/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2015, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TComDataCU.h \brief CU data structure (header) \todo not all entities are documented */ #ifndef __TCOMDATACU__ #define __TCOMDATACU__ #include #include // Include files #include "CommonDef.h" #include "TComMotionInfo.h" #include "TComSlice.h" #include "TComRdCost.h" #include "TComPattern.h" //! \ingroup TLibCommon //! \{ class TComTU; // forward declaration static const UInt NUM_MOST_PROBABLE_MODES=3; // ==================================================================================================================== // Class definition // ==================================================================================================================== /// CU data structure class class TComDataCU { private: // ------------------------------------------------------------------------------------------------------------------- // class pointers // ------------------------------------------------------------------------------------------------------------------- TComPic* m_pcPic; ///< picture class pointer TComSlice* m_pcSlice; ///< slice header pointer // ------------------------------------------------------------------------------------------------------------------- // CU description // ------------------------------------------------------------------------------------------------------------------- UInt m_ctuRsAddr; ///< CTU (also known as LCU) address in a slice (Raster-scan address, as opposed to tile-scan/encoding order). UInt m_absZIdxInCtu; ///< absolute address in a CTU. It's Z scan order UInt m_uiCUPelX; ///< CU position in a pixel (X) UInt m_uiCUPelY; ///< CU position in a pixel (Y) UInt m_uiNumPartition; ///< total number of minimum partitions in a CU UChar* m_puhWidth; ///< array of widths UChar* m_puhHeight; ///< array of heights UChar* m_puhDepth; ///< array of depths Int m_unitSize; ///< size of a "minimum partition" #if SVC_EXTENSION #if FAST_INTRA_SHVC UChar m_reducedSetIntraModes[NUM_INTRA_MODE-1]; #endif #endif // ------------------------------------------------------------------------------------------------------------------- // CU data // ------------------------------------------------------------------------------------------------------------------- Bool* m_skipFlag; ///< array of skip flags SChar* m_pePartSize; ///< array of partition sizes SChar* m_pePredMode; ///< array of prediction modes SChar* m_crossComponentPredictionAlpha[MAX_NUM_COMPONENT]; ///< array of cross-component prediction alpha values Bool* m_CUTransquantBypass; ///< array of cu_transquant_bypass flags SChar* m_phQP; ///< array of QP values UChar* m_ChromaQpAdj; ///< array of chroma QP adjustments (indexed). when value = 0, cu_chroma_qp_offset_flag=0; when value>0, indicates cu_chroma_qp_offset_flag=1 and cu_chroma_qp_offset_idx=value-1 UInt m_codedChromaQpAdj; UChar* m_puhTrIdx; ///< array of transform indices UChar* m_puhTransformSkip[MAX_NUM_COMPONENT]; ///< array of transform skipping flags UChar* m_puhCbf[MAX_NUM_COMPONENT]; ///< array of coded block flags (CBF) TComCUMvField m_acCUMvField[NUM_REF_PIC_LIST_01]; ///< array of motion vectors. TCoeff* m_pcTrCoeff[MAX_NUM_COMPONENT]; ///< array of transform coefficient buffers (0->Y, 1->Cb, 2->Cr) #if ADAPTIVE_QP_SELECTION TCoeff* m_pcArlCoeff[MAX_NUM_COMPONENT]; ///< ARL coefficient buffer (0->Y, 1->Cb, 2->Cr) Bool m_ArlCoeffIsAliasedAllocation; ///< ARL coefficient buffer is an alias of the global buffer and must not be free()'d #endif Pel* m_pcIPCMSample[MAX_NUM_COMPONENT]; ///< PCM sample buffer (0->Y, 1->Cb, 2->Cr) // ------------------------------------------------------------------------------------------------------------------- // neighbour access variables // ------------------------------------------------------------------------------------------------------------------- TComDataCU* m_pCtuAboveLeft; ///< pointer of above-left CTU. TComDataCU* m_pCtuAboveRight; ///< pointer of above-right CTU. TComDataCU* m_pCtuAbove; ///< pointer of above CTU. TComDataCU* m_pCtuLeft; ///< pointer of left CTU TComDataCU* m_apcCUColocated[NUM_REF_PIC_LIST_01]; ///< pointer of temporally colocated CU's for both directions TComMvField m_cMvFieldA; ///< motion vector of position A TComMvField m_cMvFieldB; ///< motion vector of position B TComMvField m_cMvFieldC; ///< motion vector of position C TComMv m_cMvPred; ///< motion vector predictor // ------------------------------------------------------------------------------------------------------------------- // coding tool information // ------------------------------------------------------------------------------------------------------------------- Bool* m_pbMergeFlag; ///< array of merge flags UChar* m_puhMergeIndex; ///< array of merge candidate indices #if AMP_MRG Bool m_bIsMergeAMP; #endif UChar* m_puhIntraDir[MAX_NUM_CHANNEL_TYPE]; UChar* m_puhInterDir; ///< array of inter directions SChar* m_apiMVPIdx[NUM_REF_PIC_LIST_01]; ///< array of motion vector predictor candidates SChar* m_apiMVPNum[NUM_REF_PIC_LIST_01]; ///< array of number of possible motion vectors predictors Bool* m_pbIPCMFlag; ///< array of intra_pcm flags // ------------------------------------------------------------------------------------------------------------------- // misc. variables // ------------------------------------------------------------------------------------------------------------------- Bool m_bDecSubCu; ///< indicates decoder-mode Double m_dTotalCost; ///< sum of partition RD costs Distortion m_uiTotalDistortion; ///< sum of partition distortion UInt m_uiTotalBits; ///< sum of partition bits UInt m_uiTotalBins; ///< sum of partition bins SChar m_codedQP; UChar* m_explicitRdpcmMode[MAX_NUM_COMPONENT]; ///< Stores the explicit RDPCM mode for all TUs belonging to this CU protected: /// adds a single possible motion vector predictor candidate Bool xAddMVPCandUnscaled ( AMVPInfo &info, const RefPicList eRefPicList, const Int iRefIdx, const UInt uiPartUnitIdx, const MVP_DIR eDir ) const; Bool xAddMVPCandWithScaling ( AMVPInfo &info, const RefPicList eRefPicList, const Int iRefIdx, const UInt uiPartUnitIdx, const MVP_DIR eDir ) const; Void deriveRightBottomIdx ( UInt uiPartIdx, UInt& ruiPartIdxRB ) const; Bool xGetColMVP ( const RefPicList eRefPicList, const Int ctuRsAddr, const Int partUnitIdx, TComMv& rcMv, const Int refIdx ) const; /// compute scaling factor from POC difference static Int xGetDistScaleFactor ( Int iCurrPOC, Int iCurrRefPOC, Int iColPOC, Int iColRefPOC ); Void xDeriveCenterIdx ( UInt uiPartIdx, UInt& ruiPartIdxCenter ) const; public: TComDataCU(); virtual ~TComDataCU(); // ------------------------------------------------------------------------------------------------------------------- // create / destroy / initialize / copy // ------------------------------------------------------------------------------------------------------------------- Void create ( ChromaFormat chromaFormatIDC, UInt uiNumPartition, UInt uiWidth, UInt uiHeight, Bool bDecSubCu, Int unitSize #if ADAPTIVE_QP_SELECTION , TCoeff *pParentARLBuffer = 0 #endif ); Void destroy ( ); Void initCtu ( TComPic* pcPic, UInt ctuRsAddr ); Void initEstData ( const UInt uiDepth, const Int qp, const Bool bTransquantBypass ); Void initSubCU ( TComDataCU* pcCU, UInt uiPartUnitIdx, UInt uiDepth, Int qp ); Void setOutsideCUPart ( UInt uiAbsPartIdx, UInt uiDepth ); Void copySubCU ( TComDataCU* pcCU, UInt uiPartUnitIdx ); Void copyInterPredInfoFrom ( TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefPicList ); Void copyPartFrom ( TComDataCU* pcCU, UInt uiPartUnitIdx, UInt uiDepth ); Void copyToPic ( UChar uiDepth ); // ------------------------------------------------------------------------------------------------------------------- // member functions for CU description // ------------------------------------------------------------------------------------------------------------------- TComPic* getPic ( ) { return m_pcPic; } const TComPic* getPic ( ) const { return m_pcPic; } TComSlice* getSlice ( ) { return m_pcSlice; } const TComSlice* getSlice ( ) const { return m_pcSlice; } UInt& getCtuRsAddr ( ) { return m_ctuRsAddr; } UInt getCtuRsAddr ( ) const { return m_ctuRsAddr; } UInt getZorderIdxInCtu ( ) const { return m_absZIdxInCtu; } UInt getCUPelX ( ) const { return m_uiCUPelX; } UInt getCUPelY ( ) const { return m_uiCUPelY; } UChar* getDepth ( ) { return m_puhDepth; } UChar getDepth ( UInt uiIdx ) const { return m_puhDepth[uiIdx]; } Void setDepth ( UInt uiIdx, UChar uh ) { m_puhDepth[uiIdx] = uh; } Void setDepthSubParts ( UInt uiDepth, UInt uiAbsPartIdx ); // ------------------------------------------------------------------------------------------------------------------- // member functions for CU data // ------------------------------------------------------------------------------------------------------------------- SChar* getPartitionSize ( ) { return m_pePartSize; } PartSize getPartitionSize ( UInt uiIdx ) const { return static_cast( m_pePartSize[uiIdx] ); } Void setPartitionSize ( UInt uiIdx, PartSize uh ) { m_pePartSize[uiIdx] = uh; } Void setPartSizeSubParts ( PartSize eMode, UInt uiAbsPartIdx, UInt uiDepth ); Void setCUTransquantBypassSubParts ( Bool flag, UInt uiAbsPartIdx, UInt uiDepth ); Bool* getSkipFlag ( ) { return m_skipFlag; } Bool getSkipFlag ( UInt idx ) const { return m_skipFlag[idx]; } Void setSkipFlag ( UInt idx, Bool skip ) { m_skipFlag[idx] = skip; } Void setSkipFlagSubParts ( Bool skip, UInt absPartIdx, UInt depth ); SChar* getPredictionMode ( ) { return m_pePredMode; } PredMode getPredictionMode ( UInt uiIdx ) const { return static_cast( m_pePredMode[uiIdx] ); } Void setPredictionMode ( UInt uiIdx, PredMode uh ) { m_pePredMode[uiIdx] = uh; } Void setPredModeSubParts ( PredMode eMode, UInt uiAbsPartIdx, UInt uiDepth ); SChar* getCrossComponentPredictionAlpha( ComponentID compID ) { return m_crossComponentPredictionAlpha[compID]; } SChar getCrossComponentPredictionAlpha( UInt uiIdx, ComponentID compID ) { return m_crossComponentPredictionAlpha[compID][uiIdx]; } Bool* getCUTransquantBypass ( ) { return m_CUTransquantBypass; } Bool getCUTransquantBypass ( UInt uiIdx ) const { return m_CUTransquantBypass[uiIdx]; } UChar* getWidth ( ) { return m_puhWidth; } UChar getWidth ( UInt uiIdx ) const { return m_puhWidth[uiIdx]; } Void setWidth ( UInt uiIdx, UChar uh ) { m_puhWidth[uiIdx] = uh; } UChar* getHeight ( ) { return m_puhHeight; } UChar getHeight ( UInt uiIdx ) const { return m_puhHeight[uiIdx]; } Void setHeight ( UInt uiIdx, UChar uh ) { m_puhHeight[uiIdx] = uh; } Void setSizeSubParts ( UInt uiWidth, UInt uiHeight, UInt uiAbsPartIdx, UInt uiDepth ); SChar* getQP ( ) { return m_phQP; } SChar getQP ( UInt uiIdx ) const { return m_phQP[uiIdx]; } Void setQP ( UInt uiIdx, SChar value ) { m_phQP[uiIdx] = value; } Void setQPSubParts ( Int qp, UInt uiAbsPartIdx, UInt uiDepth ); Int getLastValidPartIdx ( Int iAbsPartIdx ) const; SChar getLastCodedQP ( UInt uiAbsPartIdx ) const; Void setQPSubCUs ( Int qp, UInt absPartIdx, UInt depth, Bool &foundNonZeroCbf ); Void setCodedQP ( SChar qp ) { m_codedQP = qp; } SChar getCodedQP ( ) const { return m_codedQP; } UChar* getChromaQpAdj ( ) { return m_ChromaQpAdj; } ///< array of chroma QP adjustments (indexed). when value = 0, cu_chroma_qp_offset_flag=0; when value>0, indicates cu_chroma_qp_offset_flag=1 and cu_chroma_qp_offset_idx=value-1 UChar getChromaQpAdj ( Int idx ) const { return m_ChromaQpAdj[idx]; } ///< When value = 0, cu_chroma_qp_offset_flag=0; when value>0, indicates cu_chroma_qp_offset_flag=1 and cu_chroma_qp_offset_idx=value-1 Void setChromaQpAdj ( Int idx, UChar val ) { m_ChromaQpAdj[idx] = val; } ///< When val = 0, cu_chroma_qp_offset_flag=0; when val>0, indicates cu_chroma_qp_offset_flag=1 and cu_chroma_qp_offset_idx=val-1 Void setChromaQpAdjSubParts ( UChar val, Int absPartIdx, Int depth ); Void setCodedChromaQpAdj ( SChar qp ) { m_codedChromaQpAdj = qp; } SChar getCodedChromaQpAdj ( ) const { return m_codedChromaQpAdj; } Bool isLosslessCoded ( UInt absPartIdx ) const; UChar* getTransformIdx ( ) { return m_puhTrIdx; } UChar getTransformIdx ( UInt uiIdx ) const { return m_puhTrIdx[uiIdx]; } Void setTrIdxSubParts ( UInt uiTrIdx, UInt uiAbsPartIdx, UInt uiDepth ); UChar* getTransformSkip ( ComponentID compID ) { return m_puhTransformSkip[compID]; } UChar getTransformSkip ( UInt uiIdx, ComponentID compID ) const { return m_puhTransformSkip[compID][uiIdx]; } Void setTransformSkipSubParts ( UInt useTransformSkip, ComponentID compID, UInt uiAbsPartIdx, UInt uiDepth ); Void setTransformSkipSubParts ( const UInt useTransformSkip[MAX_NUM_COMPONENT], UInt uiAbsPartIdx, UInt uiDepth ); UChar* getExplicitRdpcmMode ( ComponentID component ) { return m_explicitRdpcmMode[component]; } UChar getExplicitRdpcmMode ( ComponentID component, UInt partIdx ) const { return m_explicitRdpcmMode[component][partIdx]; } Void setExplicitRdpcmModePartRange ( UInt rdpcmMode, ComponentID compID, UInt uiAbsPartIdx, UInt uiCoveredPartIdxes ); Bool isRDPCMEnabled ( UInt uiAbsPartIdx ) const { return getSlice()->getSPS()->getSpsRangeExtension().getRdpcmEnabledFlag(isIntra(uiAbsPartIdx) ? RDPCM_SIGNAL_IMPLICIT : RDPCM_SIGNAL_EXPLICIT); } Void setCrossComponentPredictionAlphaPartRange ( SChar alphaValue, ComponentID compID, UInt uiAbsPartIdx, UInt uiCoveredPartIdxes ); Void setTransformSkipPartRange ( UInt useTransformSkip, ComponentID compID, UInt uiAbsPartIdx, UInt uiCoveredPartIdxes ); UInt getQuadtreeTULog2MinSizeInCU ( UInt uiIdx ) const; TComCUMvField* getCUMvField ( RefPicList e ) { return &m_acCUMvField[e]; } const TComCUMvField* getCUMvField ( RefPicList e ) const { return &m_acCUMvField[e]; } TCoeff* getCoeff ( ComponentID component ) { return m_pcTrCoeff[component]; } #if ADAPTIVE_QP_SELECTION TCoeff* getArlCoeff ( ComponentID component ) { return m_pcArlCoeff[component]; } #endif Pel* getPCMSample ( ComponentID component ) { return m_pcIPCMSample[component]; } UChar getCbf ( UInt uiIdx, ComponentID eType ) const { return m_puhCbf[eType][uiIdx]; } UChar* getCbf ( ComponentID eType ) { return m_puhCbf[eType]; } UChar getCbf ( UInt uiIdx, ComponentID eType, UInt uiTrDepth ) const { return ( ( getCbf( uiIdx, eType ) >> uiTrDepth ) & 0x1 ); } Void setCbf ( UInt uiIdx, ComponentID eType, UChar uh ) { m_puhCbf[eType][uiIdx] = uh; } Void clearCbf ( UInt uiIdx, ComponentID eType, UInt uiNumParts ); UChar getQtRootCbf ( UInt uiIdx ) const; Void setCbfSubParts ( const UInt uiCbf[MAX_NUM_COMPONENT], UInt uiAbsPartIdx, UInt uiDepth ); Void setCbfSubParts ( UInt uiCbf, ComponentID compID, UInt uiAbsPartIdx, UInt uiDepth ); Void setCbfSubParts ( UInt uiCbf, ComponentID compID, UInt uiAbsPartIdx, UInt uiPartIdx, UInt uiDepth ); Void setCbfPartRange ( UInt uiCbf, ComponentID compID, UInt uiAbsPartIdx, UInt uiCoveredPartIdxes ); Void bitwiseOrCbfPartRange ( UInt uiCbf, ComponentID compID, UInt uiAbsPartIdx, UInt uiCoveredPartIdxes ); // ------------------------------------------------------------------------------------------------------------------- // member functions for coding tool information // ------------------------------------------------------------------------------------------------------------------- Bool* getMergeFlag ( ) { return m_pbMergeFlag; } Bool getMergeFlag ( UInt uiIdx ) const { return m_pbMergeFlag[uiIdx]; } Void setMergeFlag ( UInt uiIdx, Bool b ) { m_pbMergeFlag[uiIdx] = b; } Void setMergeFlagSubParts ( Bool bMergeFlag, UInt uiAbsPartIdx, UInt uiPartIdx, UInt uiDepth ); UChar* getMergeIndex ( ) { return m_puhMergeIndex; } UChar getMergeIndex ( UInt uiIdx ) const { return m_puhMergeIndex[uiIdx]; } Void setMergeIndex ( UInt uiIdx, UInt uiMergeIndex ) { m_puhMergeIndex[uiIdx] = uiMergeIndex; } Void setMergeIndexSubParts ( UInt uiMergeIndex, UInt uiAbsPartIdx, UInt uiPartIdx, UInt uiDepth ); template Void setSubPart ( T bParameter, T* pbBaseCtu, UInt uiCUAddr, UInt uiCUDepth, UInt uiPUIdx ); #if AMP_MRG Void setMergeAMP ( Bool b ) { m_bIsMergeAMP = b; } Bool getMergeAMP ( ) const { return m_bIsMergeAMP; } #endif UChar* getIntraDir ( const ChannelType channelType ) const { return m_puhIntraDir[channelType]; } UChar getIntraDir ( const ChannelType channelType, const UInt uiIdx ) const { return m_puhIntraDir[channelType][uiIdx]; } Void setIntraDirSubParts ( const ChannelType channelType, const UInt uiDir, const UInt uiAbsPartIdx, const UInt uiDepth ); UChar* getInterDir ( ) { return m_puhInterDir; } UChar getInterDir ( UInt uiIdx ) const { return m_puhInterDir[uiIdx]; } Void setInterDir ( UInt uiIdx, UChar uh ) { m_puhInterDir[uiIdx] = uh; } Void setInterDirSubParts ( UInt uiDir, UInt uiAbsPartIdx, UInt uiPartIdx, UInt uiDepth ); Bool* getIPCMFlag ( ) { return m_pbIPCMFlag; } Bool getIPCMFlag ( UInt uiIdx ) const { return m_pbIPCMFlag[uiIdx]; } Void setIPCMFlag ( UInt uiIdx, Bool b ) { m_pbIPCMFlag[uiIdx] = b; } Void setIPCMFlagSubParts ( Bool bIpcmFlag, UInt uiAbsPartIdx, UInt uiDepth ); // ------------------------------------------------------------------------------------------------------------------- // member functions for accessing partition information // ------------------------------------------------------------------------------------------------------------------- Void getPartIndexAndSize ( UInt uiPartIdx, UInt& ruiPartAddr, Int& riWidth, Int& riHeight ) const; // This is for use by a leaf/sub CU object only, with no additional AbsPartIdx UChar getNumPartitions ( const UInt uiAbsPartIdx = 0 ) const; Bool isFirstAbsZorderIdxInDepth ( UInt uiAbsPartIdx, UInt uiDepth ) const; // ------------------------------------------------------------------------------------------------------------------- // member functions for motion vector // ------------------------------------------------------------------------------------------------------------------- static Void getMvField ( const TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefPicList, TComMvField& rcMvField ); Void fillMvpCand ( const UInt uiPartIdx, const UInt uiPartAddr, const RefPicList eRefPicList, const Int iRefIdx, AMVPInfo* pInfo ) const; Bool isDiffMER ( Int xN, Int yN, Int xP, Int yP ) const; Void getPartPosition ( UInt partIdx, Int& xP, Int& yP, Int& nPSW, Int& nPSH ) const; Void setMVPIdx ( RefPicList eRefPicList, UInt uiIdx, Int iMVPIdx) { m_apiMVPIdx[eRefPicList][uiIdx] = iMVPIdx; } Int getMVPIdx ( RefPicList eRefPicList, UInt uiIdx) const { return m_apiMVPIdx[eRefPicList][uiIdx]; } SChar* getMVPIdx ( RefPicList eRefPicList ) { return m_apiMVPIdx[eRefPicList]; } Void setMVPNum ( RefPicList eRefPicList, UInt uiIdx, Int iMVPNum ) { m_apiMVPNum[eRefPicList][uiIdx] = iMVPNum; } Int getMVPNum ( RefPicList eRefPicList, UInt uiIdx ) const { return m_apiMVPNum[eRefPicList][uiIdx]; } SChar* getMVPNum ( RefPicList eRefPicList ) { return m_apiMVPNum[eRefPicList]; } Void setMVPIdxSubParts ( Int iMVPIdx, RefPicList eRefPicList, UInt uiAbsPartIdx, UInt uiPartIdx, UInt uiDepth ); Void setMVPNumSubParts ( Int iMVPNum, RefPicList eRefPicList, UInt uiAbsPartIdx, UInt uiPartIdx, UInt uiDepth ); Void clipMv ( TComMv& rcMv ) const; Void getMvPredLeft ( TComMv& rcMvPred ) const { rcMvPred = m_cMvFieldA.getMv(); } Void getMvPredAbove ( TComMv& rcMvPred ) const { rcMvPred = m_cMvFieldB.getMv(); } Void getMvPredAboveRight ( TComMv& rcMvPred ) const { rcMvPred = m_cMvFieldC.getMv(); } Void compressMV (); // ------------------------------------------------------------------------------------------------------------------- // utility functions for neighbouring information // ------------------------------------------------------------------------------------------------------------------- TComDataCU* getCtuLeft ( ) { return m_pCtuLeft; } TComDataCU* getCtuAbove ( ) { return m_pCtuAbove; } TComDataCU* getCtuAboveLeft ( ) { return m_pCtuAboveLeft; } TComDataCU* getCtuAboveRight ( ) { return m_pCtuAboveRight; } TComDataCU* getCUColocated ( RefPicList eRefPicList ) { return m_apcCUColocated[eRefPicList]; } Bool CUIsFromSameSlice ( const TComDataCU *pCU /* Can be NULL */ ) const { return ( pCU!=NULL && pCU->getSlice()->getSliceCurStartCtuTsAddr() == getSlice()->getSliceCurStartCtuTsAddr() ); } Bool CUIsFromSameTile ( const TComDataCU *pCU /* Can be NULL */ ) const; Bool CUIsFromSameSliceAndTile ( const TComDataCU *pCU /* Can be NULL */ ) const; Bool CUIsFromSameSliceTileAndWavefrontRow( const TComDataCU *pCU /* Can be NULL */ ) const; Bool isLastSubCUOfCtu ( const UInt absPartIdx ) const; const TComDataCU* getPULeft ( UInt& uiLPartUnitIdx, UInt uiCurrPartUnitIdx, Bool bEnforceSliceRestriction=true, Bool bEnforceTileRestriction=true ) const; const TComDataCU* getPUAbove ( UInt& uiAPartUnitIdx, UInt uiCurrPartUnitIdx, Bool bEnforceSliceRestriction=true, Bool planarAtCTUBoundary = false, Bool bEnforceTileRestriction=true ) const; const TComDataCU* getPUAboveLeft ( UInt& uiALPartUnitIdx, UInt uiCurrPartUnitIdx, Bool bEnforceSliceRestriction=true ) const; const TComDataCU* getQpMinCuLeft ( UInt& uiLPartUnitIdx, UInt uiCurrAbsIdxInCtu ) const; const TComDataCU* getQpMinCuAbove ( UInt& uiAPartUnitIdx, UInt uiCurrAbsIdxInCtu ) const; /// returns CU and part index of the PU above the top row of the current uiCurrPartUnitIdx of the CU, at a horizontal offset (to the right) of uiPartUnitOffset (in parts) const TComDataCU* getPUAboveRight ( UInt& uiARPartUnitIdx, UInt uiCurrPartUnitIdx, UInt uiPartUnitOffset = 1, Bool bEnforceSliceRestriction=true ) const; /// returns CU and part index of the PU left of the lefthand column of the current uiCurrPartUnitIdx of the CU, at a vertical offset (below) of uiPartUnitOffset (in parts) const TComDataCU* getPUBelowLeft ( UInt& uiBLPartUnitIdx, UInt uiCurrPartUnitIdx, UInt uiPartUnitOffset = 1, Bool bEnforceSliceRestriction=true ) const; SChar getRefQP ( UInt uiCurrAbsIdxInCtu ) const; Void deriveLeftRightTopIdx ( UInt uiPartIdx, UInt& ruiPartIdxLT, UInt& ruiPartIdxRT ) const; Void deriveLeftBottomIdx ( UInt uiPartIdx, UInt& ruiPartIdxLB ) const; Bool hasEqualMotion ( UInt uiAbsPartIdx, const TComDataCU* pcCandCU, UInt uiCandAbsPartIdx ) const; Void getInterMergeCandidates ( UInt uiAbsPartIdx, UInt uiPUIdx, TComMvField* pcMFieldNeighbours, UChar* puhInterDirNeighbours, Int& numValidMergeCand, Int mrgCandIdx = -1 ) const; Void deriveLeftRightTopIdxGeneral ( UInt uiAbsPartIdx, UInt uiPartIdx, UInt& ruiPartIdxLT, UInt& ruiPartIdxRT ) const; Void deriveLeftBottomIdxGeneral ( UInt uiAbsPartIdx, UInt uiPartIdx, UInt& ruiPartIdxLB ) const; // ------------------------------------------------------------------------------------------------------------------- // member functions for modes // ------------------------------------------------------------------------------------------------------------------- Bool isIntra ( UInt uiPartIdx ) const { return m_pePredMode[ uiPartIdx ] == MODE_INTRA; } Bool isInter ( UInt uiPartIdx ) const { return m_pePredMode[ uiPartIdx ] == MODE_INTER; } Bool isSkipped ( UInt uiPartIdx ) const; ///< returns true, if the partiton is skipped Bool isBipredRestriction ( UInt puIdx ) const; // ------------------------------------------------------------------------------------------------------------------- // member functions for symbol prediction (most probable / mode conversion) // ------------------------------------------------------------------------------------------------------------------- UInt getIntraSizeIdx ( UInt uiAbsPartIdx ) const; Void getAllowedChromaDir ( UInt uiAbsPartIdx, UInt* uiModeList ) const; Void getIntraDirPredictor ( UInt uiAbsPartIdx, Int uiIntraDirPred[NUM_MOST_PROBABLE_MODES], const ComponentID compID, Int* piMode = NULL ) const; // ------------------------------------------------------------------------------------------------------------------- // member functions for SBAC context // ------------------------------------------------------------------------------------------------------------------- UInt getCtxSplitFlag ( UInt uiAbsPartIdx, UInt uiDepth ) const; UInt getCtxQtCbf ( TComTU &rTu, const ChannelType chType ) const; UInt getCtxSkipFlag ( UInt uiAbsPartIdx ) const; UInt getCtxInterDir ( UInt uiAbsPartIdx ) const; UInt& getTotalBins ( ) { return m_uiTotalBins; } // ------------------------------------------------------------------------------------------------------------------- // member functions for RD cost storage // ------------------------------------------------------------------------------------------------------------------- Double& getTotalCost ( ) { return m_dTotalCost; } Distortion& getTotalDistortion ( ) { return m_uiTotalDistortion; } UInt& getTotalBits ( ) { return m_uiTotalBits; } UInt& getTotalNumPart ( ) { return m_uiNumPartition; } UInt getCoefScanIdx ( const UInt uiAbsPartIdx, const UInt uiWidth, const UInt uiHeight, const ComponentID compID ) const ; #if SVC_EXTENSION #if N0383_IL_CONSTRAINED_TILE_SETS_SEI Bool isInterLayerReference ( UChar uhInterDir, TComMvField& cMvFieldL0, TComMvField& cMvFieldL1 ) const; #endif #if FAST_INTRA_SHVC Int reduceSetOfIntraModes ( UInt uiAbsPartIdx, Int* uiIntraDirPred, Int** posScalingFactor, Int &fullSetOfModes ); #endif #if REF_IDX_ME_ZEROMV Bool checkZeroMVILRMerge ( UChar uhInterDir, TComMvField& cMvFieldL0, TComMvField& cMvFieldL1); Bool checkZeroMVILRMvdL1Zero ( Int iRefList, Int iRefIdx, Int MvpIdx); #endif TComDataCU* getBaseColCU ( UInt refLayerIdc, UInt uiCuAbsPartIdx, UInt &uiCUAddrBase, UInt &uiAbsPartIdxBase, Int** posScalingFactor, Bool motionMapping = false ); TComDataCU* getBaseColCU ( UInt refLayerIdc, UInt pelX, UInt pelY, UInt &uiCUAddrBase, UInt &uiAbsPartIdxBase, Int** posScalingFactor, Bool motionMapping = false ); Void scaleBaseMV ( UInt refLayerIdc, TComMvField& rcMvFieldEnhance, TComMvField& rcMvFieldBase, Int** mvScalingFactor ); #if FAST_INTRA_SHVC UChar getReducedSetIntraModes ( UChar idx ) const { assert( idx < NUM_INTRA_MODE-1 ); return m_reducedSetIntraModes[idx]; } #endif #endif }; namespace RasterAddress { /** Check whether 2 addresses point to the same column * \param addrA First address in raster scan order * \param addrB Second address in raters scan order * \param numUnitsPerRow Number of units in a row * \return Result of test */ static inline Bool isEqualCol( Int addrA, Int addrB, Int numUnitsPerRow ) { // addrA % numUnitsPerRow == addrB % numUnitsPerRow return (( addrA ^ addrB ) & ( numUnitsPerRow - 1 ) ) == 0; } /** Check whether 2 addresses point to the same row * \param addrA First address in raster scan order * \param addrB Second address in raters scan order * \param numUnitsPerRow Number of units in a row * \return Result of test */ static inline Bool isEqualRow( Int addrA, Int addrB, Int numUnitsPerRow ) { // addrA / numUnitsPerRow == addrB / numUnitsPerRow return (( addrA ^ addrB ) &~ ( numUnitsPerRow - 1 ) ) == 0; } /** Check whether 2 addresses point to the same row or column * \param addrA First address in raster scan order * \param addrB Second address in raters scan order * \param numUnitsPerRow Number of units in a row * \return Result of test */ static inline Bool isEqualRowOrCol( Int addrA, Int addrB, Int numUnitsPerRow ) { return isEqualCol( addrA, addrB, numUnitsPerRow ) | isEqualRow( addrA, addrB, numUnitsPerRow ); } /** Check whether one address points to the first column * \param addr Address in raster scan order * \param numUnitsPerRow Number of units in a row * \return Result of test */ static inline Bool isZeroCol( Int addr, Int numUnitsPerRow ) { // addr % numUnitsPerRow == 0 return ( addr & ( numUnitsPerRow - 1 ) ) == 0; } /** Check whether one address points to the first row * \param addr Address in raster scan order * \param numUnitsPerRow Number of units in a row * \return Result of test */ static inline Bool isZeroRow( Int addr, Int numUnitsPerRow ) { // addr / numUnitsPerRow == 0 return ( addr &~ ( numUnitsPerRow - 1 ) ) == 0; } /** Check whether one address points to a column whose index is smaller than a given value * \param addr Address in raster scan order * \param val Given column index value * \param numUnitsPerRow Number of units in a row * \return Result of test */ static inline Bool lessThanCol( Int addr, Int val, Int numUnitsPerRow ) { // addr % numUnitsPerRow < val return ( addr & ( numUnitsPerRow - 1 ) ) < val; } /** Check whether one address points to a row whose index is smaller than a given value * \param addr Address in raster scan order * \param val Given row index value * \param numUnitsPerRow Number of units in a row * \return Result of test */ static inline Bool lessThanRow( Int addr, Int val, Int numUnitsPerRow ) { // addr / numUnitsPerRow < val return addr < val * numUnitsPerRow; } } //! \} #endif