3307 | const Int strideT, |
---|
3308 | const Bool reverse ) |
---|
3309 | { |
---|
3310 | const Pel *pResiL = piResiL; |
---|
3311 | const Pel *pResiC = piResiC; |
---|
3312 | Pel *pResiT = piResiT; |
---|
3313 | |
---|
3314 | TComDataCU *pCU = rTu.getCU(); |
---|
3315 | const Char alpha = pCU->getCrossComponentPredictionAlpha( rTu.GetAbsPartIdxTU( compID ), compID ); |
---|
3316 | const Int diffBitDepth = pCU->getSlice()->getSPS()->getDifferentialLumaChromaBitDepth(); |
---|
3317 | |
---|
3318 | for( Int y = 0; y < height; y++ ) |
---|
3319 | { |
---|
3320 | if (reverse) |
---|
3321 | { |
---|
3322 | for( Int x = 0; x < width; x++ ) |
---|
3323 | { |
---|
3324 | pResiT[x] = pResiC[x] + (( alpha * rightShift( pResiL[x], diffBitDepth) ) >> 3); |
---|
3325 | } |
---|
3326 | } |
---|
3327 | else |
---|
3328 | { |
---|
3329 | for( Int x = 0; x < width; x++ ) |
---|
3330 | { |
---|
3331 | pResiT[x] = pResiC[x] - (( alpha * rightShift(pResiL[x], diffBitDepth) ) >> 3); |
---|
3332 | } |
---|
3333 | } |
---|
3334 | |
---|
3335 | pResiL += strideL; |
---|
3336 | pResiC += strideC; |
---|
3337 | pResiT += strideT; |
---|
3338 | } |
---|
3339 | } |
---|
3340 | |
---|
3341 | //! \} |
---|