/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TAppEncCfg.cpp \brief Handle encoder configuration parameters */ #include #include #include #include #include #include "TLibCommon/TComRom.h" #include "TAppEncCfg.h" #include "TAppCommon/program_options_lite.h" #include "TLibEncoder/TEncRateCtrl.h" #ifdef WIN32 #define strdup _strdup #endif #define MACRO_TO_STRING_HELPER(val) #val #define MACRO_TO_STRING(val) MACRO_TO_STRING_HELPER(val) using namespace std; namespace po = df::program_options_lite; enum ExtendedProfileName // this is used for determining profile strings, where multiple profiles map to a single profile idc with various constraint flag combinations { NONE = 0, MAIN = 1, MAIN10 = 2, MAINSTILLPICTURE = 3, MAINREXT = 4, HIGHTHROUGHPUTREXT = 5, // Placeholder profile for development #if MULTIPLE_PTL_SUPPORT MULTIVIEWMAIN = 6, SCALABLEMAIN = 7, SCALABLEMAIN10 = 8, #endif // The following are RExt profiles, which would map to the MAINREXT profile idc. // The enumeration indicates the bit-depth constraint in the bottom 2 digits // the chroma format in the next digit // the intra constraint in the top digit MONOCHROME_8 = 1008, MONOCHROME_12 = 1012, MONOCHROME_16 = 1016, MAIN_12 = 1112, MAIN_422_10 = 1210, MAIN_422_12 = 1212, MAIN_444 = 1308, MAIN_444_10 = 1310, MAIN_444_12 = 1312, MAIN_444_16 = 1316, // non-standard profile definition, used for development purposes MAIN_INTRA = 2108, MAIN_10_INTRA = 2110, MAIN_12_INTRA = 2112, MAIN_422_10_INTRA = 2210, MAIN_422_12_INTRA = 2212, MAIN_444_INTRA = 2308, MAIN_444_10_INTRA = 2310, MAIN_444_12_INTRA = 2312, MAIN_444_16_INTRA = 2316, }; //! \ingroup TAppEncoder //! \{ // ==================================================================================================================== // Constructor / destructor / initialization / destroy // ==================================================================================================================== #if SVC_EXTENSION TAppEncCfg::TAppEncCfg() : m_pBitstreamFile() #if AVC_BASE #if VPS_AVC_BL_FLAG_REMOVAL , m_nonHEVCBaseLayerFlag(0) #else , m_avcBaseLayerFlag(0) #endif #endif , m_maxTidRefPresentFlag(1) #if OUTPUT_LAYER_SETS_CONFIG , m_defaultTargetOutputLayerIdc (-1) , m_numOutputLayerSets (-1) #endif , m_inputColourSpaceConvert(IPCOLOURSPACE_UNCHANGED) , m_snrInternalColourSpace(false) , m_outputInternalColourSpace(false) , m_scalingListFile() , m_elRapSliceBEnabled(0) { for(UInt layer=0; layer 0 ) { delete [] m_acLayerCfg[layer].m_samplePredRefLayerIds; m_acLayerCfg[layer].m_samplePredRefLayerIds = NULL; } if( m_acLayerCfg[layer].m_numMotionPredRefLayers > 0 ) { delete [] m_acLayerCfg[layer].m_motionPredRefLayerIds; m_acLayerCfg[layer].m_motionPredRefLayerIds = NULL; } if( m_acLayerCfg[layer].m_numActiveRefLayers > 0 ) { delete [] m_acLayerCfg[layer].m_predLayerIds; m_acLayerCfg[layer].m_predLayerIds = NULL; } } #endif } std::istringstream &operator>>(std::istringstream &in, GOPEntry &entry) //input { in>>entry.m_sliceType; in>>entry.m_POC; in>>entry.m_QPOffset; in>>entry.m_QPFactor; in>>entry.m_tcOffsetDiv2; in>>entry.m_betaOffsetDiv2; in>>entry.m_temporalId; in>>entry.m_numRefPicsActive; in>>entry.m_numRefPics; for ( Int i = 0; i < entry.m_numRefPics; i++ ) { in>>entry.m_referencePics[i]; } in>>entry.m_interRPSPrediction; #if AUTO_INTER_RPS if (entry.m_interRPSPrediction==1) { in>>entry.m_deltaRPS; in>>entry.m_numRefIdc; for ( Int i = 0; i < entry.m_numRefIdc; i++ ) { in>>entry.m_refIdc[i]; } } else if (entry.m_interRPSPrediction==2) { in>>entry.m_deltaRPS; } #else if (entry.m_interRPSPrediction) { in>>entry.m_deltaRPS; in>>entry.m_numRefIdc; for ( Int i = 0; i < entry.m_numRefIdc; i++ ) { in>>entry.m_refIdc[i]; } } #endif return in; } Bool confirmPara(Bool bflag, const Char* message); static inline ChromaFormat numberToChromaFormat(const Int val) { switch (val) { case 400: return CHROMA_400; break; case 420: return CHROMA_420; break; case 422: return CHROMA_422; break; case 444: return CHROMA_444; break; default: return NUM_CHROMA_FORMAT; } } #if SVC_EXTENSION void TAppEncCfg::getDirFilename(string& filename, string& dir, const string path) { size_t pos = path.find_last_of("\\"); if(pos != std::string::npos) { filename.assign(path.begin() + pos + 1, path.end()); dir.assign(path.begin(), path.begin() + pos + 1); } else { pos = path.find_last_of("/"); if(pos != std::string::npos) { filename.assign(path.begin() + pos + 1, path.end()); dir.assign(path.begin(), path.begin() + pos + 1); } else { filename = path; dir.assign(""); } } } #endif static const struct MapStrToProfile { const Char* str; Profile::Name value; } strToProfile[] = { {"none", Profile::NONE }, {"main", Profile::MAIN }, {"main10", Profile::MAIN10 }, {"main-still-picture", Profile::MAINSTILLPICTURE }, {"main-RExt", Profile::MAINREXT }, {"high-throughput-RExt", Profile::HIGHTHROUGHPUTREXT }, #if MULTIPLE_PTL_SUPPORT {"multiview-main", Profile::MULTIVIEWMAIN }, //This is not used in this software {"scalable-main", Profile::SCALABLEMAIN }, {"scalable-main10", Profile::SCALABLEMAIN10 }, #endif }; static const struct MapStrToExtendedProfile { const Char* str; ExtendedProfileName value; } strToExtendedProfile[] = { {"none", NONE }, {"main", MAIN }, {"main10", MAIN10 }, {"main-still-picture", MAINSTILLPICTURE }, {"main-RExt", MAINREXT }, {"high-throughput-RExt", HIGHTHROUGHPUTREXT }, {"monochrome", MONOCHROME_8 }, {"monochrome12", MONOCHROME_12 }, {"monochrome16", MONOCHROME_16 }, {"main12", MAIN_12 }, {"main_422_10", MAIN_422_10 }, {"main_422_12", MAIN_422_12 }, {"main_444", MAIN_444 }, {"main_444_10", MAIN_444_10 }, {"main_444_12", MAIN_444_12 }, {"main_444_16", MAIN_444_16 }, {"main_intra", MAIN_INTRA }, {"main_10_intra", MAIN_10_INTRA }, {"main_12_intra", MAIN_12_INTRA }, {"main_422_10_intra", MAIN_422_10_INTRA}, {"main_422_12_intra", MAIN_422_12_INTRA}, {"main_444_intra", MAIN_444_INTRA }, {"main_444_10_intra", MAIN_444_10_INTRA}, {"main_444_12_intra", MAIN_444_12_INTRA}, {"main_444_16_intra", MAIN_444_16_INTRA}, #if MULTIPLE_PTL_SUPPORT {"multiview-main", MULTIVIEWMAIN }, {"scalable-main", SCALABLEMAIN }, {"scalable-main10", SCALABLEMAIN10 }, #endif }; static const ExtendedProfileName validRExtProfileNames[2/* intraConstraintFlag*/][4/* bit depth constraint 8=0, 10=1, 12=2, 16=3*/][4/*chroma format*/]= { { { MONOCHROME_8, NONE, NONE, MAIN_444 }, // 8-bit inter for 400, 420, 422 and 444 { NONE, NONE, MAIN_422_10, MAIN_444_10 }, // 10-bit inter for 400, 420, 422 and 444 { MONOCHROME_12, MAIN_12, MAIN_422_12, MAIN_444_12 }, // 12-bit inter for 400, 420, 422 and 444 { MONOCHROME_16, NONE, NONE, MAIN_444_16 } // 16-bit inter for 400, 420, 422 and 444 (the latter is non standard used for development) }, { { NONE, MAIN_INTRA, NONE, MAIN_444_INTRA }, // 8-bit intra for 400, 420, 422 and 444 { NONE, MAIN_10_INTRA, MAIN_422_10_INTRA, MAIN_444_10_INTRA }, // 10-bit intra for 400, 420, 422 and 444 { NONE, MAIN_12_INTRA, MAIN_422_12_INTRA, MAIN_444_12_INTRA }, // 12-bit intra for 400, 420, 422 and 444 { NONE, NONE, NONE, MAIN_444_16_INTRA } // 16-bit intra for 400, 420, 422 and 444 } }; static const struct MapStrToTier { const Char* str; Level::Tier value; } strToTier[] = { {"main", Level::MAIN}, {"high", Level::HIGH}, }; static const struct MapStrToLevel { const Char* str; Level::Name value; } strToLevel[] = { {"none",Level::NONE}, {"1", Level::LEVEL1}, {"2", Level::LEVEL2}, {"2.1", Level::LEVEL2_1}, {"3", Level::LEVEL3}, {"3.1", Level::LEVEL3_1}, {"4", Level::LEVEL4}, {"4.1", Level::LEVEL4_1}, {"5", Level::LEVEL5}, {"5.1", Level::LEVEL5_1}, {"5.2", Level::LEVEL5_2}, {"6", Level::LEVEL6}, {"6.1", Level::LEVEL6_1}, {"6.2", Level::LEVEL6_2}, {"8.5", Level::LEVEL8_5}, }; static const struct MapStrToCostMode { const Char* str; CostMode value; } strToCostMode[] = { {"lossy", COST_STANDARD_LOSSY}, {"sequence_level_lossless", COST_SEQUENCE_LEVEL_LOSSLESS}, {"lossless", COST_LOSSLESS_CODING}, {"mixed_lossless_lossy", COST_MIXED_LOSSLESS_LOSSY_CODING} }; static const struct MapStrToScalingListMode { const Char* str; ScalingListMode value; } strToScalingListMode[] = { {"0", SCALING_LIST_OFF}, {"1", SCALING_LIST_DEFAULT}, {"2", SCALING_LIST_FILE_READ}, {"off", SCALING_LIST_OFF}, {"default", SCALING_LIST_DEFAULT}, {"file", SCALING_LIST_FILE_READ} }; template static std::string enumToString(P map[], UInt mapLen, const T val) { for (UInt i = 0; i < mapLen; i++) { if (val == map[i].value) { return map[i].str; } } return std::string(); } template static istream& readStrToEnum(P map[], UInt mapLen, istream &in, T &val) { string str; in >> str; for (UInt i = 0; i < mapLen; i++) { if (str == map[i].str) { val = map[i].value; goto found; } } /* not found */ in.setstate(ios::failbit); found: return in; } //inline to prevent compiler warnings for "unused static function" static inline istream& operator >> (istream &in, ExtendedProfileName &profile) { return readStrToEnum(strToExtendedProfile, sizeof(strToExtendedProfile)/sizeof(*strToExtendedProfile), in, profile); } namespace Level { static inline istream& operator >> (istream &in, Tier &tier) { return readStrToEnum(strToTier, sizeof(strToTier)/sizeof(*strToTier), in, tier); } static inline istream& operator >> (istream &in, Name &level) { return readStrToEnum(strToLevel, sizeof(strToLevel)/sizeof(*strToLevel), in, level); } } static inline istream& operator >> (istream &in, CostMode &mode) { return readStrToEnum(strToCostMode, sizeof(strToCostMode)/sizeof(*strToCostMode), in, mode); } static inline istream& operator >> (istream &in, ScalingListMode &mode) { return readStrToEnum(strToScalingListMode, sizeof(strToScalingListMode)/sizeof(*strToScalingListMode), in, mode); } #if MULTIPLE_PTL_SUPPORT namespace Profile { static inline istream& operator >> (istream &in, Name &profile) { return readStrToEnum(strToProfile, sizeof(strToProfile)/sizeof(*strToProfile), in, profile); } } #endif template struct SMultiValueInput { const T minValIncl; const T maxValIncl; // Use 0 for unlimited const std::size_t minNumValuesIncl; const std::size_t maxNumValuesIncl; // Use 0 for unlimited std::vector values; SMultiValueInput() : minValIncl(0), maxValIncl(0), minNumValuesIncl(0), maxNumValuesIncl(0), values() { } SMultiValueInput(std::vector &defaults) : minValIncl(0), maxValIncl(0), minNumValuesIncl(0), maxNumValuesIncl(0), values(defaults) { } SMultiValueInput(const T &minValue, const T &maxValue, std::size_t minNumberValues=0, std::size_t maxNumberValues=0) : minValIncl(minValue), maxValIncl(maxValue), minNumValuesIncl(minNumberValues), maxNumValuesIncl(maxNumberValues), values() { } SMultiValueInput(const T &minValue, const T &maxValue, std::size_t minNumberValues, std::size_t maxNumberValues, const T* defValues, const UInt numDefValues) : minValIncl(minValue), maxValIncl(maxValue), minNumValuesIncl(minNumberValues), maxNumValuesIncl(maxNumberValues), values(defValues, defValues+numDefValues) { } SMultiValueInput &operator=(const std::vector &userValues) { values=userValues; return *this; } SMultiValueInput &operator=(const SMultiValueInput &userValues) { values=userValues.values; return *this; } }; static inline istream& operator >> (istream &in, SMultiValueInput &values) { values.values.clear(); string str; in >> str; if (!str.empty()) { const Char *pStr=str.c_str(); // soak up any whitespace for(;isspace(*pStr);pStr++); while (*pStr != 0) { Char *eptr; UInt val=strtoul(pStr, &eptr, 0); if (*eptr!=0 && !isspace(*eptr) && *eptr!=',') { in.setstate(ios::failbit); break; } if (valvalues.maxValIncl) { in.setstate(ios::failbit); break; } if (values.maxNumValuesIncl != 0 && values.values.size() >= values.maxNumValuesIncl) { in.setstate(ios::failbit); break; } values.values.push_back(val); // soak up any whitespace and up to 1 comma. pStr=eptr; for(;isspace(*pStr);pStr++); if (*pStr == ',') pStr++; for(;isspace(*pStr);pStr++); } } if (values.values.size() < values.minNumValuesIncl) { in.setstate(ios::failbit); } return in; } static inline istream& operator >> (istream &in, SMultiValueInput &values) { values.values.clear(); string str; in >> str; if (!str.empty()) { const Char *pStr=str.c_str(); // soak up any whitespace for(;isspace(*pStr);pStr++); while (*pStr != 0) { Char *eptr; Int val=strtol(pStr, &eptr, 0); if (*eptr!=0 && !isspace(*eptr) && *eptr!=',') { in.setstate(ios::failbit); break; } if (valvalues.maxValIncl) { in.setstate(ios::failbit); break; } if (values.maxNumValuesIncl != 0 && values.values.size() >= values.maxNumValuesIncl) { in.setstate(ios::failbit); break; } values.values.push_back(val); // soak up any whitespace and up to 1 comma. pStr=eptr; for(;isspace(*pStr);pStr++); if (*pStr == ',') pStr++; for(;isspace(*pStr);pStr++); } } if (values.values.size() < values.minNumValuesIncl) { in.setstate(ios::failbit); } return in; } static inline istream& operator >> (istream &in, SMultiValueInput &values) { values.values.clear(); string str; in >> str; if (!str.empty()) { const Char *pStr=str.c_str(); // soak up any whitespace for(;isspace(*pStr);pStr++); while (*pStr != 0) { Char *eptr; Int val=strtol(pStr, &eptr, 0); if (*eptr!=0 && !isspace(*eptr) && *eptr!=',') { in.setstate(ios::failbit); break; } if (valInt(values.maxValIncl)) { in.setstate(ios::failbit); break; } if (values.maxNumValuesIncl != 0 && values.values.size() >= values.maxNumValuesIncl) { in.setstate(ios::failbit); break; } values.values.push_back(val!=0); // soak up any whitespace and up to 1 comma. pStr=eptr; for(;isspace(*pStr);pStr++); if (*pStr == ',') pStr++; for(;isspace(*pStr);pStr++); } } if (values.values.size() < values.minNumValuesIncl) { in.setstate(ios::failbit); } return in; } static Void automaticallySelectRExtProfile(const Bool bUsingGeneralRExtTools, const Bool bUsingChromaQPAdjustment, const Bool bUsingExtendedPrecision, const Bool bIntraConstraintFlag, UInt &bitDepthConstraint, ChromaFormat &chromaFormatConstraint, const Int maxBitDepth, const ChromaFormat chromaFormat) { // Try to choose profile, according to table in Q1013. UInt trialBitDepthConstraint=maxBitDepth; if (trialBitDepthConstraint<8) trialBitDepthConstraint=8; else if (trialBitDepthConstraint==9 || trialBitDepthConstraint==11) trialBitDepthConstraint++; else if (trialBitDepthConstraint>12) trialBitDepthConstraint=16; // both format and bit depth constraints are unspecified if (bUsingExtendedPrecision || trialBitDepthConstraint==16) { bitDepthConstraint = 16; chromaFormatConstraint = (!bIntraConstraintFlag && chromaFormat==CHROMA_400) ? CHROMA_400 : CHROMA_444; } else if (bUsingGeneralRExtTools) { if (chromaFormat == CHROMA_400 && !bIntraConstraintFlag) { bitDepthConstraint = 16; chromaFormatConstraint = CHROMA_400; } else { bitDepthConstraint = trialBitDepthConstraint; chromaFormatConstraint = CHROMA_444; } } else if (chromaFormat == CHROMA_400) { if (bIntraConstraintFlag) { chromaFormatConstraint = CHROMA_420; // there is no intra 4:0:0 profile. bitDepthConstraint = trialBitDepthConstraint; } else { chromaFormatConstraint = CHROMA_400; bitDepthConstraint = trialBitDepthConstraint == 8 ? 8 : 12; } } else { bitDepthConstraint = trialBitDepthConstraint; chromaFormatConstraint = chromaFormat; if (bUsingChromaQPAdjustment && chromaFormat == CHROMA_420) chromaFormatConstraint = CHROMA_422; // 4:2:0 cannot use the chroma qp tool. if (chromaFormatConstraint == CHROMA_422 && bitDepthConstraint == 8) bitDepthConstraint = 10; // there is no 8-bit 4:2:2 profile. if (chromaFormatConstraint == CHROMA_420 && !bIntraConstraintFlag) bitDepthConstraint = 12; // there is no 8 or 10-bit 4:2:0 inter RExt profile. } } // ==================================================================================================================== // Public member functions // ==================================================================================================================== /** \param argc number of arguments \param argv array of arguments \retval true when success */ Bool TAppEncCfg::parseCfg( Int argc, Char* argv[] ) { Bool do_help = false; #if SVC_EXTENSION string cfg_LayerCfgFile [MAX_LAYERS]; string cfg_BitstreamFile; string* cfg_InputFile [MAX_LAYERS]; string* cfg_ReconFile [MAX_LAYERS]; Double* cfg_fQP [MAX_LAYERS]; #if REPN_FORMAT_IN_VPS Int* cfg_repFormatIdx [MAX_LAYERS]; #endif Int* cfg_SourceWidth [MAX_LAYERS]; Int* cfg_SourceHeight [MAX_LAYERS]; Int* cfg_FrameRate [MAX_LAYERS]; Int* cfg_IntraPeriod [MAX_LAYERS]; Int* cfg_confWinLeft [MAX_LAYERS]; Int* cfg_confWinRight [MAX_LAYERS]; Int* cfg_confWinTop [MAX_LAYERS]; Int* cfg_confWinBottom [MAX_LAYERS]; Int* cfg_aiPadX [MAX_LAYERS]; Int* cfg_aiPadY [MAX_LAYERS]; Int* cfg_conformanceMode [MAX_LAYERS]; Bool* cfg_useExtendedPrecision [MAX_LAYERS]; #if LAYER_CTB // coding unit (CU) definition UInt* cfg_uiMaxCUWidth[MAX_LAYERS]; ///< max. CU width in pixel UInt* cfg_uiMaxCUHeight[MAX_LAYERS]; ///< max. CU height in pixel UInt* cfg_uiMaxCUDepth[MAX_LAYERS]; ///< max. CU depth // transfom unit (TU) definition UInt* cfg_uiQuadtreeTULog2MaxSize[MAX_LAYERS]; UInt* cfg_uiQuadtreeTULog2MinSize[MAX_LAYERS]; UInt* cfg_uiQuadtreeTUMaxDepthInter[MAX_LAYERS]; UInt* cfg_uiQuadtreeTUMaxDepthIntra[MAX_LAYERS]; #endif #if AUXILIARY_PICTURES Int* cfg_auxId [MAX_LAYERS]; #endif #if VPS_EXTN_DIRECT_REF_LAYERS Int* cfg_numSamplePredRefLayers [MAX_LAYERS]; string cfg_samplePredRefLayerIds [MAX_LAYERS]; string* cfg_samplePredRefLayerIdsPtr[MAX_LAYERS]; Int* cfg_numMotionPredRefLayers [MAX_LAYERS]; string cfg_motionPredRefLayerIds [MAX_LAYERS]; string* cfg_motionPredRefLayerIdsPtr[MAX_LAYERS]; Int* cfg_numActiveRefLayers [MAX_LAYERS]; string cfg_predLayerIds [MAX_LAYERS]; string* cfg_predLayerIdsPtr [MAX_LAYERS]; #endif #if O0098_SCALED_REF_LAYER_ID string cfg_refLocationOffsetLayerId [MAX_LAYERS]; #endif string cfg_scaledRefLayerLeftOffset [MAX_LAYERS]; string cfg_scaledRefLayerTopOffset [MAX_LAYERS]; string cfg_scaledRefLayerRightOffset [MAX_LAYERS]; string cfg_scaledRefLayerBottomOffset [MAX_LAYERS]; Int* cfg_numRefLayerLocationOffsets[MAX_LAYERS]; #if REF_REGION_OFFSET string cfg_scaledRefLayerOffsetPresentFlag [MAX_LAYERS]; string cfg_refRegionOffsetPresentFlag [MAX_LAYERS]; string cfg_refRegionLeftOffset [MAX_LAYERS]; string cfg_refRegionTopOffset [MAX_LAYERS]; string cfg_refRegionRightOffset [MAX_LAYERS]; string cfg_refRegionBottomOffset [MAX_LAYERS]; #endif #if R0209_GENERIC_PHASE string cfg_resamplePhaseSetPresentFlag [MAX_LAYERS]; string cfg_phaseHorLuma [MAX_LAYERS]; string cfg_phaseVerLuma [MAX_LAYERS]; string cfg_phaseHorChroma [MAX_LAYERS]; string cfg_phaseVerChroma [MAX_LAYERS]; #else #if P0312_VERT_PHASE_ADJ string cfg_vertPhasePositionEnableFlag[MAX_LAYERS]; #endif #endif #if O0098_SCALED_REF_LAYER_ID string* cfg_refLocationOffsetLayerIdPtr [MAX_LAYERS]; #endif string* cfg_scaledRefLayerLeftOffsetPtr [MAX_LAYERS]; string* cfg_scaledRefLayerTopOffsetPtr [MAX_LAYERS]; string* cfg_scaledRefLayerRightOffsetPtr [MAX_LAYERS]; string* cfg_scaledRefLayerBottomOffsetPtr [MAX_LAYERS]; #if REF_REGION_OFFSET string* cfg_scaledRefLayerOffsetPresentFlagPtr [MAX_LAYERS]; string* cfg_refRegionOffsetPresentFlagPtr [MAX_LAYERS]; string* cfg_refRegionLeftOffsetPtr [MAX_LAYERS]; string* cfg_refRegionTopOffsetPtr [MAX_LAYERS]; string* cfg_refRegionRightOffsetPtr [MAX_LAYERS]; string* cfg_refRegionBottomOffsetPtr [MAX_LAYERS]; #endif #if R0209_GENERIC_PHASE string* cfg_resamplePhaseSetPresentFlagPtr [MAX_LAYERS]; string* cfg_phaseHorLumaPtr [MAX_LAYERS]; string* cfg_phaseVerLumaPtr [MAX_LAYERS]; string* cfg_phaseHorChromaPtr [MAX_LAYERS]; string* cfg_phaseVerChromaPtr [MAX_LAYERS]; #endif #if P0312_VERT_PHASE_ADJ string* cfg_vertPhasePositionEnableFlagPtr[MAX_LAYERS]; #endif #if RC_SHVC_HARMONIZATION Bool* cfg_RCEnableRateControl [MAX_LAYERS]; Int* cfg_RCTargetBitRate [MAX_LAYERS]; Bool* cfg_RCKeepHierarchicalBit[MAX_LAYERS]; Bool* cfg_RCLCULevelRC [MAX_LAYERS]; Bool* cfg_RCUseLCUSeparateModel[MAX_LAYERS]; Int* cfg_RCInitialQP [MAX_LAYERS]; Bool* cfg_RCForceIntraQP [MAX_LAYERS]; #endif #if O0194_DIFFERENT_BITDEPTH_EL_BL Int* cfg_InputBitDepth [MAX_NUM_CHANNEL_TYPE][MAX_LAYERS]; Int* cfg_InternalBitDepth [MAX_NUM_CHANNEL_TYPE][MAX_LAYERS]; Int* cfg_OutputBitDepth [MAX_NUM_CHANNEL_TYPE][MAX_LAYERS]; #endif Int* cfg_maxTidIlRefPicsPlus1[MAX_LAYERS]; #if Q0074_COLOUR_REMAPPING_SEI string* cfg_colourRemapSEIFile[MAX_LAYERS]; #endif Int* cfg_waveFrontSynchro[MAX_LAYERS]; #if R0071_IRAP_EOS_CROSS_LAYER_IMPACTS Int* cfg_layerSwitchOffBegin[MAX_LAYERS]; Int* cfg_layerSwitchOffEnd[MAX_LAYERS]; #endif #if MULTIPLE_PTL_SUPPORT Bool tmpIntraConstraintFlag; Bool tmpLowerBitRateConstraintFlag; UInt tmpBitDepthConstraint; Int* cfg_layerPTLIdx[MAX_VPS_LAYER_IDX_PLUS1]; #endif for(UInt layer = 0; layer < MAX_LAYERS; layer++) { cfg_InputFile[layer] = &m_acLayerCfg[layer].m_cInputFile; cfg_ReconFile[layer] = &m_acLayerCfg[layer].m_cReconFile; cfg_fQP[layer] = &m_acLayerCfg[layer].m_fQP; #if Q0074_COLOUR_REMAPPING_SEI cfg_colourRemapSEIFile[layer] = &m_acLayerCfg[layer].m_colourRemapSEIFile; #endif #if REPN_FORMAT_IN_VPS cfg_repFormatIdx[layer] = &m_acLayerCfg[layer].m_repFormatIdx; #endif cfg_SourceWidth[layer] = &m_acLayerCfg[layer].m_iSourceWidth; cfg_SourceHeight[layer] = &m_acLayerCfg[layer].m_iSourceHeight; cfg_FrameRate[layer] = &m_acLayerCfg[layer].m_iFrameRate; cfg_IntraPeriod[layer] = &m_acLayerCfg[layer].m_iIntraPeriod; cfg_conformanceMode[layer] = &m_acLayerCfg[layer].m_conformanceMode; cfg_confWinLeft[layer] = &m_acLayerCfg[layer].m_confWinLeft; cfg_confWinRight[layer] = &m_acLayerCfg[layer].m_confWinRight; cfg_confWinTop[layer] = &m_acLayerCfg[layer].m_confWinTop; cfg_confWinBottom[layer] = &m_acLayerCfg[layer].m_confWinBottom; cfg_aiPadX[layer] = &m_acLayerCfg[layer].m_aiPad[0]; cfg_aiPadY[layer] = &m_acLayerCfg[layer].m_aiPad[1]; cfg_useExtendedPrecision[layer] = &m_acLayerCfg[layer].m_useExtendedPrecision; #if LAYER_CTB // coding unit (CU) definition cfg_uiMaxCUWidth[layer] = &m_acLayerCfg[layer].m_uiMaxCUWidth; cfg_uiMaxCUHeight[layer] = &m_acLayerCfg[layer].m_uiMaxCUHeight; cfg_uiMaxCUDepth[layer] = &m_acLayerCfg[layer].m_uiMaxCUDepth; // transfom unit (TU) definition. cfg_uiQuadtreeTULog2MaxSize[layer] = &m_acLayerCfg[layer].m_uiQuadtreeTULog2MaxSize; cfg_uiQuadtreeTULog2MinSize[layer] = &m_acLayerCfg[layer].m_uiQuadtreeTULog2MinSize; cfg_uiQuadtreeTUMaxDepthInter[layer] = &m_acLayerCfg[layer].m_uiQuadtreeTUMaxDepthInter; cfg_uiQuadtreeTUMaxDepthIntra[layer] = &m_acLayerCfg[layer].m_uiQuadtreeTUMaxDepthIntra; #endif #if VPS_EXTN_DIRECT_REF_LAYERS cfg_numSamplePredRefLayers [layer] = &m_acLayerCfg[layer].m_numSamplePredRefLayers; cfg_samplePredRefLayerIdsPtr[layer] = &cfg_samplePredRefLayerIds[layer]; cfg_numMotionPredRefLayers [layer] = &m_acLayerCfg[layer].m_numMotionPredRefLayers; cfg_motionPredRefLayerIdsPtr[layer] = &cfg_motionPredRefLayerIds[layer]; cfg_numActiveRefLayers [layer] = &m_acLayerCfg[layer].m_numActiveRefLayers; cfg_predLayerIdsPtr [layer] = &cfg_predLayerIds[layer]; #endif cfg_numRefLayerLocationOffsets [layer] = &m_acLayerCfg[layer].m_numRefLayerLocationOffsets; cfg_waveFrontSynchro[layer] = &m_acLayerCfg[layer].m_waveFrontSynchro; for(Int i = 0; i < MAX_LAYERS; i++) { #if O0098_SCALED_REF_LAYER_ID cfg_refLocationOffsetLayerIdPtr [layer] = &cfg_refLocationOffsetLayerId[layer]; #endif cfg_scaledRefLayerLeftOffsetPtr [layer] = &cfg_scaledRefLayerLeftOffset[layer]; cfg_scaledRefLayerTopOffsetPtr [layer] = &cfg_scaledRefLayerTopOffset[layer]; cfg_scaledRefLayerRightOffsetPtr [layer] = &cfg_scaledRefLayerRightOffset[layer]; cfg_scaledRefLayerBottomOffsetPtr[layer] = &cfg_scaledRefLayerBottomOffset[layer]; #if P0312_VERT_PHASE_ADJ cfg_vertPhasePositionEnableFlagPtr[layer] = &cfg_vertPhasePositionEnableFlag[layer]; #endif #if REF_REGION_OFFSET cfg_scaledRefLayerOffsetPresentFlagPtr [layer] = &cfg_scaledRefLayerOffsetPresentFlag [layer]; cfg_refRegionOffsetPresentFlagPtr [layer] = &cfg_refRegionOffsetPresentFlag [layer]; cfg_refRegionLeftOffsetPtr [layer] = &cfg_refRegionLeftOffset [layer]; cfg_refRegionTopOffsetPtr [layer] = &cfg_refRegionTopOffset [layer]; cfg_refRegionRightOffsetPtr [layer] = &cfg_refRegionRightOffset [layer]; cfg_refRegionBottomOffsetPtr[layer] = &cfg_refRegionBottomOffset[layer]; #endif #if R0209_GENERIC_PHASE cfg_resamplePhaseSetPresentFlagPtr [layer] = &cfg_resamplePhaseSetPresentFlag [layer]; cfg_phaseHorLumaPtr [layer] = &cfg_phaseHorLuma [layer]; cfg_phaseVerLumaPtr [layer] = &cfg_phaseVerLuma [layer]; cfg_phaseHorChromaPtr [layer] = &cfg_phaseHorChroma [layer]; cfg_phaseVerChromaPtr [layer] = &cfg_phaseVerChroma [layer]; #endif } #if RC_SHVC_HARMONIZATION cfg_RCEnableRateControl[layer] = &m_acLayerCfg[layer].m_RCEnableRateControl; cfg_RCTargetBitRate[layer] = &m_acLayerCfg[layer].m_RCTargetBitrate; cfg_RCKeepHierarchicalBit[layer] = &m_acLayerCfg[layer].m_RCKeepHierarchicalBit; cfg_RCLCULevelRC[layer] = &m_acLayerCfg[layer].m_RCLCULevelRC; cfg_RCUseLCUSeparateModel[layer] = &m_acLayerCfg[layer].m_RCUseLCUSeparateModel; cfg_RCInitialQP[layer] = &m_acLayerCfg[layer].m_RCInitialQP; cfg_RCForceIntraQP[layer] = &m_acLayerCfg[layer].m_RCForceIntraQP; #endif #if O0194_DIFFERENT_BITDEPTH_EL_BL cfg_InputBitDepth [CHANNEL_TYPE_LUMA][layer] = &m_acLayerCfg[layer].m_inputBitDepth[CHANNEL_TYPE_LUMA]; cfg_InternalBitDepth[CHANNEL_TYPE_LUMA][layer] = &m_acLayerCfg[layer].m_internalBitDepth[CHANNEL_TYPE_LUMA]; cfg_OutputBitDepth [CHANNEL_TYPE_LUMA][layer] = &m_acLayerCfg[layer].m_outputBitDepth[CHANNEL_TYPE_LUMA]; cfg_InternalBitDepth[CHANNEL_TYPE_CHROMA][layer] = &m_acLayerCfg[layer].m_internalBitDepth[CHANNEL_TYPE_CHROMA]; cfg_InputBitDepth [CHANNEL_TYPE_CHROMA][layer] = &m_acLayerCfg[layer].m_inputBitDepth[CHANNEL_TYPE_CHROMA]; cfg_OutputBitDepth [CHANNEL_TYPE_CHROMA][layer] = &m_acLayerCfg[layer].m_outputBitDepth[CHANNEL_TYPE_CHROMA]; #endif cfg_maxTidIlRefPicsPlus1[layer] = &m_acLayerCfg[layer].m_maxTidIlRefPicsPlus1; #if AUXILIARY_PICTURES cfg_auxId[layer] = &m_acLayerCfg[layer].m_auxId; #endif #if R0071_IRAP_EOS_CROSS_LAYER_IMPACTS cfg_layerSwitchOffBegin[layer] = &m_acLayerCfg[layer].m_layerSwitchOffBegin; cfg_layerSwitchOffEnd[layer] = &m_acLayerCfg[layer].m_layerSwitchOffEnd; #endif #if MULTIPLE_PTL_SUPPORT cfg_layerPTLIdx[layer] = &m_acLayerCfg[layer].m_layerPTLIdx; #endif } #if Q0078_ADD_LAYER_SETS Int* cfg_numLayerInIdList[MAX_VPS_LAYER_SETS_PLUS1]; string cfg_layerSetLayerIdList[MAX_VPS_LAYER_SETS_PLUS1]; string* cfg_layerSetLayerIdListPtr[MAX_VPS_LAYER_SETS_PLUS1]; Int* cfg_numHighestLayerIdx[MAX_VPS_LAYER_SETS_PLUS1]; string cfg_highestLayerIdx[MAX_VPS_LAYER_SETS_PLUS1]; string* cfg_highestLayerIdxPtr[MAX_VPS_LAYER_SETS_PLUS1]; for (UInt i = 0; i < MAX_VPS_LAYER_SETS_PLUS1; i++) { cfg_numLayerInIdList[i] = &m_numLayerInIdList[i]; cfg_layerSetLayerIdListPtr[i] = &cfg_layerSetLayerIdList[i]; cfg_highestLayerIdxPtr[i] = &cfg_highestLayerIdx[i]; cfg_numHighestLayerIdx[i] = &m_numHighestLayerIdx[i]; } #endif #if OUTPUT_LAYER_SETS_CONFIG string* cfg_numOutputLayersInOutputLayerSet = new string; string* cfg_listOfOutputLayers = new string[MAX_VPS_OUTPUT_LAYER_SETS_PLUS1]; string* cfg_outputLayerSetIdx = new string; #endif #if MULTIPLE_PTL_SUPPORT string* cfg_listOfLayerPTLOfOlss = new string[MAX_VPS_OUTPUT_LAYER_SETS_PLUS1]; #endif #if AVC_BASE string cfg_BLInputFile; #endif #if N0383_IL_CONSTRAINED_TILE_SETS_SEI string cfg_tileSets; #endif #else //SVC_EXTENSION string cfg_InputFile; string cfg_BitstreamFile; string cfg_ReconFile; string cfg_dQPFile; #if Q0074_COLOUR_REMAPPING_SEI string cfg_colourRemapSEIFile; #endif #endif //SVC_EXTENSION string cfg_ScalingListFile; Int tmpChromaFormat; Int tmpInputChromaFormat; Int tmpConstraintChromaFormat; string inputColourSpaceConvert; #if MULTIPLE_PTL_SUPPORT ExtendedProfileName extendedProfile[MAX_NUM_LAYER_IDS + 1]; #else ExtendedProfileName extendedProfile; #endif Int saoOffsetBitShift[MAX_NUM_CHANNEL_TYPE]; // Multi-value input fields: // minval, maxval (incl), min_entries, max_entries (incl) [, default values, number of default values] SMultiValueInput cfg_ColumnWidth (0, std::numeric_limits::max(), 0, std::numeric_limits::max()); SMultiValueInput cfg_RowHeight (0, std::numeric_limits::max(), 0, std::numeric_limits::max()); SMultiValueInput cfg_startOfCodedInterval (std::numeric_limits::min(), std::numeric_limits::max(), 0, 1<<16); SMultiValueInput cfg_codedPivotValue (std::numeric_limits::min(), std::numeric_limits::max(), 0, 1<<16); SMultiValueInput cfg_targetPivotValue (std::numeric_limits::min(), std::numeric_limits::max(), 0, 1<<16); const UInt defaultInputKneeCodes[3] = { 600, 800, 900 }; const UInt defaultOutputKneeCodes[3] = { 100, 250, 450 }; SMultiValueInput cfg_kneeSEIInputKneePointValue (1, 999, 0, 999, defaultInputKneeCodes, sizeof(defaultInputKneeCodes )/sizeof(UInt)); SMultiValueInput cfg_kneeSEIOutputKneePointValue (0, 1000, 0, 999, defaultOutputKneeCodes, sizeof(defaultOutputKneeCodes)/sizeof(UInt)); const Int defaultPrimaryCodes[6] = { 0,50000, 0,0, 50000,0 }; const Int defaultWhitePointCode[2] = { 16667, 16667 }; SMultiValueInput cfg_DisplayPrimariesCode (0, 50000, 3, 3, defaultPrimaryCodes, sizeof(defaultPrimaryCodes )/sizeof(Int)); SMultiValueInput cfg_DisplayWhitePointCode (0, 50000, 2, 2, defaultWhitePointCode, sizeof(defaultWhitePointCode)/sizeof(Int)); SMultiValueInput cfg_timeCodeSeiTimeStampFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiNumUnitFieldBasedFlag(0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiCountingType (0, 6, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiFullTimeStampFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiDiscontinuityFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiCntDroppedFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiNumberOfFrames (0,511, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiSecondsValue (0, 59, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiMinutesValue (0, 59, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiHoursValue (0, 23, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiSecondsFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiMinutesFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiHoursFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiTimeOffsetLength (0, 31, 0, MAX_TIMECODE_SEI_SETS); SMultiValueInput cfg_timeCodeSeiTimeOffsetValue (std::numeric_limits::min(), std::numeric_limits::max(), 0, MAX_TIMECODE_SEI_SETS); #if Q0096_OVERLAY_SEI const Int CFG_MAX_OVERLAYS = 3; UInt cfg_overlaySEIIdx[CFG_MAX_OVERLAYS]; Bool cfg_overlaySEILanguagePresentFlag[CFG_MAX_OVERLAYS]; UInt cfg_overlaySEIContentLayerId[CFG_MAX_OVERLAYS]; Bool cfg_overlaySEILabelPresentFlag[CFG_MAX_OVERLAYS]; UInt cfg_overlaySEILabelLayerId[CFG_MAX_OVERLAYS]; Bool cfg_overlaySEIAlphaPresentFlag[CFG_MAX_OVERLAYS]; UInt cfg_overlaySEIAlphaLayerId[CFG_MAX_OVERLAYS]; UInt cfg_overlaySEINumElementsMinus1[CFG_MAX_OVERLAYS]; string cfg_overlaySEIElementLabelRanges[CFG_MAX_OVERLAYS]; string cfg_overlaySEILanguage[CFG_MAX_OVERLAYS]; string cfg_overlaySEIName[CFG_MAX_OVERLAYS]; string cfg_overlaySEIElementNames[CFG_MAX_OVERLAYS]; #endif po::Options opts; opts.addOptions() ("help", do_help, false, "this help text") ("c", po::parseConfigFile, "configuration file name") // File, I/O and source parameters #if SVC_EXTENSION ("InputFile%d,-i%d", cfg_InputFile, string(""), MAX_LAYERS, "original YUV input file name for layer %d") ("ReconFile%d,-o%d", cfg_ReconFile, string(""), MAX_LAYERS, "reconstruction YUV input file name for layer %d") ("LayerConfig%d,-lc%d", cfg_LayerCfgFile, string(""), MAX_LAYERS, "layer %d configuration file name") ("SourceWidth%d,-wdt%d", cfg_SourceWidth, 0, MAX_LAYERS, "Source picture width for layer %d") ("SourceHeight%d,-hgt%d", cfg_SourceHeight, 0, MAX_LAYERS, "Source picture height for layer %d") ("FrameRate%d,-fr%d", cfg_FrameRate, 0, MAX_LAYERS, "Frame rate for layer %d") ("LambdaModifier%d,-LM%d", m_adLambdaModifier, Double(1.0), MAX_TLAYER, "Lambda modifier for temporal layer %d") #if O0215_PHASE_ALIGNMENT ("PhaseAlignment", m_phaseAlignFlag, false, "indicate the sample location alignment between layers (0: zero position aligned, 1: central position aligned)") #endif #if REPN_FORMAT_IN_VPS ("RepFormatIdx%d", cfg_repFormatIdx, -1, MAX_LAYERS, "Index to the representation format structure used from the VPS") #endif #if VPS_EXTN_DIRECT_REF_LAYERS ("NumSamplePredRefLayers%d", cfg_numSamplePredRefLayers, -1, MAX_LAYERS, "Number of sample prediction reference layers") ("SamplePredRefLayerIds%d", cfg_samplePredRefLayerIdsPtr, string(""), MAX_LAYERS, "sample pred reference layer IDs") ("NumMotionPredRefLayers%d", cfg_numMotionPredRefLayers, -1, MAX_LAYERS, "Number of motion prediction reference layers") ("MotionPredRefLayerIds%d", cfg_motionPredRefLayerIdsPtr, string(""), MAX_LAYERS, "motion pred reference layer IDs") ("NumActiveRefLayers%d", cfg_numActiveRefLayers, -1, MAX_LAYERS, "Number of active reference layers") ("PredLayerIds%d", cfg_predLayerIdsPtr, string(""), MAX_LAYERS, "inter-layer prediction layer IDs") #endif ("NumLayers", m_numLayers, 1, "Number of layers to code") #if Q0078_ADD_LAYER_SETS #if OUTPUT_LAYER_SETS_CONFIG ("NumLayerSets", m_numLayerSets, 1, "Number of layer sets") #else ("NumLayerSets", m_numLayerSets, 0, "Number of layer sets") #endif ("NumLayerInIdList%d", cfg_numLayerInIdList, 0, MAX_VPS_LAYER_IDX_PLUS1, "Number of layers in the set") ("LayerSetLayerIdList%d", cfg_layerSetLayerIdListPtr, string(""), MAX_VPS_LAYER_IDX_PLUS1, "Layer IDs for the set") ("NumAddLayerSets", m_numAddLayerSets, 0, "Number of additional layer sets") ("NumHighestLayerIdx%d", cfg_numHighestLayerIdx, 0, MAX_VPS_LAYER_IDX_PLUS1, "Number of highest layer idx") ("HighestLayerIdx%d", cfg_highestLayerIdxPtr, string(""), MAX_VPS_LAYER_IDX_PLUS1, "Highest layer idx for an additional layer set") #endif #if OUTPUT_LAYER_SETS_CONFIG ("DefaultTargetOutputLayerIdc", m_defaultTargetOutputLayerIdc, 1, "Default target output layers. 0: All layers are output layer, 1: Only highest layer is output layer, 2 or 3: No default output layers") ("NumOutputLayerSets", m_numOutputLayerSets, 1, "Number of output layer sets excluding the 0-th output layer set") ("NumOutputLayersInOutputLayerSet", cfg_numOutputLayersInOutputLayerSet, string(""), 1, "List containing number of output layers in the output layer sets") ("ListOfOutputLayers%d", cfg_listOfOutputLayers, string(""), MAX_VPS_LAYER_IDX_PLUS1, "Layer IDs for the set, in terms of layer ID in the output layer set Range: [0..NumLayersInOutputLayerSet-1]") ("OutputLayerSetIdx", cfg_outputLayerSetIdx, string(""), 1, "Corresponding layer set index, only for non-default output layer sets") #endif #if AUXILIARY_PICTURES ("AuxId%d", cfg_auxId, 0, MAX_LAYERS, "Auxilary picture ID for layer %d (0: Not aux pic, 1: Alpha plane, 2: Depth picture, 3: Cb enh, 4: Cr enh") #endif ("ExtendedPrecision%d", cfg_useExtendedPrecision, false, MAX_LAYERS, "Increased internal accuracies to support high bit depths (not valid in V1 profiles)") ("ConformanceMode%d", cfg_conformanceMode, 0, MAX_LAYERS, "Window conformance mode (0: no cropping, 1:automatic padding, 2: padding, 3:cropping") ("ConfLeft%d", cfg_confWinLeft, 0, MAX_LAYERS, "Deprecated alias of ConfWinLeft") ("ConfRight%d", cfg_confWinRight, 0, MAX_LAYERS, "Deprecated alias of ConfWinRight") ("ConfTop%d", cfg_confWinTop, 0, MAX_LAYERS, "Deprecated alias of ConfWinTop") ("ConfBottom%d", cfg_confWinBottom, 0, MAX_LAYERS, "Deprecated alias of ConfWinBottom") ("ConfWinLeft%d", cfg_confWinLeft, 0, MAX_LAYERS, "Left offset for window conformance mode 3") ("ConfWinRight%d", cfg_confWinRight, 0, MAX_LAYERS, "Right offset for window conformance mode 3") ("ConfWinTop%d", cfg_confWinTop, 0, MAX_LAYERS, "Top offset for window conformance mode 3") ("ConfWinBottom%d", cfg_confWinBottom, 0, MAX_LAYERS, "Bottom offset for window conformance mode 3") ("HorizontalPadding%d,-pdx%d", cfg_aiPadX, 0, MAX_LAYERS, "Horizontal source padding for conformance window mode 2") ("VerticalPadding%d,-pdy%d", cfg_aiPadY, 0, MAX_LAYERS, "Vertical source padding for conformance window mode 2") ("ScalabilityMask1", m_scalabilityMask[VIEW_ORDER_INDEX], 0, "scalability_mask[1] (multiview)") ("ScalabilityMask2", m_scalabilityMask[SCALABILITY_ID], 1, "scalability_mask[2] (scalable)" ) #if AUXILIARY_PICTURES ("ScalabilityMask3", m_scalabilityMask[AUX_ID], 0, "scalability_mask[3] (auxiliary pictures)" ) #endif ("BitstreamFile,b", cfg_BitstreamFile, string(""), "Bitstream output file name") #if !O0194_DIFFERENT_BITDEPTH_EL_BL ("InputBitDepth", m_inputBitDepthY, 8, "Bit-depth of input file") ("OutputBitDepth", m_outputBitDepthY, 0, "Bit-depth of output file (default:InternalBitDepth)") ("InternalBitDepth", m_internalBitDepthY, 0, "Bit-depth the codec operates at. (default:InputBitDepth)" "If different to InputBitDepth, source data will be converted") ("InputBitDepthC", m_inputBitDepthC, 0, "As per InputBitDepth but for chroma component. (default:InputBitDepth)") ("OutputBitDepthC", m_outputBitDepthC, 0, "As per OutputBitDepth but for chroma component. (default:InternalBitDepthC)") ("InternalBitDepthC", m_internalBitDepthC, 0, "As per InternalBitDepth but for chroma component. (default:IntrenalBitDepth)") #endif ("NumRefLocationOffsets%d", cfg_numRefLayerLocationOffsets, 0, MAX_LAYERS, "Number of reference layer offset sets ") #if O0098_SCALED_REF_LAYER_ID ("RefLocationOffsetLayerId%d", cfg_refLocationOffsetLayerIdPtr, string(""), MAX_LAYERS, "Layer ID of reference location offset") #endif ("ScaledRefLayerLeftOffset%d", cfg_scaledRefLayerLeftOffsetPtr, string(""), MAX_LAYERS, "Horizontal offset of top-left luma sample of scaled base layer picture with respect to" " top-left luma sample of the EL picture, in units of two luma samples") ("ScaledRefLayerTopOffset%d", cfg_scaledRefLayerTopOffsetPtr, string(""), MAX_LAYERS, "Vertical offset of top-left luma sample of scaled base layer picture with respect to" " top-left luma sample of the EL picture, in units of two luma samples") ("ScaledRefLayerRightOffset%d", cfg_scaledRefLayerRightOffsetPtr, string(""), MAX_LAYERS, "Horizontal offset of bottom-right luma sample of scaled base layer picture with respect to" " bottom-right luma sample of the EL picture, in units of two luma samples") ("ScaledRefLayerBottomOffset%d", cfg_scaledRefLayerBottomOffsetPtr, string(""), MAX_LAYERS, "Vertical offset of bottom-right luma sample of scaled base layer picture with respect to" " bottom-right luma sample of the EL picture, in units of two luma samples") #if REF_REGION_OFFSET ("ScaledRefLayerOffsetPresentFlag%d", cfg_scaledRefLayerOffsetPresentFlagPtr, string(""), MAX_LAYERS, "presense flag of scaled reference layer offsets") ("RefRegionOffsetPresentFlag%d", cfg_refRegionOffsetPresentFlagPtr, string(""), MAX_LAYERS, "presense flag of reference region offsets") ("RefRegionLeftOffset%d", cfg_refRegionLeftOffsetPtr, string(""), MAX_LAYERS, "Horizontal offset of top-left luma sample of ref region with respect to" " top-left luma sample of the BL picture, in units of two luma samples") ("RefRegionTopOffset%d", cfg_refRegionTopOffsetPtr, string(""), MAX_LAYERS, "Vertical offset of top-left luma sample of ref region with respect to" " top-left luma sample of the BL picture, in units of two luma samples") ("RefRegionRightOffset%d", cfg_refRegionRightOffsetPtr, string(""), MAX_LAYERS, "Horizontal offset of bottom-right luma sample of ref region with respect to" " bottom-right luma sample of the BL picture, in units of two luma samples") ("RefRegionBottomOffset%d", cfg_refRegionBottomOffsetPtr, string(""), MAX_LAYERS, "Vertical offset of bottom-right luma sample of ref region with respect to" " bottom-right luma sample of the BL picture, in units of two luma samples") #endif #if R0209_GENERIC_PHASE ("ResamplePhaseSetPresentFlag%d", cfg_resamplePhaseSetPresentFlagPtr, string(""), MAX_LAYERS, "presense flag of resample phase set") ("PhaseHorLuma%d", cfg_phaseHorLumaPtr, string(""), MAX_LAYERS, "luma shift in the horizontal direction used in resampling proces") ("PhaseVerLuma%d", cfg_phaseVerLumaPtr, string(""), MAX_LAYERS, "luma shift in the vertical direction used in resampling proces") ("PhaseHorChroma%d", cfg_phaseHorChromaPtr, string(""), MAX_LAYERS, "chroma shift in the horizontal direction used in resampling proces") ("PhaseVerChroma%d", cfg_phaseVerChromaPtr, string(""), MAX_LAYERS, "chroma shift in the vertical direction used in resampling proces") #endif #if P0312_VERT_PHASE_ADJ ("VertPhasePositionEnableFlag%d", cfg _vertPhasePositionEnableFlagPtr,string(""), MAX_LAYERS, "VertPhasePositionEnableFlag for layer %d") #endif #if Q0074_COLOUR_REMAPPING_SEI ("SEIColourRemappingInfoFile%d", cfg_colourRemapSEIFile, string(""), MAX_LAYERS, "Colour Remapping Information SEI parameters file name for layer %d") #endif #if O0194_DIFFERENT_BITDEPTH_EL_BL ("InputBitDepth%d", cfg_InputBitDepth[CHANNEL_TYPE_LUMA], 8, MAX_LAYERS, "Bit-depth of input file for layer %d") ("InternalBitDepth%d", cfg_InternalBitDepth[CHANNEL_TYPE_LUMA], 0, MAX_LAYERS, "Bit-depth the codec operates at. (default:InputBitDepth) for layer %d " " If different to InputBitDepth, source data will be converted") ("OutputBitDepth%d", cfg_OutputBitDepth[CHANNEL_TYPE_LUMA], 0, MAX_LAYERS, "Bit-depth of output file (default:InternalBitDepth)") ("InputBitDepthC%d", cfg_InputBitDepth[CHANNEL_TYPE_CHROMA], 0, MAX_LAYERS, "As per InputBitDepth but for chroma component. (default:InputBitDepth) for layer %d") ("InternalBitDepthC%d", cfg_InternalBitDepth[CHANNEL_TYPE_CHROMA], 0, MAX_LAYERS, "As per InternalBitDepth but for chroma component. (default:IntrenalBitDepth) for layer %d") ("OutputBitDepthC%d", cfg_OutputBitDepth[CHANNEL_TYPE_CHROMA], 0, MAX_LAYERS, "As per OutputBitDepth but for chroma component. (default:InternalBitDepthC)") #endif ("MaxTidRefPresentFlag", m_maxTidRefPresentFlag, false, "max_tid_ref_present_flag (0: not present, 1: present) " ) ("MaxTidIlRefPicsPlus1%d", cfg_maxTidIlRefPicsPlus1, 7, MAX_LAYERS, "allowed maximum temporal_id for inter-layer prediction") #if O0223_PICTURE_TYPES_ALIGN_FLAG ("CrossLayerPictureTypeAlignFlag", m_crossLayerPictureTypeAlignFlag, true, "align picture type across layers" ) #endif ("CrossLayerIrapAlignFlag", m_crossLayerIrapAlignFlag, true, "align IRAP across layers" ) #if P0068_CROSS_LAYER_ALIGNED_IDR_ONLY_FOR_IRAP_FLAG ("CrossLayerAlignedIdrOnlyFlag", m_crossLayerAlignedIdrOnlyFlag, true, "only idr for IRAP across layers" ) #endif #if O0194_WEIGHTED_PREDICTION_CGS ("InterLayerWeightedPred", m_useInterLayerWeightedPred, false, "enable IL WP parameters estimation at encoder" ) #endif #if AVC_BASE #if VPS_AVC_BL_FLAG_REMOVAL ("NonHEVCBase,-nonhevc", m_nonHEVCBaseLayerFlag, 0, "BL is available but not internal") #else ("AvcBase,-avc", m_avcBaseLayerFlag, 0, "avc_base_layer_flag") #endif ("InputBLFile,-ibl", cfg_BLInputFile, string(""), "Base layer rec YUV input file name") #endif ("EnableElRapB,-use-rap-b", m_elRapSliceBEnabled, 0, "Set ILP over base-layer I picture to B picture (default is P picture)") ("InputChromaFormat", tmpInputChromaFormat, 420, "InputChromaFormatIDC") ("ChromaFormatIDC,-cf", tmpChromaFormat, 0, "ChromaFormatIDC (400|420|422|444 or set 0 (default) for same as InputChromaFormat)") #else //SVC_EXTENSION ("InputFile,i", cfg_InputFile, string(""), "Original YUV input file name") ("BitstreamFile,b", cfg_BitstreamFile, string(""), "Bitstream output file name") ("ReconFile,o", cfg_ReconFile, string(""), "Reconstructed YUV output file name") ("SourceWidth,-wdt", m_iSourceWidth, 0, "Source picture width") ("SourceHeight,-hgt", m_iSourceHeight, 0, "Source picture height") ("InputBitDepth", m_inputBitDepth[CHANNEL_TYPE_LUMA], 8, "Bit-depth of input file") ("OutputBitDepth", m_outputBitDepth[CHANNEL_TYPE_LUMA], 0, "Bit-depth of output file (default:InternalBitDepth)") ("MSBExtendedBitDepth", m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA], 0, "bit depth of luma component after addition of MSBs of value 0 (used for synthesising High Dynamic Range source material). (default:InputBitDepth)") ("InternalBitDepth", m_internalBitDepth[CHANNEL_TYPE_LUMA], 0, "Bit-depth the codec operates at. (default:MSBExtendedBitDepth). If different to MSBExtendedBitDepth, source data will be converted") ("InputBitDepthC", m_inputBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per InputBitDepth but for chroma component. (default:InputBitDepth)") ("OutputBitDepthC", m_outputBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per OutputBitDepth but for chroma component. (default:InternalBitDepthC)") ("MSBExtendedBitDepthC", m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per MSBExtendedBitDepth but for chroma component. (default:MSBExtendedBitDepth)") ("InternalBitDepthC", m_internalBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per InternalBitDepth but for chroma component. (default:InternalBitDepth)") ("ExtendedPrecision", m_useExtendedPrecision, false, "Increased internal accuracies to support high bit depths (not valid in V1 profiles)") ("HighPrecisionPredictionWeighting", m_useHighPrecisionPredictionWeighting, false, "Use high precision option for weighted prediction (not valid in V1 profiles)") ("InputColourSpaceConvert", inputColourSpaceConvert, string(""), "Colour space conversion to apply to input video. Permitted values are (empty string=UNCHANGED) " + getListOfColourSpaceConverts(true)) ("SNRInternalColourSpace", m_snrInternalColourSpace, false, "If true, then no colour space conversion is applied prior to SNR, otherwise inverse of input is applied.") ("OutputInternalColourSpace", m_outputInternalColourSpace, false, "If true, then no colour space conversion is applied for reconstructed video, otherwise inverse of input is applied.") ("InputChromaFormat", tmpInputChromaFormat, 420, "InputChromaFormatIDC") ("MSEBasedSequencePSNR", m_printMSEBasedSequencePSNR, false, "0 (default) emit sequence PSNR only as a linear average of the frame PSNRs, 1 = also emit a sequence PSNR based on an average of the frame MSEs") ("PrintFrameMSE", m_printFrameMSE, false, "0 (default) emit only bit count and PSNRs for each frame, 1 = also emit MSE values") ("PrintSequenceMSE", m_printSequenceMSE, false, "0 (default) emit only bit rate and PSNRs for the whole sequence, 1 = also emit MSE values") ("CabacZeroWordPaddingEnabled", m_cabacZeroWordPaddingEnabled, false, "0 (default) do not add conforming cabac-zero-words to bit streams, 1 = add cabac-zero-words") ("ChromaFormatIDC,-cf", tmpChromaFormat, 0, "ChromaFormatIDC (400|420|422|444 or set 0 (default) for same as InputChromaFormat)") ("ConformanceMode", m_conformanceWindowMode, 0, "Deprecated alias of ConformanceWindowMode") ("ConformanceWindowMode", m_conformanceWindowMode, 0, "Window conformance mode (0: no window, 1:automatic padding, 2:padding, 3:conformance") ("HorizontalPadding,-pdx", m_aiPad[0], 0, "Horizontal source padding for conformance window mode 2") ("VerticalPadding,-pdy", m_aiPad[1], 0, "Vertical source padding for conformance window mode 2") ("ConfLeft", m_confWinLeft, 0, "Deprecated alias of ConfWinLeft") ("ConfRight", m_confWinRight, 0, "Deprecated alias of ConfWinRight") ("ConfTop", m_confWinTop, 0, "Deprecated alias of ConfWinTop") ("ConfBottom", m_confWinBottom, 0, "Deprecated alias of ConfWinBottom") ("ConfWinLeft", m_confWinLeft, 0, "Left offset for window conformance mode 3") ("ConfWinRight", m_confWinRight, 0, "Right offset for window conformance mode 3") ("ConfWinTop", m_confWinTop, 0, "Top offset for window conformance mode 3") ("ConfWinBottom", m_confWinBottom, 0, "Bottom offset for window conformance mode 3") ("FrameRate,-fr", m_iFrameRate, 0, "Frame rate") #if Q0074_COLOUR_REMAPPING_SEI ("SEIColourRemappingInfoFile", cfg_colourRemapSEIFile, string(""), "Colour Remapping Information SEI parameters file name") #endif #endif //SVC_EXTENSION ("FrameSkip,-fs", m_FrameSkip, 0u, "Number of frames to skip at start of input YUV") ("FramesToBeEncoded,f", m_framesToBeEncoded, 0, "Number of frames to be encoded (default=all)") //Field coding parameters ("FieldCoding", m_isField, false, "Signals if it's a field based coding") ("TopFieldFirst, Tff", m_isTopFieldFirst, false, "In case of field based coding, signals whether if it's a top field first or not") // Profile and level #if MULTIPLE_PTL_SUPPORT ("NumProfileTierLevel", m_numPTLInfo, 1, "Number of Profile, Tier and Level information") ("Profile%d", extendedProfile, NONE, (MAX_NUM_LAYER_IDS + 1), "Profile name to use for encoding. Use main (for main), main10 (for main10), main-still-picture, main-RExt (for Range Extensions profile), any of the RExt specific profile names, or none") ("Level%d", m_levelList, Level::NONE, (MAX_NUM_LAYER_IDS + 1), "Level limit to be used, eg 5.1, or none") ("Tier%d", m_levelTierList, Level::MAIN, (MAX_NUM_LAYER_IDS + 1), "Tier to use for interpretation of --Level (main or high only)") ("MaxBitDepthConstraint", tmpBitDepthConstraint, 0u, "Bit depth to use for profile-constraint for RExt profiles. 0=automatically choose based upon other parameters") ("MaxChromaFormatConstraint", tmpConstraintChromaFormat, 0, "Chroma-format to use for the profile-constraint for RExt profiles. 0=automatically choose based upon other parameters") ("IntraConstraintFlag", tmpIntraConstraintFlag, false, "Value of general_intra_constraint_flag to use for RExt profiles (not used if an explicit RExt sub-profile is specified)") ("LowerBitRateConstraintFlag", tmpLowerBitRateConstraintFlag, true, "Value of general_lower_bit_rate_constraint_flag to use for RExt profiles") ("ProfileCompatibility%d", m_profileCompatibility, Profile::NONE, (MAX_NUM_LAYER_IDS + 1), "Compatible profile to be used when encoding") ("ProgressiveSource%d", m_progressiveSourceFlagList, false, (MAX_NUM_LAYER_IDS + 1), "Indicate that source is progressive") ("InterlacedSource%d", m_interlacedSourceFlagList, false, (MAX_NUM_LAYER_IDS + 1), "Indicate that source is interlaced") ("NonPackedSource%d", m_nonPackedConstraintFlagList, false, (MAX_NUM_LAYER_IDS + 1), "Indicate that source does not contain frame packing") ("FrameOnly%d", m_frameOnlyConstraintFlagList, false, (MAX_NUM_LAYER_IDS + 1), "Indicate that the bitstream contains only frames") ("LayerPTLIndex%d", cfg_layerPTLIdx, 0, MAX_VPS_LAYER_IDX_PLUS1, "Index of PTL for each layer") ("ListOfProfileTierLevelOls%d", cfg_listOfLayerPTLOfOlss, string(""), MAX_VPS_OUTPUT_LAYER_SETS_PLUS1, "PTL Index for each layer in each OLS except the first OLS. The PTL index for layer in the first OLS is set to 1") #else ("Profile", extendedProfile, NONE, "Profile name to use for encoding. Use main (for main), main10 (for main10), main-still-picture, main-RExt (for Range Extensions profile), any of the RExt specific profile names, or none") ("Level", m_level, Level::NONE, "Level limit to be used, eg 5.1, or none") ("Tier", m_levelTier, Level::MAIN, "Tier to use for interpretation of --Level (main or high only)") ("MaxBitDepthConstraint", m_bitDepthConstraint, 0u, "Bit depth to use for profile-constraint for RExt profiles. 0=automatically choose based upon other parameters") ("MaxChromaFormatConstraint", tmpConstraintChromaFormat, 0, "Chroma-format to use for the profile-constraint for RExt profiles. 0=automatically choose based upon other parameters") ("IntraConstraintFlag", m_intraConstraintFlag, false, "Value of general_intra_constraint_flag to use for RExt profiles (not used if an explicit RExt sub-profile is specified)") ("LowerBitRateConstraintFlag", m_lowerBitRateConstraintFlag, true, "Value of general_lower_bit_rate_constraint_flag to use for RExt profiles") ("ProgressiveSource", m_progressiveSourceFlag, false, "Indicate that source is progressive") ("InterlacedSource", m_interlacedSourceFlag, false, "Indicate that source is interlaced") ("NonPackedSource", m_nonPackedConstraintFlag, false, "Indicate that source does not contain frame packing") ("FrameOnly", m_frameOnlyConstraintFlag, false, "Indicate that the bitstream contains only frames") #endif #if LAYER_CTB // Unit definition parameters ("MaxCUWidth%d", cfg_uiMaxCUWidth, 64u, MAX_LAYERS, "Maximum CU width") ("MaxCUHeight%d", cfg_uiMaxCUHeight, 64u, MAX_LAYERS, "Maximum CU height") // todo: remove defaults from MaxCUSize ("MaxCUSize%d,s%d", cfg_uiMaxCUWidth, 64u, MAX_LAYERS, "Maximum CU size") ("MaxCUSize%d,s%d", cfg_uiMaxCUHeight, 64u, MAX_LAYERS, "Maximum CU size") ("MaxPartitionDepth%d,h%d", cfg_uiMaxCUDepth, 4u, MAX_LAYERS, "CU depth") ("QuadtreeTULog2MaxSize%d", cfg_uiQuadtreeTULog2MaxSize, 6u, MAX_LAYERS, "Maximum TU size in logarithm base 2") ("QuadtreeTULog2MinSize%d", cfg_uiQuadtreeTULog2MinSize, 2u, MAX_LAYERS, "Minimum TU size in logarithm base 2") ("QuadtreeTUMaxDepthIntra%d", cfg_uiQuadtreeTUMaxDepthIntra, 1u, MAX_LAYERS, "Depth of TU tree for intra CUs") ("QuadtreeTUMaxDepthInter%d", cfg_uiQuadtreeTUMaxDepthInter, 2u, MAX_LAYERS, "Depth of TU tree for inter CUs") // set the same CU realted settings across all the layers if config file parameters are not layer specific ("MaxCUWidth", cfg_uiMaxCUWidth, 64u, MAX_LAYERS, "Maximum CU width") ("MaxCUHeight", cfg_uiMaxCUHeight, 64u, MAX_LAYERS, "Maximum CU height") // todo: remove defaults from MaxCUSize ("MaxCUSize,s", cfg_uiMaxCUWidth, 64u, MAX_LAYERS, "Maximum CU size") ("MaxCUSize,s", cfg_uiMaxCUHeight, 64u, MAX_LAYERS, "Maximum CU size") ("MaxPartitionDepth,h", cfg_uiMaxCUDepth, 4u, MAX_LAYERS, "CU depth") ("QuadtreeTULog2MaxSize", cfg_uiQuadtreeTULog2MaxSize, 6u, MAX_LAYERS, "Maximum TU size in logarithm base 2") ("QuadtreeTULog2MinSize", cfg_uiQuadtreeTULog2MinSize, 2u, MAX_LAYERS, "Minimum TU size in logarithm base 2") ("QuadtreeTUMaxDepthIntra", cfg_uiQuadtreeTUMaxDepthIntra, 1u, MAX_LAYERS, "Depth of TU tree for intra CUs") ("QuadtreeTUMaxDepthInter", cfg_uiQuadtreeTUMaxDepthInter, 2u, MAX_LAYERS, "Depth of TU tree for inter CUs") #else // Unit definition parameters ("MaxCUWidth", m_uiMaxCUWidth, 64u) ("MaxCUHeight", m_uiMaxCUHeight, 64u) // todo: remove defaults from MaxCUSize ("MaxCUSize,s", m_uiMaxCUWidth, 64u, "Maximum CU size") ("MaxCUSize,s", m_uiMaxCUHeight, 64u, "Maximum CU size") ("MaxPartitionDepth,h", m_uiMaxCUDepth, 4u, "CU depth") ("QuadtreeTULog2MaxSize", m_uiQuadtreeTULog2MaxSize, 6u, "Maximum TU size in logarithm base 2") ("QuadtreeTULog2MinSize", m_uiQuadtreeTULog2MinSize, 2u, "Minimum TU size in logarithm base 2") ("QuadtreeTUMaxDepthIntra", m_uiQuadtreeTUMaxDepthIntra, 1u, "Depth of TU tree for intra CUs") ("QuadtreeTUMaxDepthInter", m_uiQuadtreeTUMaxDepthInter, 2u, "Depth of TU tree for inter CUs") #endif // Coding structure paramters #if SVC_EXTENSION ("IntraPeriod%d,-ip%d", cfg_IntraPeriod, -1, MAX_LAYERS, "intra period in frames for layer %d, (-1: only first frame)") #else ("IntraPeriod,-ip", m_iIntraPeriod, -1, "Intra period in frames, (-1: only first frame)") #endif #if ALLOW_RECOVERY_POINT_AS_RAP ("DecodingRefreshType,-dr", m_iDecodingRefreshType, 0, "Intra refresh type (0:none 1:CRA 2:IDR 3:RecPointSEI)") #else ("DecodingRefreshType,-dr", m_iDecodingRefreshType, 0, "Intra refresh type (0:none 1:CRA 2:IDR)") #endif ("GOPSize,g", m_iGOPSize, 1, "GOP size of temporal structure") // motion search options ("FastSearch", m_iFastSearch, 1, "0:Full search 1:Diamond 2:PMVFAST") ("SearchRange,-sr", m_iSearchRange, 96, "Motion search range") ("BipredSearchRange", m_bipredSearchRange, 4, "Motion search range for bipred refinement") ("HadamardME", m_bUseHADME, true, "Hadamard ME for fractional-pel") ("ASR", m_bUseASR, false, "Adaptive motion search range") #if SVC_EXTENSION ("LambdaModifier%d,-LM%d", m_adLambdaModifier, ( double )1.0, MAX_TLAYER, "Lambda modifier for temporal layer %d") #else // Mode decision parameters // Mode decision parameters ("LambdaModifier0,-LM0", m_adLambdaModifier[ 0 ], ( Double )1.0, "Lambda modifier for temporal layer 0") ("LambdaModifier1,-LM1", m_adLambdaModifier[ 1 ], ( Double )1.0, "Lambda modifier for temporal layer 1") ("LambdaModifier2,-LM2", m_adLambdaModifier[ 2 ], ( Double )1.0, "Lambda modifier for temporal layer 2") ("LambdaModifier3,-LM3", m_adLambdaModifier[ 3 ], ( Double )1.0, "Lambda modifier for temporal layer 3") ("LambdaModifier4,-LM4", m_adLambdaModifier[ 4 ], ( Double )1.0, "Lambda modifier for temporal layer 4") ("LambdaModifier5,-LM5", m_adLambdaModifier[ 5 ], ( Double )1.0, "Lambda modifier for temporal layer 5") ("LambdaModifier6,-LM6", m_adLambdaModifier[ 6 ], ( Double )1.0, "Lambda modifier for temporal layer 6") #endif /* Quantization parameters */ #if SVC_EXTENSION ("QP%d,-q%d", cfg_fQP, 30.0, MAX_LAYERS, "Qp value for layer %d, if value is float, QP is switched once during encoding") #else ("QP,q", m_fQP, 30.0, "Qp value, if value is float, QP is switched once during encoding") #endif ("DeltaQpRD,-dqr", m_uiDeltaQpRD, 0u, "max dQp offset for slice") ("MaxDeltaQP,d", m_iMaxDeltaQP, 0, "max dQp offset for block") ("MaxCuDQPDepth,-dqd", m_iMaxCuDQPDepth, 0, "max depth for a minimum CuDQP") ("MaxCUChromaQpAdjustmentDepth", m_maxCUChromaQpAdjustmentDepth, -1, "Maximum depth for CU chroma Qp adjustment - set less than 0 to disable") ("CbQpOffset,-cbqpofs", m_cbQpOffset, 0, "Chroma Cb QP Offset") ("CrQpOffset,-crqpofs", m_crQpOffset, 0, "Chroma Cr QP Offset") #if ADAPTIVE_QP_SELECTION ("AdaptiveQpSelection,-aqps", m_bUseAdaptQpSelect, false, "AdaptiveQpSelection") #endif ("AdaptiveQP,-aq", m_bUseAdaptiveQP, false, "QP adaptation based on a psycho-visual model") ("MaxQPAdaptationRange,-aqr", m_iQPAdaptationRange, 6, "QP adaptation range") #if !SVC_EXTENSION ("dQPFile,m", cfg_dQPFile, string(""), "dQP file name") #endif ("RDOQ", m_useRDOQ, true) ("RDOQTS", m_useRDOQTS, true) ("RDpenalty", m_rdPenalty, 0, "RD-penalty for 32x32 TU for intra in non-intra slices. 0:disabled 1:RD-penalty 2:maximum RD-penalty") // Deblocking filter parameters ("LoopFilterDisable", m_bLoopFilterDisable, false) ("LoopFilterOffsetInPPS", m_loopFilterOffsetInPPS, false) ("LoopFilterBetaOffset_div2", m_loopFilterBetaOffsetDiv2, 0) ("LoopFilterTcOffset_div2", m_loopFilterTcOffsetDiv2, 0) ("DeblockingFilterControlPresent", m_DeblockingFilterControlPresent, false) ("DeblockingFilterMetric", m_DeblockingFilterMetric, false) // Coding tools ("AMP", m_enableAMP, true, "Enable asymmetric motion partitions") ("CrossComponentPrediction", m_useCrossComponentPrediction, false, "Enable the use of cross-component prediction (not valid in V1 profiles)") ("ReconBasedCrossCPredictionEstimate", m_reconBasedCrossCPredictionEstimate, false, "When determining the alpha value for cross-component prediction, use the decoded residual rather than the pre-transform encoder-side residual") ("SaoLumaOffsetBitShift", saoOffsetBitShift[CHANNEL_TYPE_LUMA], 0, "Specify the luma SAO bit-shift. If negative, automatically calculate a suitable value based upon bit depth and initial QP") ("SaoChromaOffsetBitShift", saoOffsetBitShift[CHANNEL_TYPE_CHROMA], 0, "Specify the chroma SAO bit-shift. If negative, automatically calculate a suitable value based upon bit depth and initial QP") ("TransformSkip", m_useTransformSkip, false, "Intra transform skipping") ("TransformSkipFast", m_useTransformSkipFast, false, "Fast intra transform skipping") ("TransformSkipLog2MaxSize", m_transformSkipLog2MaxSize, 2U, "Specify transform-skip maximum size. Minimum 2. (not valid in V1 profiles)") ("ImplicitResidualDPCM", m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT], false, "Enable implicitly signalled residual DPCM for intra (also known as sample-adaptive intra predict) (not valid in V1 profiles)") ("ExplicitResidualDPCM", m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT], false, "Enable explicitly signalled residual DPCM for inter (not valid in V1 profiles)") ("ResidualRotation", m_useResidualRotation, false, "Enable rotation of transform-skipped and transquant-bypassed TUs through 180 degrees prior to entropy coding (not valid in V1 profiles)") ("SingleSignificanceMapContext", m_useSingleSignificanceMapContext, false, "Enable, for transform-skipped and transquant-bypassed TUs, the selection of a single significance map context variable for all coefficients (not valid in V1 profiles)") ("GolombRiceParameterAdaptation", m_useGolombRiceParameterAdaptation, false, "Enable the adaptation of the Golomb-Rice parameter over the course of each slice") ("AlignCABACBeforeBypass", m_alignCABACBeforeBypass, false, "Align the CABAC engine to a defined fraction of a bit prior to coding bypass data. Must be 1 in high bit rate profile, 0 otherwise" ) ("SAO", m_bUseSAO, true, "Enable Sample Adaptive Offset") ("MaxNumOffsetsPerPic", m_maxNumOffsetsPerPic, 2048, "Max number of SAO offset per picture (Default: 2048)") ("SAOLcuBoundary", m_saoCtuBoundary, false, "0: right/bottom CTU boundary areas skipped from SAO parameter estimation, 1: non-deblocked pixels are used for those areas") ("SliceMode", m_sliceMode, 0, "0: Disable all Recon slice limits, 1: Enforce max # of CTUs, 2: Enforce max # of bytes, 3:specify tiles per dependent slice") ("SliceArgument", m_sliceArgument, 0, "Depending on SliceMode being:" "\t1: max number of CTUs per slice" "\t2: max number of bytes per slice" "\t3: max number of tiles per slice") ("SliceSegmentMode", m_sliceSegmentMode, 0, "0: Disable all slice segment limits, 1: Enforce max # of CTUs, 2: Enforce max # of bytes, 3:specify tiles per dependent slice") ("SliceSegmentArgument", m_sliceSegmentArgument, 0, "Depending on SliceSegmentMode being:" "\t1: max number of CTUs per slice segment" "\t2: max number of bytes per slice segment" "\t3: max number of tiles per slice segment") ("LFCrossSliceBoundaryFlag", m_bLFCrossSliceBoundaryFlag, true) ("ConstrainedIntraPred", m_bUseConstrainedIntraPred, false, "Constrained Intra Prediction") ("PCMEnabledFlag", m_usePCM, false) ("PCMLog2MaxSize", m_pcmLog2MaxSize, 5u) ("PCMLog2MinSize", m_uiPCMLog2MinSize, 3u) ("PCMInputBitDepthFlag", m_bPCMInputBitDepthFlag, true) ("PCMFilterDisableFlag", m_bPCMFilterDisableFlag, false) ("IntraReferenceSmoothing", m_enableIntraReferenceSmoothing, true, "0: Disable use of intra reference smoothing. 1: Enable use of intra reference smoothing (not valid in V1 profiles)") ("WeightedPredP,-wpP", m_useWeightedPred, false, "Use weighted prediction in P slices") ("WeightedPredB,-wpB", m_useWeightedBiPred, false, "Use weighted (bidirectional) prediction in B slices") ("Log2ParallelMergeLevel", m_log2ParallelMergeLevel, 2u, "Parallel merge estimation region") //deprecated copies of renamed tile parameters ("UniformSpacingIdc", m_tileUniformSpacingFlag, false, "deprecated alias of TileUniformSpacing") ("ColumnWidthArray", cfg_ColumnWidth, cfg_ColumnWidth, "deprecated alias of TileColumnWidthArray") ("RowHeightArray", cfg_RowHeight, cfg_RowHeight, "deprecated alias of TileRowHeightArray") ("TileUniformSpacing", m_tileUniformSpacingFlag, false, "Indicates that tile columns and rows are distributed uniformly") ("NumTileColumnsMinus1", m_numTileColumnsMinus1, 0, "Number of tile columns in a picture minus 1") ("NumTileRowsMinus1", m_numTileRowsMinus1, 0, "Number of rows in a picture minus 1") ("TileColumnWidthArray", cfg_ColumnWidth, cfg_ColumnWidth, "Array containing tile column width values in units of CTU") ("TileRowHeightArray", cfg_RowHeight, cfg_RowHeight, "Array containing tile row height values in units of CTU") ("LFCrossTileBoundaryFlag", m_bLFCrossTileBoundaryFlag, true, "1: cross-tile-boundary loop filtering. 0:non-cross-tile-boundary loop filtering") #if SVC_EXTENSION ("WaveFrontSynchro%d", cfg_waveFrontSynchro, 0, MAX_LAYERS, "0: no synchro; 1 synchro with TR; 2 TRR etc") #else ("WaveFrontSynchro", m_iWaveFrontSynchro, 0, "0: no synchro; 1 synchro with top-right-right") #endif ("ScalingList", m_useScalingListId, SCALING_LIST_OFF, "0/off: no scaling list, 1/default: default scaling lists, 2/file: scaling lists specified in ScalingListFile") ("ScalingListFile", cfg_ScalingListFile, string(""), "Scaling list file name. Use an empty string to produce help.") ("SignHideFlag,-SBH", m_signHideFlag, 1) ("MaxNumMergeCand", m_maxNumMergeCand, 5u, "Maximum number of merge candidates") /* Misc. */ ("SEIDecodedPictureHash", m_decodedPictureHashSEIEnabled, 0, "Control generation of decode picture hash SEI messages\n" "\t3: checksum\n" "\t2: CRC\n" "\t1: use MD5\n" "\t0: disable") ("SEIpictureDigest", m_decodedPictureHashSEIEnabled, 0, "deprecated alias for SEIDecodedPictureHash") ("TMVPMode", m_TMVPModeId, 1, "TMVP mode 0: TMVP disable for all slices. 1: TMVP enable for all slices (default) 2: TMVP enable for certain slices only") ("FEN", m_bUseFastEnc, false, "fast encoder setting") ("ECU", m_bUseEarlyCU, false, "Early CU setting") ("FDM", m_useFastDecisionForMerge, true, "Fast decision for Merge RD Cost") ("CFM", m_bUseCbfFastMode, false, "Cbf fast mode setting") ("ESD", m_useEarlySkipDetection, false, "Early SKIP detection setting") #if FAST_INTRA_SHVC ("FIS", m_useFastIntraScalable, false, "Fast Intra Decision for Scalable HEVC") #endif #if RC_SHVC_HARMONIZATION ("RateControl%d", cfg_RCEnableRateControl, false, MAX_LAYERS, "Rate control: enable rate control for layer %d") ("TargetBitrate%d", cfg_RCTargetBitRate, 0, MAX_LAYERS, "Rate control: target bitrate for layer %d") ("KeepHierarchicalBit%d", cfg_RCKeepHierarchicalBit, false, MAX_LAYERS, "Rate control: keep hierarchical bit allocation for layer %d") ("LCULevelRateControl%d", cfg_RCLCULevelRC, true, MAX_LAYERS, "Rate control: LCU level RC") ("RCLCUSeparateModel%d", cfg_RCUseLCUSeparateModel, true, MAX_LAYERS, "Rate control: Use LCU level separate R-lambda model") ("InitialQP%d", cfg_RCInitialQP, 0, MAX_LAYERS, "Rate control: initial QP") ("RCForceIntraQP%d", cfg_RCForceIntraQP, false, MAX_LAYERS, "Rate control: force intra QP to be equal to initial QP") #else ( "RateControl", m_RCEnableRateControl, false, "Rate control: enable rate control" ) ( "TargetBitrate", m_RCTargetBitrate, 0, "Rate control: target bit-rate" ) ( "KeepHierarchicalBit", m_RCKeepHierarchicalBit, 0, "Rate control: 0: equal bit allocation; 1: fixed ratio bit allocation; 2: adaptive ratio bit allocation" ) ( "LCULevelRateControl", m_RCLCULevelRC, true, "Rate control: true: CTU level RC; false: picture level RC" ) ( "RCLCUSeparateModel", m_RCUseLCUSeparateModel, true, "Rate control: use CTU level separate R-lambda model" ) ( "InitialQP", m_RCInitialQP, 0, "Rate control: initial QP" ) ( "RCForceIntraQP", m_RCForceIntraQP, false, "Rate control: force intra QP to be equal to initial QP" ) #endif ("TransquantBypassEnableFlag", m_TransquantBypassEnableFlag, false, "transquant_bypass_enable_flag indicator in PPS") ("CUTransquantBypassFlagForce", m_CUTransquantBypassFlagForce, false, "Force transquant bypass mode, when transquant_bypass_enable_flag is enabled") ("CostMode", m_costMode, COST_STANDARD_LOSSY, "Use alternative cost functions: choose between 'lossy', 'sequence_level_lossless', 'lossless' (which forces QP to " MACRO_TO_STRING(LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP) ") and 'mixed_lossless_lossy' (which used QP'=" MACRO_TO_STRING(LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP_PRIME) " for pre-estimates of transquant-bypass blocks).") ("RecalculateQPAccordingToLambda", m_recalculateQPAccordingToLambda, false, "Recalculate QP values according to lambda values. Do not suggest to be enabled in all intra case") ("StrongIntraSmoothing,-sis", m_useStrongIntraSmoothing, true, "Enable strong intra smoothing for 32x32 blocks") ("SEIActiveParameterSets", m_activeParameterSetsSEIEnabled, 0, "Enable generation of active parameter sets SEI messages") ("VuiParametersPresent,-vui", m_vuiParametersPresentFlag, false, "Enable generation of vui_parameters()") ("AspectRatioInfoPresent", m_aspectRatioInfoPresentFlag, false, "Signals whether aspect_ratio_idc is present") ("AspectRatioIdc", m_aspectRatioIdc, 0, "aspect_ratio_idc") ("SarWidth", m_sarWidth, 0, "horizontal size of the sample aspect ratio") ("SarHeight", m_sarHeight, 0, "vertical size of the sample aspect ratio") ("OverscanInfoPresent", m_overscanInfoPresentFlag, false, "Indicates whether conformant decoded pictures are suitable for display using overscan\n") ("OverscanAppropriate", m_overscanAppropriateFlag, false, "Indicates whether conformant decoded pictures are suitable for display using overscan\n") ("VideoSignalTypePresent", m_videoSignalTypePresentFlag, false, "Signals whether video_format, video_full_range_flag, and colour_description_present_flag are present") ("VideoFormat", m_videoFormat, 5, "Indicates representation of pictures") ("VideoFullRange", m_videoFullRangeFlag, false, "Indicates the black level and range of luma and chroma signals") ("ColourDescriptionPresent", m_colourDescriptionPresentFlag, false, "Signals whether colour_primaries, transfer_characteristics and matrix_coefficients are present") ("ColourPrimaries", m_colourPrimaries, 2, "Indicates chromaticity coordinates of the source primaries") ("TransferCharacteristics", m_transferCharacteristics, 2, "Indicates the opto-electronic transfer characteristics of the source") ("MatrixCoefficients", m_matrixCoefficients, 2, "Describes the matrix coefficients used in deriving luma and chroma from RGB primaries") ("ChromaLocInfoPresent", m_chromaLocInfoPresentFlag, false, "Signals whether chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are present") ("ChromaSampleLocTypeTopField", m_chromaSampleLocTypeTopField, 0, "Specifies the location of chroma samples for top field") ("ChromaSampleLocTypeBottomField", m_chromaSampleLocTypeBottomField, 0, "Specifies the location of chroma samples for bottom field") ("NeutralChromaIndication", m_neutralChromaIndicationFlag, false, "Indicates that the value of all decoded chroma samples is equal to 1<<(BitDepthCr-1)") ("DefaultDisplayWindowFlag", m_defaultDisplayWindowFlag, false, "Indicates the presence of the Default Window parameters") ("DefDispWinLeftOffset", m_defDispWinLeftOffset, 0, "Specifies the left offset of the default display window from the conformance window") ("DefDispWinRightOffset", m_defDispWinRightOffset, 0, "Specifies the right offset of the default display window from the conformance window") ("DefDispWinTopOffset", m_defDispWinTopOffset, 0, "Specifies the top offset of the default display window from the conformance window") ("DefDispWinBottomOffset", m_defDispWinBottomOffset, 0, "Specifies the bottom offset of the default display window from the conformance window") ("FrameFieldInfoPresentFlag", m_frameFieldInfoPresentFlag, false, "Indicates that pic_struct and field coding related values are present in picture timing SEI messages") ("PocProportionalToTimingFlag", m_pocProportionalToTimingFlag, false, "Indicates that the POC value is proportional to the output time w.r.t. first picture in CVS") ("NumTicksPocDiffOneMinus1", m_numTicksPocDiffOneMinus1, 0, "Number of ticks minus 1 that for a POC difference of one") ("BitstreamRestriction", m_bitstreamRestrictionFlag, false, "Signals whether bitstream restriction parameters are present") ("TilesFixedStructure", m_tilesFixedStructureFlag, false, "Indicates that each active picture parameter set has the same values of the syntax elements related to tiles") ("MotionVectorsOverPicBoundaries", m_motionVectorsOverPicBoundariesFlag, false, "Indicates that no samples outside the picture boundaries are used for inter prediction") ("MaxBytesPerPicDenom", m_maxBytesPerPicDenom, 2, "Indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units associated with any coded picture") ("MaxBitsPerMinCuDenom", m_maxBitsPerMinCuDenom, 1, "Indicates an upper bound for the number of bits of coding_unit() data") ("Log2MaxMvLengthHorizontal", m_log2MaxMvLengthHorizontal, 15, "Indicate the maximum absolute value of a decoded horizontal MV component in quarter-pel luma units") ("Log2MaxMvLengthVertical", m_log2MaxMvLengthVertical, 15, "Indicate the maximum absolute value of a decoded vertical MV component in quarter-pel luma units") ("SEIRecoveryPoint", m_recoveryPointSEIEnabled, 0, "Control generation of recovery point SEI messages") ("SEIBufferingPeriod", m_bufferingPeriodSEIEnabled, 0, "Control generation of buffering period SEI messages") ("SEIPictureTiming", m_pictureTimingSEIEnabled, 0, "Control generation of picture timing SEI messages") ("SEIToneMappingInfo", m_toneMappingInfoSEIEnabled, false, "Control generation of Tone Mapping SEI messages") ("SEIToneMapId", m_toneMapId, 0, "Specifies Id of Tone Mapping SEI message for a given session") ("SEIToneMapCancelFlag", m_toneMapCancelFlag, false, "Indicates that Tone Mapping SEI message cancels the persistence or follows") ("SEIToneMapPersistenceFlag", m_toneMapPersistenceFlag, true, "Specifies the persistence of the Tone Mapping SEI message") ("SEIToneMapCodedDataBitDepth", m_toneMapCodedDataBitDepth, 8, "Specifies Coded Data BitDepth of Tone Mapping SEI messages") ("SEIToneMapTargetBitDepth", m_toneMapTargetBitDepth, 8, "Specifies Output BitDepth of Tone mapping function") ("SEIToneMapModelId", m_toneMapModelId, 0, "Specifies Model utilized for mapping coded data into target_bit_depth range\n" "\t0: linear mapping with clipping\n" "\t1: sigmoidal mapping\n" "\t2: user-defined table mapping\n" "\t3: piece-wise linear mapping\n" "\t4: luminance dynamic range information ") ("SEIToneMapMinValue", m_toneMapMinValue, 0, "Specifies the minimum value in mode 0") ("SEIToneMapMaxValue", m_toneMapMaxValue, 1023, "Specifies the maximum value in mode 0") ("SEIToneMapSigmoidMidpoint", m_sigmoidMidpoint, 512, "Specifies the centre point in mode 1") ("SEIToneMapSigmoidWidth", m_sigmoidWidth, 960, "Specifies the distance between 5% and 95% values of the target_bit_depth in mode 1") ("SEIToneMapStartOfCodedInterval", cfg_startOfCodedInterval, cfg_startOfCodedInterval, "Array of user-defined mapping table") ("SEIToneMapNumPivots", m_numPivots, 0, "Specifies the number of pivot points in mode 3") ("SEIToneMapCodedPivotValue", cfg_codedPivotValue, cfg_codedPivotValue, "Array of pivot point") ("SEIToneMapTargetPivotValue", cfg_targetPivotValue, cfg_targetPivotValue, "Array of pivot point") ("SEIToneMapCameraIsoSpeedIdc", m_cameraIsoSpeedIdc, 0, "Indicates the camera ISO speed for daylight illumination") ("SEIToneMapCameraIsoSpeedValue", m_cameraIsoSpeedValue, 400, "Specifies the camera ISO speed for daylight illumination of Extended_ISO") ("SEIToneMapExposureIndexIdc", m_exposureIndexIdc, 0, "Indicates the exposure index setting of the camera") ("SEIToneMapExposureIndexValue", m_exposureIndexValue, 400, "Specifies the exposure index setting of the camera of Extended_ISO") ("SEIToneMapExposureCompensationValueSignFlag", m_exposureCompensationValueSignFlag, 0, "Specifies the sign of ExposureCompensationValue") ("SEIToneMapExposureCompensationValueNumerator", m_exposureCompensationValueNumerator, 0, "Specifies the numerator of ExposureCompensationValue") ("SEIToneMapExposureCompensationValueDenomIdc", m_exposureCompensationValueDenomIdc, 2, "Specifies the denominator of ExposureCompensationValue") ("SEIToneMapRefScreenLuminanceWhite", m_refScreenLuminanceWhite, 350, "Specifies reference screen brightness setting in units of candela per square metre") ("SEIToneMapExtendedRangeWhiteLevel", m_extendedRangeWhiteLevel, 800, "Indicates the luminance dynamic range") ("SEIToneMapNominalBlackLevelLumaCodeValue", m_nominalBlackLevelLumaCodeValue, 16, "Specifies luma sample value of the nominal black level assigned decoded pictures") ("SEIToneMapNominalWhiteLevelLumaCodeValue", m_nominalWhiteLevelLumaCodeValue, 235, "Specifies luma sample value of the nominal white level assigned decoded pictures") ("SEIToneMapExtendedWhiteLevelLumaCodeValue", m_extendedWhiteLevelLumaCodeValue, 300, "Specifies luma sample value of the extended dynamic range assigned decoded pictures") ("SEIChromaSamplingFilterHint", m_chromaSamplingFilterSEIenabled, false, "Control generation of the chroma sampling filter hint SEI message") ("SEIChromaSamplingHorizontalFilterType", m_chromaSamplingHorFilterIdc, 2, "Defines the Index of the chroma sampling horizontal filter\n" "\t0: unspecified - Chroma filter is unknown or is determined by the application" "\t1: User-defined - Filter coefficients are specified in the chroma sampling filter hint SEI message" "\t2: Standards-defined - ITU-T Rec. T.800 | ISO/IEC15444-1, 5/3 filter") ("SEIChromaSamplingVerticalFilterType", m_chromaSamplingVerFilterIdc, 2, "Defines the Index of the chroma sampling vertical filter\n" "\t0: unspecified - Chroma filter is unknown or is determined by the application" "\t1: User-defined - Filter coefficients are specified in the chroma sampling filter hint SEI message" "\t2: Standards-defined - ITU-T Rec. T.800 | ISO/IEC15444-1, 5/3 filter") ("SEIFramePacking", m_framePackingSEIEnabled, 0, "Control generation of frame packing SEI messages") ("SEIFramePackingType", m_framePackingSEIType, 0, "Define frame packing arrangement\n" "\t3: side by side - frames are displayed horizontally\n" "\t4: top bottom - frames are displayed vertically\n" "\t5: frame alternation - one frame is alternated with the other") ("SEIFramePackingId", m_framePackingSEIId, 0, "Id of frame packing SEI message for a given session") ("SEIFramePackingQuincunx", m_framePackingSEIQuincunx, 0, "Indicate the presence of a Quincunx type video frame") ("SEIFramePackingInterpretation", m_framePackingSEIInterpretation, 0, "Indicate the interpretation of the frame pair\n" "\t0: unspecified\n" "\t1: stereo pair, frame0 represents left view\n" "\t2: stereo pair, frame0 represents right view") ("SEISegmentedRectFramePacking", m_segmentedRectFramePackingSEIEnabled, 0, "Controls generation of segmented rectangular frame packing SEI messages") ("SEISegmentedRectFramePackingCancel", m_segmentedRectFramePackingSEICancel, false, "If equal to 1, cancels the persistence of any previous SRFPA SEI message") ("SEISegmentedRectFramePackingType", m_segmentedRectFramePackingSEIType, 0, "Specifies the arrangement of the frames in the reconstructed picture") ("SEISegmentedRectFramePackingPersistence", m_segmentedRectFramePackingSEIPersistence, false, "If equal to 0, the SEI applies to the current frame only") ("SEIDisplayOrientation", m_displayOrientationSEIAngle, 0, "Control generation of display orientation SEI messages\n" "\tN: 0 < N < (2^16 - 1) enable display orientation SEI message with anticlockwise_rotation = N and display_orientation_repetition_period = 1\n" "\t0: disable") ("SEITemporalLevel0Index", m_temporalLevel0IndexSEIEnabled, 0, "Control generation of temporal level 0 index SEI messages") ("SEIGradualDecodingRefreshInfo", m_gradualDecodingRefreshInfoEnabled, 0, "Control generation of gradual decoding refresh information SEI message") ("SEINoDisplay", m_noDisplaySEITLayer, 0, "Control generation of no display SEI message\n" "\tN: 0 < N enable no display SEI message for temporal layer N or higher\n" "\t0: disable") ("SEIDecodingUnitInfo", m_decodingUnitInfoSEIEnabled, 0, "Control generation of decoding unit information SEI message.") #if LAYERS_NOT_PRESENT_SEI ("SEILayersNotPresent", m_layersNotPresentSEIEnabled, 0, "Control generation of layers not present SEI message") #endif ("SEISOPDescription", m_SOPDescriptionSEIEnabled, 0, "Control generation of SOP description SEI messages") ("SEIScalableNesting", m_scalableNestingSEIEnabled, 0, "Control generation of scalable nesting SEI messages") ("SEITempMotionConstrainedTileSets", m_tmctsSEIEnabled, false, "Control generation of temporal motion constrained tile sets SEI message") ("SEITimeCodeEnabled", m_timeCodeSEIEnabled, false, "Control generation of time code information SEI message") ("SEITimeCodeNumClockTs", m_timeCodeSEINumTs, 0, "Number of clock time sets [0..3]") ("SEITimeCodeTimeStampFlag", cfg_timeCodeSeiTimeStampFlag, cfg_timeCodeSeiTimeStampFlag, "Time stamp flag associated to each time set") ("SEITimeCodeFieldBasedFlag", cfg_timeCodeSeiNumUnitFieldBasedFlag, cfg_timeCodeSeiNumUnitFieldBasedFlag, "Field based flag associated to each time set") ("SEITimeCodeCountingType", cfg_timeCodeSeiCountingType, cfg_timeCodeSeiCountingType, "Counting type associated to each time set") ("SEITimeCodeFullTsFlag", cfg_timeCodeSeiFullTimeStampFlag, cfg_timeCodeSeiFullTimeStampFlag, "Full time stamp flag associated to each time set") ("SEITimeCodeDiscontinuityFlag", cfg_timeCodeSeiDiscontinuityFlag, cfg_timeCodeSeiDiscontinuityFlag, "Discontinuity flag associated to each time set") ("SEITimeCodeCntDroppedFlag", cfg_timeCodeSeiCntDroppedFlag, cfg_timeCodeSeiCntDroppedFlag, "Counter dropped flag associated to each time set") ("SEITimeCodeNumFrames", cfg_timeCodeSeiNumberOfFrames, cfg_timeCodeSeiNumberOfFrames, "Number of frames associated to each time set") ("SEITimeCodeSecondsValue", cfg_timeCodeSeiSecondsValue, cfg_timeCodeSeiSecondsValue, "Seconds value for each time set") ("SEITimeCodeMinutesValue", cfg_timeCodeSeiMinutesValue, cfg_timeCodeSeiMinutesValue, "Minutes value for each time set") ("SEITimeCodeHoursValue", cfg_timeCodeSeiHoursValue, cfg_timeCodeSeiHoursValue, "Hours value for each time set") ("SEITimeCodeSecondsFlag", cfg_timeCodeSeiSecondsFlag, cfg_timeCodeSeiSecondsFlag, "Flag to signal seconds value presence in each time set") ("SEITimeCodeMinutesFlag", cfg_timeCodeSeiMinutesFlag, cfg_timeCodeSeiMinutesFlag, "Flag to signal minutes value presence in each time set") ("SEITimeCodeHoursFlag", cfg_timeCodeSeiHoursFlag, cfg_timeCodeSeiHoursFlag, "Flag to signal hours value presence in each time set") ("SEITimeCodeOffsetLength", cfg_timeCodeSeiTimeOffsetLength, cfg_timeCodeSeiTimeOffsetLength, "Time offset length associated to each time set") ("SEITimeCodeTimeOffset", cfg_timeCodeSeiTimeOffsetValue, cfg_timeCodeSeiTimeOffsetValue, "Time offset associated to each time set") ("SEIKneeFunctionInfo", m_kneeSEIEnabled, false, "Control generation of Knee function SEI messages") ("SEIKneeFunctionId", m_kneeSEIId, 0, "Specifies Id of Knee function SEI message for a given session") ("SEIKneeFunctionCancelFlag", m_kneeSEICancelFlag, false, "Indicates that Knee function SEI message cancels the persistence or follows") ("SEIKneeFunctionPersistenceFlag", m_kneeSEIPersistenceFlag, true, "Specifies the persistence of the Knee function SEI message") ("SEIKneeFunctionInputDrange", m_kneeSEIInputDrange, 1000, "Specifies the peak luminance level for the input picture of Knee function SEI messages") ("SEIKneeFunctionInputDispLuminance", m_kneeSEIInputDispLuminance, 100, "Specifies the expected display brightness for the input picture of Knee function SEI messages") ("SEIKneeFunctionOutputDrange", m_kneeSEIOutputDrange, 4000, "Specifies the peak luminance level for the output picture of Knee function SEI messages") ("SEIKneeFunctionOutputDispLuminance", m_kneeSEIOutputDispLuminance, 800, "Specifies the expected display brightness for the output picture of Knee function SEI messages") ("SEIKneeFunctionNumKneePointsMinus1", m_kneeSEINumKneePointsMinus1, 2, "Specifies the number of knee points - 1") ("SEIKneeFunctionInputKneePointValue", cfg_kneeSEIInputKneePointValue, cfg_kneeSEIInputKneePointValue, "Array of input knee point") ("SEIKneeFunctionOutputKneePointValue", cfg_kneeSEIOutputKneePointValue, cfg_kneeSEIOutputKneePointValue, "Array of output knee point") ("SEIMasteringDisplayColourVolume", m_masteringDisplay.colourVolumeSEIEnabled, false, "Control generation of mastering display colour volume SEI messages") ("SEIMasteringDisplayMaxLuminance", m_masteringDisplay.maxLuminance, 10000u, "Specifies the mastering display maximum luminance value in units of 1/10000 candela per square metre (32-bit code value)") ("SEIMasteringDisplayMinLuminance", m_masteringDisplay.minLuminance, 0u, "Specifies the mastering display minimum luminance value in units of 1/10000 candela per square metre (32-bit code value)") ("SEIMasteringDisplayPrimaries", cfg_DisplayPrimariesCode, cfg_DisplayPrimariesCode, "Mastering display primaries for all three colour planes in CIE xy coordinates in increments of 1/50000 (results in the ranges 0 to 50000 inclusive)") ("SEIMasteringDisplayWhitePoint", cfg_DisplayWhitePointCode, cfg_DisplayWhitePointCode, "Mastering display white point CIE xy coordinates in normalised increments of 1/50000 (e.g. 0.333 = 16667)") #if P0123_ALPHA_CHANNEL_SEI ("SEIAlphaChannelInfo", m_alphaSEIEnabled, false, "Enables transmission of information associated with alpha channel (default : 0)") ("SEIAlphaCancelFlag", m_alphaCancelFlag, true, "Denotes that this SEI message cancels the persistence of any previously received alpha channel SEI message (default : 1)") ("SEIAlphaUseIdc", m_alphaUseIdc, 2, "Denotes the use of the received alpha channel in final picture composition (e.g. pre-multiplied alpha, default : 2)") ("SEIAlphaBitDepthMinus8", m_alphaBitDepthMinus8, 0, "Denotes the bit depth associated with the received alpha channel (default : 0)") ("SEIAlphaTransparentValue", m_alphaTransparentValue, 0, "Denotes the sample value which is considered transparent for alpha blending purposes (default : 0)") ("SEIAlphaOpaqueValue", m_alphaOpaqueValue, 255, "Denotes the sample value which is considered opaque for alpha blending purposes (default : 255)") ("SEIAlphaIncrementFlag", m_alphaIncrementFlag, false, "Denotes whether the sample values should be incremented by one for the purposes of alpha blending (default : 0)") ("SEIAlphaClipFlag", m_alphaClipFlag, false, "Denotes whether clipping is applied to the sample values (default : 0)") ("SEIAlphaClipType", m_alphaClipTypeFlag, false, "Denotes the type of clipping applied to the sample values (0 = binary, 1 = linear, default : 0)") #endif #if Q0096_OVERLAY_SEI ("SEIOverlayInfo", m_overlaySEIEnabled, false, "Control generation of Selectable Overlays SEI messages") ("SEIOverlayCancelFlag", m_overlayInfoCancelFlag, true, "Indicates that Selectable Overlay SEI message cancels the persistance or follows (default: 1)") ("SEIOverlayContentAuxIdMinus128", m_overlayContentAuxIdMinus128, UInt(0), "Indicates the AuxId value of auxiliary pictures containing overlay content - 128") ("SEIOverlayLabelAuxIdMinus128", m_overlayLabelAuxIdMinus128, UInt(1), "Indicates the AuxId value of auxiliary pictures containing label content - 128") ("SEIOverlayAlphaAuxIdMinus128", m_overlayAlphaAuxIdMinus128, UInt(2), "Indicates the AuxId value of auxiliary pictures containing alpha content - 128") ("SEIOverlayElementLabelValueLengthMinus8", m_overlayElementLabelValueLengthMinus8, UInt(0), "Indicates the number of bits used for coding min and max label values - 8") ("SEIOverlayNumOverlaysMinus1", m_numOverlaysMinus1, UInt(0), "Specifies the number of overlays described by this SEI message - 1") ("SEIOverlayIdx0", cfg_overlaySEIIdx[0], UInt(0), "Indicates the index of overlay 0") ("SEIOverlayIdx1", cfg_overlaySEIIdx[1], UInt(1), "Indicates the index of overlay 1") ("SEIOverlayIdx2", cfg_overlaySEIIdx[2], UInt(2), "Indicates the index of overlay 2") ("SEIOverlayLanguagePresentFlag0", cfg_overlaySEILanguagePresentFlag[0], false, "Indicates if the language for overlay 0 is specified") ("SEIOverlayLanguagePresentFlag1", cfg_overlaySEILanguagePresentFlag[1], false, "Indicates if the language for overlay 1 is specified") ("SEIOverlayLanguagePresentFlag2", cfg_overlaySEILanguagePresentFlag[2], false, "Indicates if the language for overlay 2 is specified") ("SEIOverlayContentLayerId0", cfg_overlaySEIContentLayerId[0], UInt(0), "Indicates the nuh_layer_id value of the overlay content of overlay 0") ("SEIOverlayContentLayerId1", cfg_overlaySEIContentLayerId[1], UInt(0), "Indicates the nuh_layer_id value of the overlay content of overlay 1") ("SEIOverlayContentLayerId2", cfg_overlaySEIContentLayerId[2], UInt(0), "Indicates the nuh_layer_id value of the overlay content of overlay 2") ("SEIOverlayLabelPresentFlag0", cfg_overlaySEILabelPresentFlag[0], false, "Specifies if label content 0 is present") ("SEIOverlayLabelPresentFlag1", cfg_overlaySEILabelPresentFlag[1], false, "Specifies if label content 1 is present") ("SEIOverlayLabelPresentFlag2", cfg_overlaySEILabelPresentFlag[2], false, "Specifies if label content 2 is present") ("SEIOverlayLabelLayerId0", cfg_overlaySEILabelLayerId[0], UInt(0), "Specifies the nuh_layer_id value of the label content of overlay 0") ("SEIOverlayLabelLayerId1", cfg_overlaySEILabelLayerId[1], UInt(0), "Specifies the nuh_layer_id value of the label content of overlay 1") ("SEIOverlayLabelLayerId2", cfg_overlaySEILabelLayerId[2], UInt(0), "Specifies the nuh_layer_id value of the label content of overlay 2") ("SEIOverlayAlphaPresentFlag0", cfg_overlaySEIAlphaPresentFlag[0], false, "Specifies if alpha content 0 is present") ("SEIOverlayAlphaPresentFlag1", cfg_overlaySEIAlphaPresentFlag[1], false, "Specifies if alpha content 1 is present") ("SEIOverlayAlphaPresentFlag2", cfg_overlaySEIAlphaPresentFlag[2], false, "Specifies if alpha content 2 is present") ("SEIOverlayAlphaLayerId0", cfg_overlaySEIAlphaLayerId[0], UInt(0), "Specifies the nuh_layer_id value of the alpha content of overlay 0") ("SEIOverlayAlphaLayerId1", cfg_overlaySEIAlphaLayerId[1], UInt(0), "Specifies the nuh_layer_id value of the alpha content of overlay 1") ("SEIOverlayAlphaLayerId2", cfg_overlaySEIAlphaLayerId[2], UInt(0), "Specifies the nuh_layer_id value of the alpha content of overlay 2") ("SEIOverlayNumElementsMinus1_0", cfg_overlaySEINumElementsMinus1[0], UInt(0), "Specifies the number of overlay elements in overlay 0") ("SEIOverlayNumElementsMinus1_1", cfg_overlaySEINumElementsMinus1[1], UInt(0), "Specifies the number of overlay elements in overlay 1") ("SEIOverlayNumElementsMinus1_2", cfg_overlaySEINumElementsMinus1[2], UInt(0), "Specifies the number of overlay elements in overlay 2") ("SEIOverlayElementLabelRange0", cfg_overlaySEIElementLabelRanges[0], string(""), "Array of minimum and maximum values in order min0, max0, min1, max1, etc.\n""" "indicating the range of sample values corresponding to overlay elements of overlay 0") ("SEIOverlayElementLabelRange1", cfg_overlaySEIElementLabelRanges[1], string(""), "Array of minimum and maximum values in order min0, max0, min1, max1, etc.\n""" "indicating the range of sample values corresponding to overlay elements of overlay 1") ("SEIOverlayElementLabelRange2", cfg_overlaySEIElementLabelRanges[2], string(""), "Array of minimum and maximum values in order min0, max0, min1, max1, etc.\n""" "indicating the range of sample values corresponding to overlay elements of overlay 2") ("SEIOverlayLanguage0", cfg_overlaySEILanguage[0], string(""), "Indicates the language of overlay 0 by a language tag according to RFC 5646") ("SEIOverlayLanguage1", cfg_overlaySEILanguage[1], string(""), "Indicates the language of overlay 1 by a language tag according to RFC 5646") ("SEIOverlayLanguage2", cfg_overlaySEILanguage[2], string(""), "Indicates the language of overlay 2 by a language tag according to RFC 5646") ("SEIOverlayName0", cfg_overlaySEIName[0], string("Overlay0"), "Indicates the name of overlay 0") ("SEIOverlayName1", cfg_overlaySEIName[1], string("Overlay1"), "Indicates the name of overlay 1") ("SEIOverlayName2", cfg_overlaySEIName[2], string("Overlay2"), "Indicates the name of overlay 2") ("SEIOverlayElementNames0", cfg_overlaySEIElementNames[0], string(""), "Indicates the names of all overlay elements of overlay 0 in the format name1|name2|name3|...") ("SEIOverlayElementNames1", cfg_overlaySEIElementNames[1], string(""), "Indicates the names of all overlay elements of overlay 1 in the format name1|name2|name3|...") ("SEIOverlayElementNames2", cfg_overlaySEIElementNames[2], string(""), "Indicates the names of all overlay elements of overlay 2 in the format name1|name2|name3|...") ("SEIOverlayPersistenceFlag", m_overlayInfoPersistenceFlag, true, "Indicates if the SEI message applies to the current picture only (0) or also to following pictures (1)") #endif #if Q0189_TMVP_CONSTRAINTS ("SEITemporalMotionVectorPredictionConstraints", m_TMVPConstraintsSEIEnabled, 0, "Control generation of TMVP constrants SEI message") #endif #if M0040_ADAPTIVE_RESOLUTION_CHANGE ("AdaptiveResolutionChange", m_adaptiveResolutionChange, 0, "Adaptive resolution change frame number. Should coincide with EL RAP picture. (0: disable)") #endif #if R0071_IRAP_EOS_CROSS_LAYER_IMPACTS ("LayerSwitchOffBegin%d", cfg_layerSwitchOffBegin, 0, MAX_LAYERS, "Switch layer %d off after given poc") ("LayerSwitchOffEnd%d", cfg_layerSwitchOffEnd, 0, MAX_LAYERS, "Switch layer %d on at given poc") #endif #if HIGHER_LAYER_IRAP_SKIP_FLAG ("SkipPictureAtArcSwitch", m_skipPictureAtArcSwitch, false, "Code the higher layer picture in ARC up-switching as a skip picture. (0: disable)") #endif #if N0383_IL_CONSTRAINED_TILE_SETS_SEI ("SEIInterLayerConstrainedTileSets", m_interLayerConstrainedTileSetsSEIEnabled, false, "Control generation of inter layer constrained tile sets SEI message") ("IlNumSetsInMessage", m_ilNumSetsInMessage, 0u, "Number of inter layer constrained tile sets") ("TileSetsArray", cfg_tileSets, string(""), "Array containing tile sets params (TopLeftTileIndex, BottonRightTileIndex and ilcIdc for each set) ") #endif #if O0153_ALT_OUTPUT_LAYER_FLAG ("AltOutputLayerFlag", m_altOutputLayerFlag, false, "Specifies the value of alt_output_layer_flag in VPS extension") #endif #if O0149_CROSS_LAYER_BLA_FLAG ("CrossLayerBLAFlag", m_crossLayerBLAFlag, false, "Specifies the value of cross_layer_bla_flag in VPS") #endif #if Q0048_CGS_3D_ASYMLUT ("CGS", m_nCGSFlag , 0, "whether CGS is enabled") ("CGSMaxOctantDepth", m_nCGSMaxOctantDepth , 1, "max octant depth") ("CGSMaxYPartNumLog", m_nCGSMaxYPartNumLog2 , 2, "max Y part number ") ("CGSLUTBit", m_nCGSLUTBit , 12, "bit depth of CGS LUT") #if R0151_CGS_3D_ASYMLUT_IMPROVE ("CGSAdaptC", m_nCGSAdaptiveChroma , 1, "adaptive chroma partition (only for the case of two chroma partitions)") #endif #if R0179_ENC_OPT_3DLUT_SIZE ("CGSSizeRDO", m_nCGSLutSizeRDO , 0, "RDOpt selection of best table size (effective when large maximum table size such as 8x8x8 is used)") #endif #endif #if Q0108_TSA_STSA ("InheritCodingStruct%d",m_inheritCodingStruct, 0, MAX_LAYERS, "Predicts the GOP structure of one layer for another layer") #endif ; for(Int i=1; i& argv_unhandled = po::scanArgv(opts, argc, (const Char**) argv); #if Q0108_TSA_STSA for (Int i=1; i 0) { for(Int j=1; j::const_iterator it = argv_unhandled.begin(); it != argv_unhandled.end(); it++) { fprintf(stderr, "Unhandled argument ignored: `%s'\n", *it); } if (argc == 1 || do_help) { /* argc == 1: no options have been specified */ po::doHelp(cout, opts); return false; } /* * Set any derived parameters */ /* convert std::string to c string for compatability */ #if SVC_EXTENSION #if AVC_BASE #if VPS_AVC_BL_FLAG_REMOVAL if( m_nonHEVCBaseLayerFlag ) #else if( m_avcBaseLayerFlag ) #endif { *cfg_InputFile[0] = cfg_BLInputFile; } #endif m_pBitstreamFile = cfg_BitstreamFile.empty() ? NULL : strdup(cfg_BitstreamFile.c_str()); #else //SVC_EXTENSION m_pchInputFile = cfg_InputFile.empty() ? NULL : strdup(cfg_InputFile.c_str()); m_pchBitstreamFile = cfg_BitstreamFile.empty() ? NULL : strdup(cfg_BitstreamFile.c_str()); m_pchReconFile = cfg_ReconFile.empty() ? NULL : strdup(cfg_ReconFile.c_str()); m_pchdQPFile = cfg_dQPFile.empty() ? NULL : strdup(cfg_dQPFile.c_str()); #if Q0074_COLOUR_REMAPPING_SEI m_colourRemapSEIFile = cfg_colourRemapSEIFile.empty() ? NULL : strdup(cfg_colourRemapSEIFile.c_str()); #endif #endif //SVC_EXTENSION if(m_isField) { #if SVC_EXTENSION for(Int layer = 0; layer < MAX_LAYERS; layer++) { //Frame height m_acLayerCfg[layer].m_iSourceHeightOrg = m_acLayerCfg[layer].m_iSourceHeight; //Field height m_acLayerCfg[layer].m_iSourceHeight = m_acLayerCfg[layer].m_iSourceHeight >> 1; } #else //Frame height m_iSourceHeightOrg = m_iSourceHeight; //Field height m_iSourceHeight = m_iSourceHeight >> 1; #endif //number of fields to encode m_framesToBeEncoded *= 2; } if( !m_tileUniformSpacingFlag && m_numTileColumnsMinus1 > 0 ) { if (cfg_ColumnWidth.values.size() > m_numTileColumnsMinus1) { printf( "The number of columns whose width are defined is larger than the allowed number of columns.\n" ); exit( EXIT_FAILURE ); } else if (cfg_ColumnWidth.values.size() < m_numTileColumnsMinus1) { printf( "The width of some columns is not defined.\n" ); exit( EXIT_FAILURE ); } else { m_tileColumnWidth.resize(m_numTileColumnsMinus1); for(UInt i=0; i 0 ) { if (cfg_RowHeight.values.size() > m_numTileRowsMinus1) { printf( "The number of rows whose height are defined is larger than the allowed number of rows.\n" ); exit( EXIT_FAILURE ); } else if (cfg_RowHeight.values.size() < m_numTileRowsMinus1) { printf( "The height of some rows is not defined.\n" ); exit( EXIT_FAILURE ); } else { m_tileRowHeight.resize(m_numTileRowsMinus1); for(UInt i=0; i 0 && (m_acLayerCfg[layer].m_layerSwitchOffBegin % m_iGOPSize) != 0) { printf("LayerSwitchOffBegin%d: Must be multiple of GOP size.\n", layer); exit(EXIT_FAILURE); } if (m_acLayerCfg[layer].m_iIntraPeriod > 0 && (m_acLayerCfg[layer].m_layerSwitchOffEnd % m_acLayerCfg[layer].m_iIntraPeriod) != 0) { printf("LayerSwitchOffEnd%d: Must be IRAP picture.\n", layer); exit(EXIT_FAILURE); } } } #endif #if MULTIPLE_PTL_SUPPORT for( Int layer = 0; layer < MAX_LAYERS; layer++ ) { m_acLayerCfg[layer].m_bitDepthConstraint = tmpBitDepthConstraint; m_acLayerCfg[layer].m_intraConstraintFlag = tmpIntraConstraintFlag; m_acLayerCfg[layer].m_lowerBitRateConstraintFlag = tmpLowerBitRateConstraintFlag; for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++) { m_acLayerCfg[layer].m_saoOffsetBitShift[channelType] = 0; } Int layerPTLIdx = m_acLayerCfg[layer].m_layerPTLIdx; if( extendedProfile[layerPTLIdx] >= 1000 && extendedProfile[layerPTLIdx] <= 2316 ) { m_profileList[layerPTLIdx] = Profile::MAINREXT; if( m_acLayerCfg[layer].m_bitDepthConstraint != 0 || tmpConstraintChromaFormat != 0) { fprintf(stderr, "Error: The bit depth and chroma format constraints are not used when an explicit RExt profile is specified\n"); exit(EXIT_FAILURE); } m_acLayerCfg[layer].m_bitDepthConstraint = (extendedProfile[layerPTLIdx]%100); m_acLayerCfg[layer].m_intraConstraintFlag = (extendedProfile[layerPTLIdx]>=2000); switch ((extendedProfile[layerPTLIdx]/100)%10) { case 0: tmpConstraintChromaFormat=400; break; case 1: tmpConstraintChromaFormat=420; break; case 2: tmpConstraintChromaFormat=422; break; default: tmpConstraintChromaFormat=444; break; } } else { m_profileList[layerPTLIdx] = Profile::Name(extendedProfile[layerPTLIdx]); } if( m_profileList[layerPTLIdx] == Profile::HIGHTHROUGHPUTREXT ) { if( m_acLayerCfg[layer].m_bitDepthConstraint == 0 ) m_acLayerCfg[layer].m_bitDepthConstraint = 16; m_acLayerCfg[layer].m_chromaFormatConstraint = (tmpConstraintChromaFormat == 0) ? CHROMA_444 : numberToChromaFormat(tmpConstraintChromaFormat); } else if( m_profileList[layerPTLIdx] == Profile::MAINREXT ) { if( m_acLayerCfg[layer].m_bitDepthConstraint == 0 && tmpConstraintChromaFormat == 0 ) { // produce a valid combination, if possible. const Bool bUsingGeneralRExtTools = m_useResidualRotation || m_useSingleSignificanceMapContext || m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT] || m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT] || !m_enableIntraReferenceSmoothing || m_useGolombRiceParameterAdaptation || m_transformSkipLog2MaxSize!=2; const Bool bUsingChromaQPAdjustment= m_maxCUChromaQpAdjustmentDepth >= 0; const Bool bUsingExtendedPrecision = m_acLayerCfg[layer].m_useExtendedPrecision; m_acLayerCfg[layer].m_chromaFormatConstraint = NUM_CHROMA_FORMAT; automaticallySelectRExtProfile(bUsingGeneralRExtTools, bUsingChromaQPAdjustment, bUsingExtendedPrecision, m_acLayerCfg[layer].m_intraConstraintFlag, m_acLayerCfg[layer].m_bitDepthConstraint, m_acLayerCfg[layer].m_chromaFormatConstraint, m_acLayerCfg[layer].m_chromaFormatIDC==CHROMA_400 ? m_acLayerCfg[layer].m_internalBitDepth[CHANNEL_TYPE_LUMA] : std::max(m_acLayerCfg[layer].m_internalBitDepth[CHANNEL_TYPE_LUMA], m_acLayerCfg[layer].m_internalBitDepth[CHANNEL_TYPE_CHROMA]), m_acLayerCfg[layer].m_chromaFormatIDC); } else if( m_acLayerCfg[layer].m_bitDepthConstraint == 0 || tmpConstraintChromaFormat == 0) { fprintf(stderr, "Error: The bit depth and chroma format constraints must either both be specified or both be configured automatically\n"); exit(EXIT_FAILURE); } else { m_acLayerCfg[layer].m_chromaFormatConstraint = numberToChromaFormat(tmpConstraintChromaFormat); } } else { m_acLayerCfg[layer].m_chromaFormatConstraint = (tmpConstraintChromaFormat == 0) ? m_acLayerCfg[layer].m_chromaFormatIDC : numberToChromaFormat(tmpConstraintChromaFormat); m_acLayerCfg[layer].m_bitDepthConstraint = (m_profileList[layerPTLIdx] == Profile::MAIN10 || m_profileList[layerPTLIdx] == Profile::SCALABLEMAIN10) ? 10 : 8; } } #else if (extendedProfile >= 1000 && extendedProfile <= 2316) { m_profile = Profile::MAINREXT; if (m_bitDepthConstraint != 0 || tmpConstraintChromaFormat != 0) { fprintf(stderr, "Error: The bit depth and chroma format constraints are not used when an explicit RExt profile is specified\n"); exit(EXIT_FAILURE); } m_bitDepthConstraint = (extendedProfile%100); m_intraConstraintFlag = (extendedProfile>=2000); switch ((extendedProfile/100)%10) { case 0: tmpConstraintChromaFormat=400; break; case 1: tmpConstraintChromaFormat=420; break; case 2: tmpConstraintChromaFormat=422; break; default: tmpConstraintChromaFormat=444; break; } } else { m_profile = Profile::Name(extendedProfile); } #if SVC_EXTENSION ChromaFormat m_chromaFormatIDC = m_acLayerCfg[0].m_chromaFormatIDC; #endif if (m_profile == Profile::HIGHTHROUGHPUTREXT ) { if (m_bitDepthConstraint == 0) m_bitDepthConstraint = 16; m_chromaFormatConstraint = (tmpConstraintChromaFormat == 0) ? CHROMA_444 : numberToChromaFormat(tmpConstraintChromaFormat); } else if (m_profile == Profile::MAINREXT) { if (m_bitDepthConstraint == 0 && tmpConstraintChromaFormat == 0) { #if SVC_EXTENSION Bool m_useExtendedPrecision = m_acLayerCfg[0].m_useExtendedPrecision; Int m_internalBitDepth[] = {m_acLayerCfg[0].m_internalBitDepth[CHANNEL_TYPE_LUMA], m_acLayerCfg[0].m_internalBitDepth[CHANNEL_TYPE_CHROMA]}; ChromaFormat m_chromaFormatIDC = m_acLayerCfg[0].m_chromaFormatIDC; #endif // produce a valid combination, if possible. const Bool bUsingGeneralRExtTools = m_useResidualRotation || m_useSingleSignificanceMapContext || m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT] || m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT] || !m_enableIntraReferenceSmoothing || m_useGolombRiceParameterAdaptation || m_transformSkipLog2MaxSize!=2; const Bool bUsingChromaQPAdjustment= m_maxCUChromaQpAdjustmentDepth >= 0; const Bool bUsingExtendedPrecision = m_useExtendedPrecision; m_chromaFormatConstraint = NUM_CHROMA_FORMAT; automaticallySelectRExtProfile(bUsingGeneralRExtTools, bUsingChromaQPAdjustment, bUsingExtendedPrecision, m_intraConstraintFlag, m_bitDepthConstraint, m_chromaFormatConstraint, m_chromaFormatIDC==CHROMA_400 ? m_internalBitDepth[CHANNEL_TYPE_LUMA] : std::max(m_internalBitDepth[CHANNEL_TYPE_LUMA], m_internalBitDepth[CHANNEL_TYPE_CHROMA]), m_chromaFormatIDC); } else if (m_bitDepthConstraint == 0 || tmpConstraintChromaFormat == 0) { fprintf(stderr, "Error: The bit depth and chroma format constraints must either both be specified or both be configured automatically\n"); exit(EXIT_FAILURE); } else { m_chromaFormatConstraint = numberToChromaFormat(tmpConstraintChromaFormat); } } else { m_chromaFormatConstraint = (tmpConstraintChromaFormat == 0) ? m_chromaFormatIDC : numberToChromaFormat(tmpConstraintChromaFormat); m_bitDepthConstraint = (m_profile == Profile::MAIN10?10:8); } #endif m_inputColourSpaceConvert = stringToInputColourSpaceConvert(inputColourSpaceConvert, true); #if SVC_EXTENSION for(Int layer = 0; layer < MAX_LAYERS; layer++) { #if !MULTIPLE_PTL_SUPPORT m_acLayerCfg[layer].m_chromaFormatConstraint = m_chromaFormatConstraint; m_acLayerCfg[layer].m_bitDepthConstraint = m_bitDepthConstraint; #endif // If number of scaled ref. layer offsets is non-zero, at least one of the offsets should be specified if(m_acLayerCfg[layer].m_numRefLayerLocationOffsets) { #if O0098_SCALED_REF_LAYER_ID assert( strcmp(cfg_refLocationOffsetLayerId[layer].c_str(), "")); #endif #if REF_REGION_OFFSET Bool srloFlag = strcmp(cfg_scaledRefLayerLeftOffset [layer].c_str(), "") || strcmp(cfg_scaledRefLayerRightOffset [layer].c_str(), "") || strcmp(cfg_scaledRefLayerTopOffset [layer].c_str(), "") || strcmp(cfg_scaledRefLayerBottomOffset [layer].c_str(), ""); Bool rroFlag = strcmp(cfg_refRegionLeftOffset [layer].c_str(), "") || strcmp(cfg_refRegionRightOffset [layer].c_str(), "") || strcmp(cfg_refRegionTopOffset [layer].c_str(), "") || strcmp(cfg_refRegionBottomOffset [layer].c_str(), ""); #if R0209_GENERIC_PHASE Bool phaseSetFlag = strcmp(cfg_phaseHorLuma [layer].c_str(), "") || strcmp(cfg_phaseVerLuma [layer].c_str(), "") || strcmp(cfg_phaseHorChroma [layer].c_str(), "") || strcmp(cfg_phaseVerChroma [layer].c_str(), ""); assert( srloFlag || rroFlag || phaseSetFlag); #else assert( srloFlag || rroFlag ); #endif #else #if P0312_VERT_PHASE_ADJ assert( strcmp(cfg_scaledRefLayerLeftOffset[layer].c_str(), "") || strcmp(cfg_scaledRefLayerRightOffset[layer].c_str(), "") || strcmp(cfg_scaledRefLayerTopOffset[layer].c_str(), "") || strcmp(cfg_scaledRefLayerBottomOffset[layer].c_str(),"") || strcmp(cfg_vertPhasePositionEnableFlag[layer].c_str(),"") ); #else assert( strcmp(cfg_scaledRefLayerLeftOffset[layer].c_str(), "") || strcmp(cfg_scaledRefLayerRightOffset[layer].c_str(), "") || strcmp(cfg_scaledRefLayerTopOffset[layer].c_str(), "") || strcmp(cfg_scaledRefLayerBottomOffset[layer].c_str(),"") ); #endif #endif } Int *tempArray = NULL; // Contain the value #if O0098_SCALED_REF_LAYER_ID // ID // if(strcmp(cfg_refLocationOffsetLayerId[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_refLocationOffsetLayerId[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "RefLocationOffsetLayerId"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_refLocationOffsetLayerId[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } #endif #if REF_REGION_OFFSET // Presense Flag // if(strcmp(cfg_scaledRefLayerOffsetPresentFlag[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_scaledRefLayerOffsetPresentFlag[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "ScaledRefLayerOffsetPresentFlag"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_scaledRefLayerOffsetPresentFlag[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } #endif // Left offset // if(strcmp(cfg_scaledRefLayerLeftOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_scaledRefLayerLeftOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "LeftOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_scaledRefLayerLeftOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Top offset // if(strcmp(cfg_scaledRefLayerTopOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_scaledRefLayerTopOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "TopOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_scaledRefLayerTopOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Right offset // if(strcmp(cfg_scaledRefLayerRightOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_scaledRefLayerRightOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "RightOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_scaledRefLayerRightOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Bottom offset // if(strcmp(cfg_scaledRefLayerBottomOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_scaledRefLayerBottomOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "BottomOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_scaledRefLayerBottomOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } #if P0312_VERT_PHASE_ADJ // VertPhasePositionEnableFlag // if(strcmp(cfg_vertPhasePositionEnableFlag[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_vertPhasePositionEnableFlag[layer], m_acLayerCfg[layer].m_numScaledRefLayerOffsets, "VertPhasePositionEnableFlag"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numScaledRefLayerOffsets; i++) { m_acLayerCfg[layer].m_vertPhasePositionEnableFlag[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } #endif #if REF_REGION_OFFSET // Presense Flag // if(strcmp(cfg_refRegionOffsetPresentFlag[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_refRegionOffsetPresentFlag[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "RefRegionOffsetPresentFlag"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_refRegionOffsetPresentFlag[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Left offset // if(strcmp(cfg_refRegionLeftOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_refRegionLeftOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "RefRegionLeftOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_refRegionLeftOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Top offset // if(strcmp(cfg_refRegionTopOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_refRegionTopOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "RefRegionTopOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_refRegionTopOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Right offset // if(strcmp(cfg_refRegionRightOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_refRegionRightOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "RefRegionRightOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_refRegionRightOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Bottom offset // if(strcmp(cfg_refRegionBottomOffset[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_refRegionBottomOffset[layer], m_acLayerCfg[layer].m_numRefLayerLocationOffsets, "RefRegionBottomOffset"); if(tempArray) { for(Int i = 0; i < m_acLayerCfg[layer].m_numRefLayerLocationOffsets; i++) { m_acLayerCfg[layer].m_refRegionBottomOffset[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } #endif #if R0209_GENERIC_PHASE Int numPhaseSet = m_acLayerCfg[layer].m_numRefLayerLocationOffsets; // Presense Flag // if(strcmp(cfg_resamplePhaseSetPresentFlag[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_resamplePhaseSetPresentFlag[layer], numPhaseSet, "resamplePhaseSetPresentFlag"); if(tempArray) { for(Int i = 0; i < numPhaseSet; i++) { m_acLayerCfg[layer].m_resamplePhaseSetPresentFlag[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Luma horizontal phase // if(strcmp(cfg_phaseHorLuma[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_phaseHorLuma[layer], numPhaseSet, "phaseHorLuma"); if(tempArray) { for(Int i = 0; i < numPhaseSet; i++) { m_acLayerCfg[layer].m_phaseHorLuma[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Luma vertical phase // if(strcmp(cfg_phaseVerLuma[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_phaseVerLuma[layer], numPhaseSet, "phaseVerLuma"); if(tempArray) { for(Int i = 0; i < numPhaseSet; i++) { m_acLayerCfg[layer].m_phaseVerLuma[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Chroma horizontal phase // if(strcmp(cfg_phaseHorChroma[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_phaseHorChroma[layer], numPhaseSet, "phaseHorChroma"); if(tempArray) { for(Int i = 0; i < numPhaseSet; i++) { m_acLayerCfg[layer].m_phaseHorChroma[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } // Chroma vertical phase // if(strcmp(cfg_phaseVerChroma[layer].c_str(), "")) { cfgStringToArray( &tempArray, cfg_phaseVerChroma[layer], numPhaseSet, "phaseVerChroma"); if(tempArray) { for(Int i = 0; i < numPhaseSet; i++) { m_acLayerCfg[layer].m_phaseVerChroma[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; } } #endif } #if VPS_EXTN_DIRECT_REF_LAYERS for(Int layer = 0; layer < MAX_LAYERS; layer++) { Char* pSamplePredRefLayerIds = cfg_samplePredRefLayerIds[layer].empty() ? NULL: strdup(cfg_samplePredRefLayerIds[layer].c_str()); if( m_acLayerCfg[layer].m_numSamplePredRefLayers > 0 ) { char *samplePredRefLayerId; int i=0; m_acLayerCfg[layer].m_samplePredRefLayerIds = new Int[m_acLayerCfg[layer].m_numSamplePredRefLayers]; samplePredRefLayerId = strtok(pSamplePredRefLayerIds, " ,-"); while(samplePredRefLayerId != NULL) { if( i >= m_acLayerCfg[layer].m_numSamplePredRefLayers ) { printf( "NumSamplePredRefLayers%d: The number of columns whose width are defined is larger than the allowed number of columns.\n", layer ); exit( EXIT_FAILURE ); } *( m_acLayerCfg[layer].m_samplePredRefLayerIds + i ) = atoi( samplePredRefLayerId ); samplePredRefLayerId = strtok(NULL, " ,-"); i++; } if( i < m_acLayerCfg[layer].m_numSamplePredRefLayers ) { printf( "NumSamplePredRefLayers%d: The width of some columns is not defined.\n", layer ); exit( EXIT_FAILURE ); } } else { m_acLayerCfg[layer].m_samplePredRefLayerIds = NULL; } if( pSamplePredRefLayerIds ) { free( pSamplePredRefLayerIds ); pSamplePredRefLayerIds = NULL; } } for(Int layer = 0; layer < MAX_LAYERS; layer++) { Char* pMotionPredRefLayerIds = cfg_motionPredRefLayerIds[layer].empty() ? NULL: strdup(cfg_motionPredRefLayerIds[layer].c_str()); if( m_acLayerCfg[layer].m_numMotionPredRefLayers > 0 ) { char *motionPredRefLayerId; int i=0; m_acLayerCfg[layer].m_motionPredRefLayerIds = new Int[m_acLayerCfg[layer].m_numMotionPredRefLayers]; motionPredRefLayerId = strtok(pMotionPredRefLayerIds, " ,-"); while(motionPredRefLayerId != NULL) { if( i >= m_acLayerCfg[layer].m_numMotionPredRefLayers ) { printf( "NumMotionPredRefLayers%d: The number of columns whose width are defined is larger than the allowed number of columns.\n", layer ); exit( EXIT_FAILURE ); } *( m_acLayerCfg[layer].m_motionPredRefLayerIds + i ) = atoi( motionPredRefLayerId ); motionPredRefLayerId = strtok(NULL, " ,-"); i++; } if( i < m_acLayerCfg[layer].m_numMotionPredRefLayers ) { printf( "NumMotionPredRefLayers%d: The width of some columns is not defined.\n", layer ); exit( EXIT_FAILURE ); } } else { m_acLayerCfg[layer].m_motionPredRefLayerIds = NULL; } if( pMotionPredRefLayerIds ) { free( pMotionPredRefLayerIds ); pMotionPredRefLayerIds = NULL; } } for(Int layer = 0; layer < MAX_LAYERS; layer++) { Char* pPredLayerIds = cfg_predLayerIds[layer].empty() ? NULL: strdup(cfg_predLayerIds[layer].c_str()); if( m_acLayerCfg[layer].m_numActiveRefLayers > 0 ) { char *refLayerId; int i=0; m_acLayerCfg[layer].m_predLayerIds = new Int[m_acLayerCfg[layer].m_numActiveRefLayers]; refLayerId = strtok(pPredLayerIds, " ,-"); while(refLayerId != NULL) { if( i >= m_acLayerCfg[layer].m_numActiveRefLayers ) { printf( "NumActiveRefLayers%d: The number of columns whose width are defined is larger than the allowed number of columns.\n", layer ); exit( EXIT_FAILURE ); } *( m_acLayerCfg[layer].m_predLayerIds + i ) = atoi( refLayerId ); refLayerId = strtok(NULL, " ,-"); i++; } if( i < m_acLayerCfg[layer].m_numActiveRefLayers ) { printf( "NumActiveRefLayers%d: The width of some columns is not defined.\n", layer ); exit( EXIT_FAILURE ); } } else { m_acLayerCfg[layer].m_predLayerIds = NULL; } if( pPredLayerIds ) { free( pPredLayerIds ); pPredLayerIds = NULL; } } #endif #if Q0078_ADD_LAYER_SETS #if OUTPUT_LAYER_SETS_CONFIG for (Int layerSet = 1; layerSet < m_numLayerSets; layerSet++) { // Simplifying the code in the #else section, and allowing 0-th layer set t assert( scanStringToArray( cfg_layerSetLayerIdList[layerSet], m_numLayerInIdList[layerSet], "NumLayerInIdList", m_layerSetLayerIdList[layerSet] ) ); #else for (Int layerSet = 0; layerSet < m_numLayerSets; layerSet++) { if (m_numLayerInIdList[layerSet] > 0) { Char* layerSetLayerIdListDup = cfg_layerSetLayerIdList[layerSet].empty() ? NULL : strdup(cfg_layerSetLayerIdList[layerSet].c_str()); Int i = 0; char *layerId = strtok(layerSetLayerIdListDup, " ,-"); while (layerId != NULL) { if (i >= m_numLayerInIdList[layerSet]) { printf("NumLayerInIdList%d: The number of layers in the set is larger than the allowed number of layers.\n", layerSet); exit(EXIT_FAILURE); } m_layerSetLayerIdList[layerSet][i] = atoi(layerId); layerId = strtok(NULL, " ,-"); i++; } if( layerSetLayerIdListDup ) { free( layerSetLayerIdListDup ); layerSetLayerIdListDup = NULL; } } #endif } for (Int addLayerSet = 0; addLayerSet < m_numAddLayerSets; addLayerSet++) { #if OUTPUT_LAYER_SETS_CONFIG // Simplifying the code in the #else section #if FIX_LAYER_ID_INIT assert( scanStringToArray( cfg_highestLayerIdx[addLayerSet], m_numHighestLayerIdx[addLayerSet], "HighestLayerIdx", m_highestLayerIdx[addLayerSet] ) ); #else assert( scanStringToArray( cfg_layerSetLayerIdList[addLayerSet], m_numLayerInIdList[addLayerSet], "NumLayerInIdList", m_highestLayerIdx[addLayerSet] ) ); #endif #else if (m_numHighestLayerIdx[addLayerSet] > 0) { Char* highestLayrIdxListDup = cfg_highestLayerIdx[addLayerSet].empty() ? NULL : strdup(cfg_highestLayerIdx[addLayerSet].c_str()); Int i = 0; char *layerIdx = strtok(highestLayrIdxListDup, " ,-"); while (layerIdx != NULL) { if (i >= m_numLayerInIdList[addLayerSet]) { printf("NumLayerInIdList%d: The number of layer idx's in the highest layer idx list is larger than the allowed number of idx's.\n", addLayerSet); exit(EXIT_FAILURE); } m_highestLayerIdx[addLayerSet][i] = atoi(layerIdx); layerIdx = strtok(NULL, " ,-"); i++; } if( highestLayrIdxListDup ) { free( highestLayrIdxListDup ); highestLayrIdxListDup = NULL; } } #endif } #endif #if OUTPUT_LAYER_SETS_CONFIG if( m_defaultTargetOutputLayerIdc != -1 ) { assert( m_defaultTargetOutputLayerIdc >= 0 && m_defaultTargetOutputLayerIdc <= 3 ); } assert( m_numOutputLayerSets != 0 ); assert( m_numOutputLayerSets >= m_numLayerSets + m_numAddLayerSets ); // Number of output layer sets must be at least as many as layer sets. // If output layer Set Idx is specified, only specify it for the non-default output layer sets Int numNonDefaultOls = m_numOutputLayerSets - (m_numLayerSets + m_numAddLayerSets); if( numNonDefaultOls ) { assert( scanStringToArray( *cfg_outputLayerSetIdx, numNonDefaultOls, "OutputLayerSetIdx", m_outputLayerSetIdx ) ); for(Int i = 0; i < numNonDefaultOls; i++) { assert( m_outputLayerSetIdx[i] >= 0 && m_outputLayerSetIdx[i] < (m_numLayerSets + m_numAddLayerSets) ); } } // Number of output layers in output layer sets scanStringToArray( *cfg_numOutputLayersInOutputLayerSet, m_numOutputLayerSets - 1, "NumOutputLayersInOutputLayerSets", m_numOutputLayersInOutputLayerSet ); m_numOutputLayersInOutputLayerSet.insert(m_numOutputLayersInOutputLayerSet.begin(), 1); // Layers in the output layer set m_listOfOutputLayers.resize(m_numOutputLayerSets); #if MULTIPLE_PTL_SUPPORT m_listOfLayerPTLofOlss.resize(m_numOutputLayerSets); #endif Int startOlsCtr = 1; if( m_defaultTargetOutputLayerIdc == 0 || m_defaultTargetOutputLayerIdc == 1 ) { // Default output layer sets defined startOlsCtr = m_numLayerSets; } for( Int olsCtr = 1; olsCtr < m_numOutputLayerSets; olsCtr++ ) { if( olsCtr < startOlsCtr ) { if(scanStringToArray( cfg_listOfOutputLayers[olsCtr], m_numOutputLayersInOutputLayerSet[olsCtr], "ListOfOutputLayers", m_listOfOutputLayers[olsCtr] ) ) { std::cout << "Default OLS defined. Ignoring ListOfOutputLayers" << olsCtr << endl; } } else { assert( scanStringToArray( cfg_listOfOutputLayers[olsCtr], m_numOutputLayersInOutputLayerSet[olsCtr], "ListOfOutputLayers", m_listOfOutputLayers[olsCtr] ) ); } #if MULTIPLE_PTL_SUPPORT Int olsToLsIndex = (olsCtr >= (m_numLayerSets + m_numAddLayerSets)) ? m_outputLayerSetIdx[olsCtr - (m_numLayerSets + m_numAddLayerSets)] : olsCtr; #if R0235_SMALLEST_LAYER_ID // This is a fix to allow setting of PTL for additional layer sets if (olsCtr >= m_numLayerSets && olsCtr < (m_numLayerSets + m_numAddLayerSets)) { scanStringToArrayNumEntries(cfg_listOfLayerPTLOfOlss[olsCtr], m_numLayerInIdList[olsToLsIndex], "List of PTL for each layers in OLS", m_listOfLayerPTLofOlss[olsCtr]); } else { scanStringToArray(cfg_listOfLayerPTLOfOlss[olsCtr], m_numLayerInIdList[olsToLsIndex], "List of PTL for each layers in OLS", m_listOfLayerPTLofOlss[olsCtr]); } #else scanStringToArray( cfg_listOfLayerPTLOfOlss[olsCtr], m_numLayerInIdList[olsToLsIndex], "List of PTL for each layers in OLS", m_listOfLayerPTLofOlss[olsCtr] ); #endif //For conformance checking //Conformance of a layer in an output operation point associated with an OLS in a bitstream to the Scalable Main profile is indicated as follows: //If OpTid of the output operation point is equal to vps_max_sub_layer_minus1, the conformance is indicated by general_profile_idc being equal to 7 or general_profile_compatibility_flag[ 7 ] being equal to 1 //Conformance of a layer in an output operation point associated with an OLS in a bitstream to the Scalable Main 10 profile is indicated as follows: //If OpTid of the output operation point is equal to vps_max_sub_layer_minus1, the conformance is indicated by general_profile_idc being equal to 7 or general_profile_compatibility_flag[ 7 ] being equal to 1 //The following assert may be updated / upgraded to take care of general_profile_compatibility_flag. #if R0235_SMALLEST_LAYER_ID if (m_numAddLayerSets == 0) { #endif for ( Int ii = 1; ii < m_numLayerInIdList[olsToLsIndex]; ii++) { if (m_layerSetLayerIdList[olsToLsIndex][ii - 1] != 0 && m_layerSetLayerIdList[olsToLsIndex][ii] != 0) //Profile / profile compatibility of enhancement layers must indicate the same profile. { assert( (m_profileList[m_listOfLayerPTLofOlss[olsCtr][ii]] == m_profileList[m_listOfLayerPTLofOlss[olsCtr][ii - 1]]) || (m_profileList[m_listOfLayerPTLofOlss[olsCtr][ii]] == m_profileCompatibility[m_listOfLayerPTLofOlss[olsCtr][ii - 1]]) || (m_profileCompatibility[m_listOfLayerPTLofOlss[olsCtr][ii]] == m_profileList[m_listOfLayerPTLofOlss[olsCtr][ii - 1]]) ); } } #if R0235_SMALLEST_LAYER_ID } #endif #endif } #if MULTIPLE_PTL_SUPPORT m_listOfLayerPTLofOlss[0].push_back(*cfg_layerPTLIdx[0]); delete [] cfg_listOfLayerPTLOfOlss; #endif delete cfg_numOutputLayersInOutputLayerSet; delete [] cfg_listOfOutputLayers; delete cfg_outputLayerSetIdx; #endif #else //SVC_EXTENSION switch (m_conformanceWindowMode) { case 0: { // no conformance or padding m_confWinLeft = m_confWinRight = m_confWinTop = m_confWinBottom = 0; m_aiPad[1] = m_aiPad[0] = 0; break; } case 1: { // automatic padding to minimum CU size Int minCuSize = m_uiMaxCUHeight >> (m_uiMaxCUDepth - 1); if (m_iSourceWidth % minCuSize) { m_aiPad[0] = m_confWinRight = ((m_iSourceWidth / minCuSize) + 1) * minCuSize - m_iSourceWidth; m_iSourceWidth += m_confWinRight; } if (m_iSourceHeight % minCuSize) { m_aiPad[1] = m_confWinBottom = ((m_iSourceHeight / minCuSize) + 1) * minCuSize - m_iSourceHeight; m_iSourceHeight += m_confWinBottom; if ( m_isField ) { m_iSourceHeightOrg += m_confWinBottom << 1; m_aiPad[1] = m_confWinBottom << 1; } } if (m_aiPad[0] % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0) { fprintf(stderr, "Error: picture width is not an integer multiple of the specified chroma subsampling\n"); exit(EXIT_FAILURE); } if (m_aiPad[1] % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0) { fprintf(stderr, "Error: picture height is not an integer multiple of the specified chroma subsampling\n"); exit(EXIT_FAILURE); } break; } case 2: { //padding m_iSourceWidth += m_aiPad[0]; m_iSourceHeight += m_aiPad[1]; m_confWinRight = m_aiPad[0]; m_confWinBottom = m_aiPad[1]; break; } case 3: { // conformance if ((m_confWinLeft == 0) && (m_confWinRight == 0) && (m_confWinTop == 0) && (m_confWinBottom == 0)) { fprintf(stderr, "Warning: Conformance window enabled, but all conformance window parameters set to zero\n"); } if ((m_aiPad[1] != 0) || (m_aiPad[0]!=0)) { fprintf(stderr, "Warning: Conformance window enabled, padding parameters will be ignored\n"); } m_aiPad[1] = m_aiPad[0] = 0; break; } } // allocate slice-based dQP values m_aidQP = new Int[ m_framesToBeEncoded + m_iGOPSize + 1 ]; ::memset( m_aidQP, 0, sizeof(Int)*( m_framesToBeEncoded + m_iGOPSize + 1 ) ); // handling of floating-point QP values // if QP is not integer, sequence is split into two sections having QP and QP+1 m_iQP = (Int)( m_fQP ); if ( m_iQP < m_fQP ) { Int iSwitchPOC = (Int)( m_framesToBeEncoded - (m_fQP - m_iQP)*m_framesToBeEncoded + 0.5 ); iSwitchPOC = (Int)( (Double)iSwitchPOC / m_iGOPSize + 0.5 )*m_iGOPSize; for ( Int i=iSwitchPOC; i10) { m_saoOffsetBitShift[ch]=UInt(Clip3(0, m_internalBitDepth[ch]-10, Int(m_internalBitDepth[ch]-10 + 0.165*m_iQP - 3.22 + 0.5) ) ); } else { m_saoOffsetBitShift[ch]=0; } } else { m_saoOffsetBitShift[ch]=UInt(saoOffsetBitShift[ch]); } } // reading external dQP description from file if ( m_pchdQPFile ) { FILE* fpt=fopen( m_pchdQPFile, "r" ); if ( fpt ) { Int iValue; Int iPOC = 0; while ( iPOC < m_framesToBeEncoded ) { if ( fscanf(fpt, "%d", &iValue ) == EOF ) break; m_aidQP[ iPOC ] = iValue; iPOC++; } fclose(fpt); } } m_iWaveFrontSubstreams = m_iWaveFrontSynchro ? (m_iSourceHeight + m_uiMaxCUHeight - 1) / m_uiMaxCUHeight : 1; #endif if( m_masteringDisplay.colourVolumeSEIEnabled ) { for(UInt idx=0; idx<6; idx++) { m_masteringDisplay.primaries[idx/2][idx%2] = UShort((cfg_DisplayPrimariesCode.values.size() > idx) ? cfg_DisplayPrimariesCode.values[idx] : 0); } for(UInt idx=0; idx<2; idx++) { m_masteringDisplay.whitePoint[idx] = UShort((cfg_DisplayWhitePointCode.values.size() > idx) ? cfg_DisplayWhitePointCode.values[idx] : 0); } } if( m_toneMappingInfoSEIEnabled && !m_toneMapCancelFlag ) { if( m_toneMapModelId == 2 && !cfg_startOfCodedInterval.values.empty() ) { const UInt num = 1u<< m_toneMapTargetBitDepth; m_startOfCodedInterval = new Int[num]; for(UInt i=0; i i ? cfg_startOfCodedInterval.values[i] : 0; } } else { m_startOfCodedInterval = NULL; } if( ( m_toneMapModelId == 3 ) && ( m_numPivots > 0 ) ) { if( !cfg_codedPivotValue.values.empty() && !cfg_targetPivotValue.values.empty() ) { m_codedPivotValue = new Int[m_numPivots]; m_targetPivotValue = new Int[m_numPivots]; for(UInt i=0; i i ? cfg_codedPivotValue.values [i] : 0; m_targetPivotValue[i] = cfg_targetPivotValue.values.size() > i ? cfg_targetPivotValue.values[i] : 0; } } } else { m_codedPivotValue = NULL; m_targetPivotValue = NULL; } } if( m_kneeSEIEnabled && !m_kneeSEICancelFlag ) { assert ( m_kneeSEINumKneePointsMinus1 >= 0 && m_kneeSEINumKneePointsMinus1 < 999 ); m_kneeSEIInputKneePoint = new Int[m_kneeSEINumKneePointsMinus1+1]; m_kneeSEIOutputKneePoint = new Int[m_kneeSEINumKneePointsMinus1+1]; for(Int i=0; i<(m_kneeSEINumKneePointsMinus1+1); i++) { m_kneeSEIInputKneePoint[i] = cfg_kneeSEIInputKneePointValue.values.size() > i ? cfg_kneeSEIInputKneePointValue.values[i] : 1; m_kneeSEIOutputKneePoint[i] = cfg_kneeSEIOutputKneePointValue.values.size() > i ? cfg_kneeSEIOutputKneePointValue.values[i] : 0; } } if(m_timeCodeSEIEnabled) { for(Int i = 0; i < m_timeCodeSEINumTs && i < MAX_TIMECODE_SEI_SETS; i++) { m_timeSetArray[i].clockTimeStampFlag = cfg_timeCodeSeiTimeStampFlag .values.size()>i ? cfg_timeCodeSeiTimeStampFlag .values [i] : false; m_timeSetArray[i].numUnitFieldBasedFlag = cfg_timeCodeSeiNumUnitFieldBasedFlag.values.size()>i ? cfg_timeCodeSeiNumUnitFieldBasedFlag.values [i] : 0; m_timeSetArray[i].countingType = cfg_timeCodeSeiCountingType .values.size()>i ? cfg_timeCodeSeiCountingType .values [i] : 0; m_timeSetArray[i].fullTimeStampFlag = cfg_timeCodeSeiFullTimeStampFlag .values.size()>i ? cfg_timeCodeSeiFullTimeStampFlag .values [i] : 0; m_timeSetArray[i].discontinuityFlag = cfg_timeCodeSeiDiscontinuityFlag .values.size()>i ? cfg_timeCodeSeiDiscontinuityFlag .values [i] : 0; m_timeSetArray[i].cntDroppedFlag = cfg_timeCodeSeiCntDroppedFlag .values.size()>i ? cfg_timeCodeSeiCntDroppedFlag .values [i] : 0; m_timeSetArray[i].numberOfFrames = cfg_timeCodeSeiNumberOfFrames .values.size()>i ? cfg_timeCodeSeiNumberOfFrames .values [i] : 0; m_timeSetArray[i].secondsValue = cfg_timeCodeSeiSecondsValue .values.size()>i ? cfg_timeCodeSeiSecondsValue .values [i] : 0; m_timeSetArray[i].minutesValue = cfg_timeCodeSeiMinutesValue .values.size()>i ? cfg_timeCodeSeiMinutesValue .values [i] : 0; m_timeSetArray[i].hoursValue = cfg_timeCodeSeiHoursValue .values.size()>i ? cfg_timeCodeSeiHoursValue .values [i] : 0; m_timeSetArray[i].secondsFlag = cfg_timeCodeSeiSecondsFlag .values.size()>i ? cfg_timeCodeSeiSecondsFlag .values [i] : 0; m_timeSetArray[i].minutesFlag = cfg_timeCodeSeiMinutesFlag .values.size()>i ? cfg_timeCodeSeiMinutesFlag .values [i] : 0; m_timeSetArray[i].hoursFlag = cfg_timeCodeSeiHoursFlag .values.size()>i ? cfg_timeCodeSeiHoursFlag .values [i] : 0; m_timeSetArray[i].timeOffsetLength = cfg_timeCodeSeiTimeOffsetLength .values.size()>i ? cfg_timeCodeSeiTimeOffsetLength .values [i] : 0; m_timeSetArray[i].timeOffsetValue = cfg_timeCodeSeiTimeOffsetValue .values.size()>i ? cfg_timeCodeSeiTimeOffsetValue .values [i] : 0; } } #if Q0096_OVERLAY_SEI if( m_overlaySEIEnabled && !m_overlayInfoCancelFlag ) { m_overlayIdx.resize ( m_numOverlaysMinus1+1 ); m_overlayLanguagePresentFlag.resize ( m_numOverlaysMinus1+1 ); m_overlayContentLayerId.resize ( m_numOverlaysMinus1+1 ); m_overlayLabelPresentFlag.resize ( m_numOverlaysMinus1+1 ); m_overlayLabelLayerId.resize ( m_numOverlaysMinus1+1 ); m_overlayAlphaPresentFlag.resize ( m_numOverlaysMinus1+1 ); m_overlayAlphaLayerId.resize ( m_numOverlaysMinus1+1 ); m_numOverlayElementsMinus1.resize ( m_numOverlaysMinus1+1 ); m_overlayElementLabelMin.resize ( m_numOverlaysMinus1+1 ); m_overlayElementLabelMax.resize ( m_numOverlaysMinus1+1 ); m_overlayLanguage.resize ( m_numOverlaysMinus1+1 ); m_overlayName.resize ( m_numOverlaysMinus1+1 ); m_overlayElementName.resize ( m_numOverlaysMinus1+1 ); for (Int i=0 ; i<=m_numOverlaysMinus1 ; i++) { m_overlayIdx[i] = cfg_overlaySEIIdx[i]; m_overlayLanguagePresentFlag[i] = cfg_overlaySEILanguagePresentFlag[i]; m_overlayContentLayerId[i] = cfg_overlaySEIContentLayerId[i]; m_overlayLabelPresentFlag[i] = cfg_overlaySEILabelPresentFlag[i]; m_overlayLabelLayerId[i] = cfg_overlaySEILabelLayerId[i]; m_overlayAlphaPresentFlag[i] = cfg_overlaySEIAlphaPresentFlag[i]; m_overlayAlphaLayerId[i] = cfg_overlaySEIAlphaLayerId[i]; m_numOverlayElementsMinus1[i] = cfg_overlaySEINumElementsMinus1[i]; m_overlayLanguage[i] = cfg_overlaySEILanguage[i]; m_overlayName[i] = cfg_overlaySEIName[i]; //parse min and max values of label elements istringstream ranges(cfg_overlaySEIElementLabelRanges[i]); string range; UInt val; vector vRanges; while ( getline(ranges, range, ' ') ) { istringstream(range) >> val; vRanges.push_back(val); } assert( vRanges.size()%2==0 ); assert( vRanges.size()==2*(m_numOverlayElementsMinus1[i]+1) ); m_overlayElementLabelMin[i].resize( m_numOverlayElementsMinus1[i]+1 ); m_overlayElementLabelMax[i].resize( m_numOverlayElementsMinus1[i]+1 ); for (Int j=0 ; j<=m_numOverlayElementsMinus1[i] ; j++) { m_overlayElementLabelMin[i][j] = vRanges[2*j]; m_overlayElementLabelMax[i][j] = vRanges[2*j+1]; } //parse overlay element names istringstream elementNames(cfg_overlaySEIElementNames[i]); string elementName; vector vElementName; while ( getline(elementNames, elementName, '|') ) { vElementName.push_back(elementName); } if ( m_overlayLabelPresentFlag[i] ) { m_overlayElementName[i].resize( m_numOverlayElementsMinus1[i]+1 ); for (Int j=0 ; j<=m_numOverlayElementsMinus1[i] ; j++) { if (j < vElementName.size()) { m_overlayElementName[i][j] = vElementName[j]; } else { m_overlayElementName[i][j] = string("NoElementName"); } } } } } #endif #if Q0074_COLOUR_REMAPPING_SEI #if !SVC_EXTENSION // reading external Colour Remapping Information SEI message parameters from file if( m_colourRemapSEIFile ) { FILE* fic; Int retval; if((fic = fopen(m_colourRemapSEIFile.c_str(),"r")) == (FILE*)NULL) { fprintf(stderr, "Can't open Colour Remapping Information SEI parameters file %s\n", m_colourRemapSEIFile); exit(EXIT_FAILURE); } retval = fscanf( fic, "%d", &m_colourRemapSEIId ); retval = fscanf( fic, "%d", &m_colourRemapSEICancelFlag ); if( !m_colourRemapSEICancelFlag ) { retval = fscanf( fic, "%d", &m_colourRemapSEIPersistenceFlag ); retval = fscanf( fic, "%d", &m_colourRemapSEIVideoSignalInfoPresentFlag); if( m_colourRemapSEIVideoSignalInfoPresentFlag ) { retval = fscanf( fic, "%d", &m_colourRemapSEIFullRangeFlag ); retval = fscanf( fic, "%d", &m_colourRemapSEIPrimaries ); retval = fscanf( fic, "%d", &m_colourRemapSEITransferFunction ); retval = fscanf( fic, "%d", &m_colourRemapSEIMatrixCoefficients ); } retval = fscanf( fic, "%d", &m_colourRemapSEIInputBitDepth ); retval = fscanf( fic, "%d", &m_colourRemapSEIBitDepth ); for( Int c=0 ; c<3 ; c++ ) { retval = fscanf( fic, "%d", &m_colourRemapSEIPreLutNumValMinus1[c] ); if( m_colourRemapSEIPreLutNumValMinus1[c]>0 ) { m_colourRemapSEIPreLutCodedValue[c] = new Int[m_colourRemapSEIPreLutNumValMinus1[c]+1]; m_colourRemapSEIPreLutTargetValue[c] = new Int[m_colourRemapSEIPreLutNumValMinus1[c]+1]; for( Int i=0 ; i<=m_colourRemapSEIPreLutNumValMinus1[c] ; i++ ) { retval = fscanf( fic, "%d", &m_colourRemapSEIPreLutCodedValue[c][i] ); retval = fscanf( fic, "%d", &m_colourRemapSEIPreLutTargetValue[c][i] ); } } } retval = fscanf( fic, "%d", &m_colourRemapSEIMatrixPresentFlag ); if( m_colourRemapSEIMatrixPresentFlag ) { retval = fscanf( fic, "%d", &m_colourRemapSEILog2MatrixDenom ); for( Int c=0 ; c<3 ; c++ ) for( Int i=0 ; i<3 ; i++ ) retval = fscanf( fic, "%d", &m_colourRemapSEICoeffs[c][i] ); } for( Int c=0 ; c<3 ; c++ ) { retval = fscanf( fic, "%d", &m_colourRemapSEIPostLutNumValMinus1[c] ); if( m_colourRemapSEIPostLutNumValMinus1[c]>0 ) { m_colourRemapSEIPostLutCodedValue[c] = new Int[m_colourRemapSEIPostLutNumValMinus1[c]+1]; m_colourRemapSEIPostLutTargetValue[c] = new Int[m_colourRemapSEIPostLutNumValMinus1[c]+1]; for( Int i=0 ; i<=m_colourRemapSEIPostLutNumValMinus1[c] ; i++ ) { retval = fscanf( fic, "%d", &m_colourRemapSEIPostLutCodedValue[c][i] ); retval = fscanf( fic, "%d", &m_colourRemapSEIPostLutTargetValue[c][i] ); } } } } fclose( fic ); if( retval != 1 ) { fprintf(stderr, "Error while reading Colour Remapping Information SEI parameters file\n"); exit(EXIT_FAILURE); } } #else // Reading external Colour Remapping Information SEI message parameters from file // It seems that TAppEncLayerCfg::parseCfg is not used for(UInt layer = 0; layer < m_numLayers; layer++) { if( cfg_colourRemapSEIFile[layer]->length() ) { FILE* fic; Int retval; if((fic = fopen(cfg_colourRemapSEIFile[layer]->c_str(),"r")) == (FILE*)NULL) { fprintf(stderr, "Can't open Colour Remapping Information SEI parameters file %s\n", cfg_colourRemapSEIFile[layer]->c_str()); exit(EXIT_FAILURE); } Int tempCode; retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIId ); retval = fscanf( fic, "%d", &tempCode ); m_acLayerCfg[layer].m_colourRemapSEICancelFlag = tempCode ? 1 : 0; if( !m_acLayerCfg[layer].m_colourRemapSEICancelFlag ) { retval = fscanf( fic, "%d", &tempCode ); m_acLayerCfg[layer].m_colourRemapSEIPersistenceFlag = tempCode ? 1 : 0; retval = fscanf( fic, "%d", &tempCode ); m_acLayerCfg[layer].m_colourRemapSEIVideoSignalInfoPresentFlag = tempCode ? 1 : 0; if( m_acLayerCfg[layer].m_colourRemapSEIVideoSignalInfoPresentFlag ) { retval = fscanf( fic, "%d", &tempCode ); m_acLayerCfg[layer].m_colourRemapSEIFullRangeFlag = tempCode ? 1 : 0; retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIPrimaries ); retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEITransferFunction ); retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIMatrixCoefficients ); } retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIInputBitDepth ); retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIBitDepth ); for( Int c=0 ; c<3 ; c++ ) { retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIPreLutNumValMinus1[c] ); if( m_acLayerCfg[layer].m_colourRemapSEIPreLutNumValMinus1[c]>0 ) { m_acLayerCfg[layer].m_colourRemapSEIPreLutCodedValue[c] = new Int[m_acLayerCfg[layer].m_colourRemapSEIPreLutNumValMinus1[c]+1]; m_acLayerCfg[layer].m_colourRemapSEIPreLutTargetValue[c] = new Int[m_acLayerCfg[layer].m_colourRemapSEIPreLutNumValMinus1[c]+1]; for( Int i=0 ; i<=m_acLayerCfg[layer].m_colourRemapSEIPreLutNumValMinus1[c] ; i++ ) { retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIPreLutCodedValue[c][i] ); retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIPreLutTargetValue[c][i] ); } } } retval = fscanf( fic, "%d", &tempCode ); m_acLayerCfg[layer].m_colourRemapSEIMatrixPresentFlag = tempCode ? 1 : 0; if( m_acLayerCfg[layer].m_colourRemapSEIMatrixPresentFlag ) { retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEILog2MatrixDenom ); for( Int c=0 ; c<3 ; c++ ) for( Int i=0 ; i<3 ; i++ ) retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEICoeffs[c][i] ); } for( Int c=0 ; c<3 ; c++ ) { retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIPostLutNumValMinus1[c] ); if( m_acLayerCfg[layer].m_colourRemapSEIPostLutNumValMinus1[c]>0 ) { m_acLayerCfg[layer].m_colourRemapSEIPostLutCodedValue[c] = new Int[m_acLayerCfg[layer].m_colourRemapSEIPostLutNumValMinus1[c]+1]; m_acLayerCfg[layer].m_colourRemapSEIPostLutTargetValue[c] = new Int[m_acLayerCfg[layer].m_colourRemapSEIPostLutNumValMinus1[c]+1]; for( Int i=0 ; i<=m_acLayerCfg[layer].m_colourRemapSEIPostLutNumValMinus1[c] ; i++ ) { retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIPostLutCodedValue[c][i] ); retval = fscanf( fic, "%d", &m_acLayerCfg[layer].m_colourRemapSEIPostLutTargetValue[c][i] ); } } } } fclose( fic ); if( retval != 1 ) { fprintf(stderr, "Error while reading Colour Remapping Information SEI parameters file\n"); exit(EXIT_FAILURE); } } } #endif #endif #if N0383_IL_CONSTRAINED_TILE_SETS_SEI if (m_interLayerConstrainedTileSetsSEIEnabled) { if (m_numTileColumnsMinus1 == 0 && m_numTileRowsMinus1 == 0) { printf( "Tiles are not defined (needed for inter-layer comnstrained tile sets SEI).\n" ); exit( EXIT_FAILURE ); } Char* pTileSets = cfg_tileSets.empty() ? NULL : strdup(cfg_tileSets.c_str()); int i = 0; char *topLeftTileIndex = strtok(pTileSets, " ,"); while(topLeftTileIndex != NULL) { if( i >= m_ilNumSetsInMessage ) { printf( "The number of tile sets is larger than defined by IlNumSetsInMessage.\n" ); exit( EXIT_FAILURE ); } *( m_topLeftTileIndex + i ) = atoi( topLeftTileIndex ); char *bottonRightTileIndex = strtok(NULL, " ,"); if( bottonRightTileIndex == NULL ) { printf( "BottonRightTileIndex is missing in the tile sets.\n" ); exit( EXIT_FAILURE ); } *( m_bottomRightTileIndex + i ) = atoi( bottonRightTileIndex ); char *ilcIdc = strtok(NULL, " ,"); if( ilcIdc == NULL ) { printf( "IlcIdc is missing in the tile sets.\n" ); exit( EXIT_FAILURE ); } *( m_ilcIdc + i ) = atoi( ilcIdc ); topLeftTileIndex = strtok(NULL, " ,"); i++; } if( i < m_ilNumSetsInMessage ) { printf( "The number of tile sets is smaller than defined by IlNumSetsInMessage.\n" ); exit( EXIT_FAILURE ); } m_skippedTileSetPresentFlag = false; if( pTileSets ) { free( pTileSets ); pTileSets = NULL; } } #endif // check validity of input parameters #if SVC_EXTENSION for( UInt layerIdx = 0; layerIdx < m_numLayers; layerIdx++ ) { xCheckParameter(layerIdx); } #else xCheckParameter(); #endif // set global varibles #if LAYER_CTB for(Int layer = 0; layer < MAX_LAYERS; layer++) { xSetGlobal(layer); } #else xSetGlobal(); #endif // print-out parameters xPrintParameter(); return true; } // ==================================================================================================================== // Private member functions // ==================================================================================================================== #if SVC_EXTENSION Void TAppEncCfg::xCheckParameter(UInt layerIdx) { Bool m_useExtendedPrecision = m_acLayerCfg[layerIdx].m_useExtendedPrecision; Bool m_useHighPrecisionPredictionWeighting = m_acLayerCfg[layerIdx].m_useHighPrecisionPredictionWeighting; ChromaFormat m_chromaFormatIDC = m_acLayerCfg[layerIdx].m_chromaFormatIDC; ChromaFormat m_chromaFormatConstraint = m_acLayerCfg[layerIdx].m_chromaFormatConstraint; ChromaFormat m_InputChromaFormatIDC = m_acLayerCfg[layerIdx].m_InputChromaFormatIDC; Int m_inputBitDepth[] = {m_acLayerCfg[layerIdx].m_inputBitDepth[CHANNEL_TYPE_LUMA], m_acLayerCfg[layerIdx].m_inputBitDepth[CHANNEL_TYPE_CHROMA]}; Int m_internalBitDepth[] = {m_acLayerCfg[layerIdx].m_internalBitDepth[CHANNEL_TYPE_LUMA], m_acLayerCfg[layerIdx].m_internalBitDepth[CHANNEL_TYPE_CHROMA]}; Int m_MSBExtendedBitDepth[] = {m_acLayerCfg[layerIdx].m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA], m_acLayerCfg[layerIdx].m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA]}; m_saoOffsetBitShift[CHANNEL_TYPE_LUMA] = m_acLayerCfg[layerIdx].m_saoOffsetBitShift[CHANNEL_TYPE_LUMA]; m_saoOffsetBitShift[CHANNEL_TYPE_CHROMA] = m_acLayerCfg[layerIdx].m_saoOffsetBitShift[CHANNEL_TYPE_CHROMA]; #if MULTIPLE_PTL_SUPPORT Int layerPTLIdx = m_acLayerCfg[layerIdx].m_layerPTLIdx; Profile::Name m_profile = m_profileList[layerPTLIdx]; UInt m_bitDepthConstraint = m_acLayerCfg[layerIdx].m_bitDepthConstraint; Bool m_intraConstraintFlag = m_acLayerCfg[layerIdx].m_intraConstraintFlag; Bool m_lowerBitRateConstraintFlag = m_acLayerCfg[layerIdx].m_lowerBitRateConstraintFlag; #endif #else Void TAppEncCfg::xCheckParameter() { #endif if (!m_decodedPictureHashSEIEnabled) { fprintf(stderr, "******************************************************************\n"); fprintf(stderr, "** WARNING: --SEIDecodedPictureHash is now disabled by default. **\n"); fprintf(stderr, "** Automatic verification of decoded pictures by a **\n"); fprintf(stderr, "** decoder requires this option to be enabled. **\n"); fprintf(stderr, "******************************************************************\n"); } #if SVC_EXTENSION && MULTIPLE_PTL_SUPPORT Int ii = 0; while( ii < m_numPTLInfo ) { if( m_profileList[ii] == Profile::NONE ) { fprintf(stderr, "***************************************************************************\n"); fprintf(stderr, "** WARNING: For conforming bitstreams a valid Profile value must be set! **\n"); fprintf(stderr, "***************************************************************************\n"); } if( m_levelList[ii] == Level::NONE ) { fprintf(stderr, "***************************************************************************\n"); fprintf(stderr, "** WARNING: For conforming bitstreams a valid Level value must be set! **\n"); fprintf(stderr, "***************************************************************************\n"); } ii++; } if( m_numLayers > 1 && m_numPTLInfo > 1 && !m_nonHEVCBaseLayerFlag ) { assert(m_profileList[0] <= Profile::MULTIVIEWMAIN); //Profile IDC of PTL in VPS shall be one of single-layer profile IDCs assert(m_profileList[0] == m_profileList[1]); //Profile IDC of VpsProfileTierLevel[ 0 ] and VpsProfileTierLevel[ 1 ] shall be the same when BL is HEVC compatible assert(m_levelList[0] >= m_levelList[1]); //Level IDC of VpsProfileTierLevel[ 0 ] should not be less than level IDC of VpsProfileTierLevel[ 1 ]. //NOTE that this is not conformance constraint but it would be nice if our encoder can prevent inefficient level IDC assignment if (m_levelList[0] == m_levelList[1]) printf("Warning: Level0 is set the same as Level1\n"); } #else if( m_profile==Profile::NONE ) { fprintf(stderr, "***************************************************************************\n"); fprintf(stderr, "** WARNING: For conforming bitstreams a valid Profile value must be set! **\n"); fprintf(stderr, "***************************************************************************\n"); } if( m_level==Level::NONE ) { fprintf(stderr, "***************************************************************************\n"); fprintf(stderr, "** WARNING: For conforming bitstreams a valid Level value must be set! **\n"); fprintf(stderr, "***************************************************************************\n"); } #endif Bool check_failed = false; /* abort if there is a fatal configuration problem */ #define xConfirmPara(a,b) check_failed |= confirmPara(a,b) const UInt maxBitDepth=(m_chromaFormatIDC==CHROMA_400) ? m_internalBitDepth[CHANNEL_TYPE_LUMA] : std::max(m_internalBitDepth[CHANNEL_TYPE_LUMA], m_internalBitDepth[CHANNEL_TYPE_CHROMA]); xConfirmPara(m_bitDepthConstraint 3 || chromaFormatIdx>3) ? false : (validRExtProfileNames[intraIdx][bitDepthIdx][chromaFormatIdx] != NONE); xConfirmPara(!bValidProfile, "Invalid intra constraint flag, bit depth constraint flag and chroma format constraint flag combination for a RExt profile"); const Bool bUsingGeneralRExtTools = m_useResidualRotation || m_useSingleSignificanceMapContext || m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT] || m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT] || !m_enableIntraReferenceSmoothing || m_useGolombRiceParameterAdaptation || m_transformSkipLog2MaxSize!=2; const Bool bUsingChromaQPTool = m_maxCUChromaQpAdjustmentDepth >= 0; const Bool bUsingExtendedPrecision = m_useExtendedPrecision; xConfirmPara((m_chromaFormatConstraint==CHROMA_420 || m_chromaFormatConstraint==CHROMA_400) && bUsingChromaQPTool, "CU Chroma QP adjustment cannot be used for 4:0:0 or 4:2:0 RExt profiles"); xConfirmPara(m_bitDepthConstraint != 16 && bUsingExtendedPrecision, "Extended precision can only be used in 16-bit RExt profiles"); if (!(m_chromaFormatConstraint == CHROMA_400 && m_bitDepthConstraint == 16) && m_chromaFormatConstraint!=CHROMA_444) { xConfirmPara(bUsingGeneralRExtTools, "Combination of tools and profiles are not possible in the specified RExt profile."); } if (!m_intraConstraintFlag && m_bitDepthConstraint==16 && m_chromaFormatConstraint==CHROMA_444) { fprintf(stderr, "********************************************************************************************************\n"); fprintf(stderr, "** WARNING: The RExt constraint flags describe a non standard combination (used for development only) **\n"); fprintf(stderr, "********************************************************************************************************\n"); } } else { xConfirmPara( m_chromaFormatConstraint != CHROMA_444, "chroma format constraint must be 4:4:4 in the High Throughput 4:4:4 16-bit Intra profile."); xConfirmPara( m_bitDepthConstraint != 16, "bit depth constraint must be 4:4:4 in the High Throughput 4:4:4 16-bit Intra profile."); xConfirmPara( m_intraConstraintFlag != 1, "intra constraint flag must be 1 in the High Throughput 4:4:4 16-bit Intra profile."); } } else { #if MULTIPLE_PTL_SUPPORT xConfirmPara(m_bitDepthConstraint!=((m_profile==Profile::MAIN10 || m_profile==Profile::SCALABLEMAIN10)?10:8), "BitDepthConstraint must be 8 for MAIN profile and 10 for MAIN10 or Scalable-main10 profile."); #else xConfirmPara(m_bitDepthConstraint!=((m_profile==Profile::MAIN10)?10:8), "BitDepthConstraint must be 8 for MAIN profile and 10 for MAIN10 profile."); #endif xConfirmPara(m_chromaFormatConstraint!=CHROMA_420, "ChromaFormatConstraint must be 420 for non main-RExt profiles."); xConfirmPara(m_intraConstraintFlag==true, "IntraConstraintFlag must be false for non main_RExt profiles."); xConfirmPara(m_lowerBitRateConstraintFlag==false, "LowerBitrateConstraintFlag must be true for non main-RExt profiles."); xConfirmPara(m_useCrossComponentPrediction==true, "CrossComponentPrediction must not be used for non main-RExt profiles."); xConfirmPara(m_transformSkipLog2MaxSize!=2, "Transform Skip Log2 Max Size must be 2 for V1 profiles."); xConfirmPara(m_useResidualRotation==true, "UseResidualRotation must not be enabled for non main-RExt profiles."); xConfirmPara(m_useSingleSignificanceMapContext==true, "UseSingleSignificanceMapContext must not be enabled for non main-RExt profiles."); xConfirmPara(m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT]==true, "ImplicitResidualDPCM must not be enabled for non main-RExt profiles."); xConfirmPara(m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT]==true, "ExplicitResidualDPCM must not be enabled for non main-RExt profiles."); xConfirmPara(m_useGolombRiceParameterAdaptation==true, "GolombRiceParameterAdaption must not be enabled for non main-RExt profiles."); xConfirmPara(m_useExtendedPrecision==true, "UseExtendedPrecision must not be enabled for non main-RExt profiles."); xConfirmPara(m_useHighPrecisionPredictionWeighting==true, "UseHighPrecisionPredictionWeighting must not be enabled for non main-RExt profiles."); xConfirmPara(m_enableIntraReferenceSmoothing==false, "EnableIntraReferenceSmoothing must be enabled for non main-RExt profiles."); xConfirmPara(m_alignCABACBeforeBypass, "AlignCABACBeforeBypass cannot be enabled for non main-RExt profiles."); } // check range of parameters xConfirmPara( m_inputBitDepth[CHANNEL_TYPE_LUMA ] < 8, "InputBitDepth must be at least 8" ); xConfirmPara( m_inputBitDepth[CHANNEL_TYPE_CHROMA] < 8, "InputBitDepthC must be at least 8" ); #if !RExt__HIGH_BIT_DEPTH_SUPPORT if (m_useExtendedPrecision) { for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++) { xConfirmPara((m_internalBitDepth[channelType] > 8) , "Model is not configured to support high enough internal accuracies - enable RExt__HIGH_BIT_DEPTH_SUPPORT to use increased precision internal data types etc..."); } } else { for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++) { xConfirmPara((m_internalBitDepth[channelType] > 12) , "Model is not configured to support high enough internal accuracies - enable RExt__HIGH_BIT_DEPTH_SUPPORT to use increased precision internal data types etc..."); } } #endif xConfirmPara( (m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA ] < m_inputBitDepth[CHANNEL_TYPE_LUMA ]), "MSB-extended bit depth for luma channel (--MSBExtendedBitDepth) must be greater than or equal to input bit depth for luma channel (--InputBitDepth)" ); xConfirmPara( (m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA] < m_inputBitDepth[CHANNEL_TYPE_CHROMA]), "MSB-extended bit depth for chroma channel (--MSBExtendedBitDepthC) must be greater than or equal to input bit depth for chroma channel (--InputBitDepthC)" ); xConfirmPara( m_saoOffsetBitShift[CHANNEL_TYPE_LUMA] > (m_internalBitDepth[CHANNEL_TYPE_LUMA ]<10?0:(m_internalBitDepth[CHANNEL_TYPE_LUMA ]-10)), "SaoLumaOffsetBitShift must be in the range of 0 to InternalBitDepth-10, inclusive"); xConfirmPara( m_saoOffsetBitShift[CHANNEL_TYPE_CHROMA] > (m_internalBitDepth[CHANNEL_TYPE_CHROMA]<10?0:(m_internalBitDepth[CHANNEL_TYPE_CHROMA]-10)), "SaoChromaOffsetBitShift must be in the range of 0 to InternalBitDepthC-10, inclusive"); xConfirmPara( m_chromaFormatIDC >= NUM_CHROMA_FORMAT, "ChromaFormatIDC must be either 400, 420, 422 or 444" ); std::string sTempIPCSC="InputColourSpaceConvert must be empty, "+getListOfColourSpaceConverts(true); xConfirmPara( m_inputColourSpaceConvert >= NUMBER_INPUT_COLOUR_SPACE_CONVERSIONS, sTempIPCSC.c_str() ); xConfirmPara( m_InputChromaFormatIDC >= NUM_CHROMA_FORMAT, "InputChromaFormatIDC must be either 400, 420, 422 or 444" ); #if !SVC_EXTENSION xConfirmPara( m_iFrameRate <= 0, "Frame rate must be more than 1" ); #endif xConfirmPara( m_framesToBeEncoded <= 0, "Total Number Of Frames encoded must be more than 0" ); xConfirmPara( m_iGOPSize < 1 , "GOP Size must be greater or equal to 1" ); xConfirmPara( m_iGOPSize > 1 && m_iGOPSize % 2, "GOP Size must be a multiple of 2, if GOP Size is greater than 1" ); #if !SVC_EXTENSION xConfirmPara( (m_iIntraPeriod > 0 && m_iIntraPeriod < m_iGOPSize) || m_iIntraPeriod == 0, "Intra period must be more than GOP size, or -1 , not 0" ); #endif #if ALLOW_RECOVERY_POINT_AS_RAP xConfirmPara( m_iDecodingRefreshType < 0 || m_iDecodingRefreshType > 3, "Decoding Refresh Type must be comprised between 0 and 3 included" ); if(m_iDecodingRefreshType == 3) { xConfirmPara( !m_recoveryPointSEIEnabled, "When using RecoveryPointSEI messages as RA points, recoveryPointSEI must be enabled" ); } #else xConfirmPara( m_iDecodingRefreshType < 0 || m_iDecodingRefreshType > 2, "Decoding Refresh Type must be equal to 0, 1 or 2" ); #endif if (m_isField) { if (!m_pictureTimingSEIEnabled) { fprintf(stderr, "****************************************************************************\n"); fprintf(stderr, "** WARNING: Picture Timing SEI should be enabled for field coding! **\n"); fprintf(stderr, "****************************************************************************\n"); } } if ( m_bufferingPeriodSEIEnabled && !m_activeParameterSetsSEIEnabled) { fprintf(stderr, "****************************************************************************\n"); fprintf(stderr, "** WARNING: using buffering period SEI requires SPS activation with **\n"); fprintf(stderr, "** active parameter sets SEI. Enabling active parameter sets SEI **\n"); fprintf(stderr, "****************************************************************************\n"); m_activeParameterSetsSEIEnabled = 1; } if ( m_pictureTimingSEIEnabled && !m_activeParameterSetsSEIEnabled) { fprintf(stderr, "****************************************************************************\n"); fprintf(stderr, "** WARNING: using picture timing SEI requires SPS activation with active **\n"); fprintf(stderr, "** parameter sets SEI. Enabling active parameter sets SEI. **\n"); fprintf(stderr, "****************************************************************************\n"); m_activeParameterSetsSEIEnabled = 1; } if(m_useCrossComponentPrediction && (m_chromaFormatIDC != CHROMA_444)) { fprintf(stderr, "****************************************************************************\n"); fprintf(stderr, "** WARNING: Cross-component prediction is specified for 4:4:4 format only **\n"); fprintf(stderr, "****************************************************************************\n"); m_useCrossComponentPrediction = false; } if ( m_CUTransquantBypassFlagForce && m_bUseHADME ) { fprintf(stderr, "****************************************************************************\n"); fprintf(stderr, "** WARNING: --HadamardME has been disabled due to the enabling of **\n"); fprintf(stderr, "** --CUTransquantBypassFlagForce **\n"); fprintf(stderr, "****************************************************************************\n"); m_bUseHADME = false; // this has been disabled so that the lambda is calculated slightly differently for lossless modes (as a result of JCTVC-R0104). } xConfirmPara (m_transformSkipLog2MaxSize < 2, "Transform Skip Log2 Max Size must be at least 2 (4x4)"); if (m_transformSkipLog2MaxSize!=2 && m_useTransformSkipFast) { fprintf(stderr, "***************************************************************************\n"); fprintf(stderr, "** WARNING: Transform skip fast is enabled (which only tests NxN splits),**\n"); fprintf(stderr, "** but transform skip log2 max size is not 2 (4x4) **\n"); fprintf(stderr, "** It may be better to disable transform skip fast mode **\n"); fprintf(stderr, "***************************************************************************\n"); } #if !SVC_EXTENSION xConfirmPara( m_iQP < -6 * (m_internalBitDepth[CHANNEL_TYPE_LUMA] - 8) || m_iQP > 51, "QP exceeds supported range (-QpBDOffsety to 51)" ); #endif xConfirmPara( m_loopFilterBetaOffsetDiv2 < -6 || m_loopFilterBetaOffsetDiv2 > 6, "Loop Filter Beta Offset div. 2 exceeds supported range (-6 to 6)"); xConfirmPara( m_loopFilterTcOffsetDiv2 < -6 || m_loopFilterTcOffsetDiv2 > 6, "Loop Filter Tc Offset div. 2 exceeds supported range (-6 to 6)"); xConfirmPara( m_iFastSearch < 0 || m_iFastSearch > 2, "Fast Search Mode is not supported value (0:Full search 1:Diamond 2:PMVFAST)" ); xConfirmPara( m_iSearchRange < 0 , "Search Range must be more than 0" ); xConfirmPara( m_bipredSearchRange < 0 , "Search Range must be more than 0" ); xConfirmPara( m_iMaxDeltaQP > 7, "Absolute Delta QP exceeds supported range (0 to 7)" ); #if LAYER_CTB for(UInt layer = 0; layer < MAX_LAYERS; layer++) { xConfirmPara( m_iMaxCuDQPDepth > m_acLayerCfg[layer].m_uiMaxCUDepth - 1, "Absolute depth for a minimum CuDQP exceeds maximum coding unit depth" ); } #else xConfirmPara( m_iMaxCuDQPDepth > m_uiMaxCUDepth - 1, "Absolute depth for a minimum CuDQP exceeds maximum coding unit depth" ); #endif xConfirmPara( m_cbQpOffset < -12, "Min. Chroma Cb QP Offset is -12" ); xConfirmPara( m_cbQpOffset > 12, "Max. Chroma Cb QP Offset is 12" ); xConfirmPara( m_crQpOffset < -12, "Min. Chroma Cr QP Offset is -12" ); xConfirmPara( m_crQpOffset > 12, "Max. Chroma Cr QP Offset is 12" ); xConfirmPara( m_iQPAdaptationRange <= 0, "QP Adaptation Range must be more than 0" ); #if !SVC_EXTENSION if (m_iDecodingRefreshType == 2) { xConfirmPara( m_iIntraPeriod > 0 && m_iIntraPeriod <= m_iGOPSize , "Intra period must be larger than GOP size for periodic IDR pictures"); } #endif #if !LAYER_CTB xConfirmPara( (m_uiMaxCUWidth >> m_uiMaxCUDepth) < 4, "Minimum partition width size should be larger than or equal to 8"); xConfirmPara( (m_uiMaxCUHeight >> m_uiMaxCUDepth) < 4, "Minimum partition height size should be larger than or equal to 8"); xConfirmPara( m_uiMaxCUWidth < 16, "Maximum partition width size should be larger than or equal to 16"); xConfirmPara( m_uiMaxCUHeight < 16, "Maximum partition height size should be larger than or equal to 16"); #endif #if !SVC_EXTENSION xConfirmPara( (m_iSourceWidth % (m_uiMaxCUWidth >> (m_uiMaxCUDepth-1)))!=0, "Resulting coded frame width must be a multiple of the minimum CU size"); xConfirmPara( (m_iSourceHeight % (m_uiMaxCUHeight >> (m_uiMaxCUDepth-1)))!=0, "Resulting coded frame height must be a multiple of the minimum CU size"); #endif #if !LAYER_CTB xConfirmPara( m_uiQuadtreeTULog2MinSize < 2, "QuadtreeTULog2MinSize must be 2 or greater."); xConfirmPara( m_uiQuadtreeTULog2MaxSize > 5, "QuadtreeTULog2MaxSize must be 5 or smaller."); xConfirmPara( m_uiQuadtreeTULog2MaxSize < m_uiQuadtreeTULog2MinSize, "QuadtreeTULog2MaxSize must be greater than or equal to m_uiQuadtreeTULog2MinSize."); xConfirmPara( (1< m_uiMaxCUWidth, "QuadtreeTULog2MaxSize must be log2(maxCUSize) or smaller."); xConfirmPara( ( 1 << m_uiQuadtreeTULog2MinSize ) >= ( m_uiMaxCUWidth >> (m_uiMaxCUDepth-1)), "QuadtreeTULog2MinSize must not be greater than or equal to minimum CU size" ); xConfirmPara( ( 1 << m_uiQuadtreeTULog2MinSize ) >= ( m_uiMaxCUHeight >> (m_uiMaxCUDepth-1)), "QuadtreeTULog2MinSize must not be greater than or equal to minimum CU size" ); xConfirmPara( m_uiQuadtreeTUMaxDepthInter < 1, "QuadtreeTUMaxDepthInter must be greater than or equal to 1" ); xConfirmPara( m_uiMaxCUWidth < ( 1 << (m_uiQuadtreeTULog2MinSize + m_uiQuadtreeTUMaxDepthInter - 1) ), "QuadtreeTUMaxDepthInter must be less than or equal to the difference between log2(maxCUSize) and QuadtreeTULog2MinSize plus 1" ); xConfirmPara( m_uiQuadtreeTUMaxDepthIntra < 1, "QuadtreeTUMaxDepthIntra must be greater than or equal to 1" ); xConfirmPara( m_uiMaxCUWidth < ( 1 << (m_uiQuadtreeTULog2MinSize + m_uiQuadtreeTUMaxDepthIntra - 1) ), "QuadtreeTUMaxDepthInter must be less than or equal to the difference between log2(maxCUSize) and QuadtreeTULog2MinSize plus 1" ); #endif xConfirmPara( m_maxNumMergeCand < 1, "MaxNumMergeCand must be 1 or greater."); xConfirmPara( m_maxNumMergeCand > 5, "MaxNumMergeCand must be 5 or smaller."); #if !SVC_EXTENSION #if ADAPTIVE_QP_SELECTION xConfirmPara( m_bUseAdaptQpSelect == true && m_iQP < 0, "AdaptiveQpSelection must be disabled when QP < 0."); xConfirmPara( m_bUseAdaptQpSelect == true && (m_cbQpOffset !=0 || m_crQpOffset != 0 ), "AdaptiveQpSelection must be disabled when ChromaQpOffset is not equal to 0."); #endif #endif if( m_usePCM) { for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++) { xConfirmPara(((m_MSBExtendedBitDepth[channelType] > m_internalBitDepth[channelType]) && m_bPCMInputBitDepthFlag), "PCM bit depth cannot be greater than internal bit depth (PCMInputBitDepthFlag cannot be used when InputBitDepth or MSBExtendedBitDepth > InternalBitDepth)"); } xConfirmPara( m_uiPCMLog2MinSize < 3, "PCMLog2MinSize must be 3 or greater."); xConfirmPara( m_uiPCMLog2MinSize > 5, "PCMLog2MinSize must be 5 or smaller."); xConfirmPara( m_pcmLog2MaxSize > 5, "PCMLog2MaxSize must be 5 or smaller."); xConfirmPara( m_pcmLog2MaxSize < m_uiPCMLog2MinSize, "PCMLog2MaxSize must be equal to or greater than m_uiPCMLog2MinSize."); } xConfirmPara( m_sliceMode < 0 || m_sliceMode > 3, "SliceMode exceeds supported range (0 to 3)" ); if (m_sliceMode!=0) { xConfirmPara( m_sliceArgument < 1 , "SliceArgument should be larger than or equal to 1" ); } xConfirmPara( m_sliceSegmentMode < 0 || m_sliceSegmentMode > 3, "SliceSegmentMode exceeds supported range (0 to 3)" ); if (m_sliceSegmentMode!=0) { xConfirmPara( m_sliceSegmentArgument < 1 , "SliceSegmentArgument should be larger than or equal to 1" ); } #if !SVC_EXTENSION Bool tileFlag = (m_numTileColumnsMinus1 > 0 || m_numTileRowsMinus1 > 0 ); if (m_profile!=Profile::HIGHTHROUGHPUTREXT) { xConfirmPara( tileFlag && m_iWaveFrontSynchro, "Tile and Wavefront can not be applied together, except in the High Throughput Intra 4:4:4 16 profile"); } xConfirmPara( m_iSourceWidth % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Picture width must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_iSourceHeight % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Picture height must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_aiPad[0] % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Horizontal padding must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_aiPad[1] % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Vertical padding must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confWinLeft % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Left conformance window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confWinRight % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Right conformance window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confWinTop % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Top conformance window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confWinBottom % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Bottom conformance window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_defaultDisplayWindowFlag && !m_vuiParametersPresentFlag, "VUI needs to be enabled for default display window"); if (m_defaultDisplayWindowFlag) { xConfirmPara( m_defDispWinLeftOffset % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Left default display window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_defDispWinRightOffset % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Right default display window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_defDispWinTopOffset % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Top default display window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_defDispWinBottomOffset % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Bottom default display window offset must be an integer multiple of the specified chroma subsampling"); } #endif #if !LAYER_CTB // max CU width and height should be power of 2 UInt ui = m_uiMaxCUWidth; while(ui) { ui >>= 1; if( (ui & 1) == 1) xConfirmPara( ui != 1 , "Width should be 2^n"); } ui = m_uiMaxCUHeight; while(ui) { ui >>= 1; if( (ui & 1) == 1) xConfirmPara( ui != 1 , "Height should be 2^n"); } #endif /* if this is an intra-only sequence, ie IntraPeriod=1, don't verify the GOP structure * This permits the ability to omit a GOP structure specification */ #if SVC_EXTENSION #if Q0108_TSA_STSA if( m_acLayerCfg[0].m_iIntraPeriod == 1 && m_GOPList[0].m_POC == -1 ) { m_GOPList[0] = GOPEntry(); m_GOPList[0].m_QPFactor = 1; m_GOPList[0].m_betaOffsetDiv2 = 0; m_GOPList[0].m_tcOffsetDiv2 = 0; m_GOPList[0].m_POC = 1; m_GOPList[0].m_numRefPicsActive = 4; } else { xConfirmPara( m_intraConstraintFlag, "IntraConstraintFlag cannot be 1 for inter sequences"); } if (m_acLayerCfg[layerIdx].m_iIntraPeriod == 1 && m_EhGOPList[layerIdx][0].m_POC == -1) { m_EhGOPList[layerIdx][0] = GOPEntry(); m_EhGOPList[layerIdx][0].m_QPFactor = 1; m_EhGOPList[layerIdx][0].m_betaOffsetDiv2 = 0; m_EhGOPList[layerIdx][0].m_tcOffsetDiv2 = 0; m_EhGOPList[layerIdx][0].m_POC = 1; m_EhGOPList[layerIdx][0].m_numRefPicsActive = 4; } else { xConfirmPara( m_intraConstraintFlag, "IntraConstraintFlag cannot be 1 for inter sequences"); } #else for(UInt layer = 0; layer < MAX_LAYERS; layer++) { Int m_iIntraPeriod = m_acLayerCfg[layer].m_iIntraPeriod; if (m_iIntraPeriod == 1 && m_GOPList[0].m_POC == -1) { m_GOPList[0] = GOPEntry(); m_GOPList[0].m_QPFactor = 1; m_GOPList[0].m_betaOffsetDiv2 = 0; m_GOPList[0].m_tcOffsetDiv2 = 0; m_GOPList[0].m_POC = 1; m_GOPList[0].m_numRefPicsActive = 4; } else { xConfirmPara( m_intraConstraintFlag, "IntraConstraintFlag cannot be 1 for inter sequences"); } } #endif #else if (m_iIntraPeriod == 1 && m_GOPList[0].m_POC == -1) { m_GOPList[0] = GOPEntry(); m_GOPList[0].m_QPFactor = 1; m_GOPList[0].m_betaOffsetDiv2 = 0; m_GOPList[0].m_tcOffsetDiv2 = 0; m_GOPList[0].m_POC = 1; m_GOPList[0].m_numRefPicsActive = 4; } else { xConfirmPara( m_intraConstraintFlag, "IntraConstraintFlag cannot be 1 for inter sequences"); } #endif Bool verifiedGOP=false; Bool errorGOP=false; Int checkGOP=1; Int numRefs = m_isField ? 2 : 1; Int refList[MAX_NUM_REF_PICS+1]; refList[0]=0; if(m_isField) { refList[1] = 1; } Bool isOK[MAX_GOP]; for(Int i=0; i=0&&(m_iIntraPeriod%m_iGOPSize!=0), "Intra period must be a multiple of GOPSize, or -1" ); #endif for(Int i=0; i MAX_LAYERS , "Number of layers in config file is greater than MAX_LAYERS" ); m_numLayers = m_numLayers > MAX_LAYERS ? MAX_LAYERS : m_numLayers; // it can be updated after AVC BL support will be added to the WD #if VPS_AVC_BL_FLAG_REMOVAL if( m_nonHEVCBaseLayerFlag ) #else if( m_avcBaseLayerFlag ) #endif { m_crossLayerIrapAlignFlag = false; m_crossLayerPictureTypeAlignFlag = false; m_crossLayerAlignedIdrOnlyFlag = false; } // verify layer configuration parameters if(m_acLayerCfg[layerIdx].xCheckParameter(m_isField)) { printf("\nError: invalid configuration parameter found in layer %d \n", layerIdx); check_failed = true; } // verify layer configuration parameters Int m_iIntraPeriod = m_acLayerCfg[layerIdx].m_iIntraPeriod; #endif if ( (m_iIntraPeriod != 1) && !m_loopFilterOffsetInPPS && m_DeblockingFilterControlPresent && (!m_bLoopFilterDisable) ) { for(Int i=0; i 6, "Loop Filter Beta Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" ); xConfirmPara( (m_GOPList[i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) < -6 || (m_GOPList[i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) > 6, "Loop Filter Tc Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" ); } } #if !Q0108_TSA_STSA m_extraRPSs=0; #else memset( m_extraRPSs, 0, sizeof( m_extraRPSs ) ); #endif //start looping through frames in coding order until we can verify that the GOP structure is correct. while(!verifiedGOP&&!errorGOP) { Int curGOP = (checkGOP-1)%m_iGOPSize; Int curPOC = ((checkGOP-1)/m_iGOPSize)*m_iGOPSize + m_GOPList[curGOP].m_POC; if(m_GOPList[curGOP].m_POC<0) { printf("\nError: found fewer Reference Picture Sets than GOPSize\n"); errorGOP=true; } else { //check that all reference pictures are available, or have a POC < 0 meaning they might be available in the next GOP. Bool beforeI = false; for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i]; if(absPOC < 0) { beforeI=true; } else { Bool found=false; for(Int j=0; j 0) #if !Q0108_TSA_STSA m_GOPList[m_iGOPSize+m_extraRPSs]=m_GOPList[curGOP]; #else m_GOPList[m_iGOPSize+m_extraRPSs[0]]=m_GOPList[curGOP]; #endif Int newRefs=0; for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i]; if(absPOC>=0) { #if !Q0108_TSA_STSA m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[newRefs]=m_GOPList[curGOP].m_referencePics[i]; m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[newRefs]=m_GOPList[curGOP].m_usedByCurrPic[i]; #else m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_referencePics[newRefs]=m_GOPList[curGOP].m_referencePics[i]; m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_usedByCurrPic[newRefs]=m_GOPList[curGOP].m_usedByCurrPic[i]; #endif newRefs++; } } Int numPrefRefs = m_GOPList[curGOP].m_numRefPicsActive; for(Int offset = -1; offset>-checkGOP; offset--) { //step backwards in coding order and include any extra available pictures we might find useful to replace the ones with POC < 0. Int offGOP = (checkGOP-1+offset)%m_iGOPSize; Int offPOC = ((checkGOP-1+offset)/m_iGOPSize)*m_iGOPSize + m_GOPList[offGOP].m_POC; if(offPOC>=0&&m_GOPList[offGOP].m_temporalId<=m_GOPList[curGOP].m_temporalId) { Bool newRef=false; for(Int i=0; i0) #else if(m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_referencePics[j]0) #endif { insertPoint = j; break; } } Int prev = offPOC-curPOC; Int prevUsed = m_GOPList[offGOP].m_temporalId<=m_GOPList[curGOP].m_temporalId; for(Int j=insertPoint; j=numPrefRefs) { break; } } #if !Q0108_TSA_STSA m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefPics=newRefs; m_GOPList[m_iGOPSize+m_extraRPSs].m_POC = curPOC; #else m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_numRefPics=newRefs; m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_POC = curPOC; #endif #if !Q0108_TSA_STSA if (m_extraRPSs == 0) #else if (m_extraRPSs[0] == 0) #endif { #if !Q0108_TSA_STSA m_GOPList[m_iGOPSize+m_extraRPSs].m_interRPSPrediction = 0; m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefIdc = 0; #else m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_interRPSPrediction = 0; m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_numRefIdc = 0; #endif } else { #if !Q0108_TSA_STSA Int rIdx = m_iGOPSize + m_extraRPSs - 1; #else Int rIdx = m_iGOPSize + m_extraRPSs[0] - 1; #endif Int refPOC = m_GOPList[rIdx].m_POC; Int refPics = m_GOPList[rIdx].m_numRefPics; Int newIdc=0; for(Int i = 0; i<= refPics; i++) { Int deltaPOC = ((i != refPics)? m_GOPList[rIdx].m_referencePics[i] : 0); // check if the reference abs POC is >= 0 Int absPOCref = refPOC+deltaPOC; Int refIdc = 0; #if !Q0108_TSA_STSA for (Int j = 0; j < m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefPics; j++) { if ( (absPOCref - curPOC) == m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[j]) { if (m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[j]) { refIdc = 1; } else { refIdc = 2; } } } m_GOPList[m_iGOPSize+m_extraRPSs].m_refIdc[newIdc]=refIdc; newIdc++; } m_GOPList[m_iGOPSize+m_extraRPSs].m_interRPSPrediction = 1; m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefIdc = newIdc; m_GOPList[m_iGOPSize+m_extraRPSs].m_deltaRPS = refPOC - m_GOPList[m_iGOPSize+m_extraRPSs].m_POC; } curGOP=m_iGOPSize+m_extraRPSs; m_extraRPSs++; } #else for (Int j = 0; j < m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_numRefPics; j++) { if ( (absPOCref - curPOC) == m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_referencePics[j]) { if (m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_usedByCurrPic[j]) { refIdc = 1; } else { refIdc = 2; } } } m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_refIdc[newIdc]=refIdc; newIdc++; } m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_interRPSPrediction = 1; m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_numRefIdc = newIdc; m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_deltaRPS = refPOC - m_GOPList[m_iGOPSize+m_extraRPSs[0]].m_POC; } curGOP=m_iGOPSize+m_extraRPSs[0]; m_extraRPSs[0]++; } #endif numRefs=0; for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i]; if(absPOC >= 0) { refList[numRefs]=absPOC; numRefs++; } } refList[numRefs]=curPOC; numRefs++; } checkGOP++; } xConfirmPara(errorGOP,"Invalid GOP structure given"); #if SVC_EXTENSION && Q0108_TSA_STSA if( layerIdx > 0 ) { verifiedGOP=false; errorGOP=false; checkGOP=1; numRefs = m_isField ? 2 : 1; refList[0]=0; if(m_isField) { refList[1] = 1; } memset( isOK, 0, sizeof( isOK ) ); numOK=0; for(Int i=0; i MAX_LAYERS , "Number of layers in config file is greater than MAX_LAYERS" ); m_numLayers = m_numLayers > MAX_LAYERS ? MAX_LAYERS : m_numLayers; // verify layer configuration parameters for(UInt layer=0; layer 6, "Loop Filter Beta Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" ); xConfirmPara( (m_EhGOPList[layerIdx][i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) < -6 || (m_EhGOPList[layerIdx][i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) > 6, "Loop Filter Tc Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" ); } } } //start looping through frames in coding order until we can verify that the GOP structure is correct. while(!verifiedGOP&&!errorGOP) { Int curGOP = (checkGOP-1)%m_iGOPSize; Int curPOC = ((checkGOP-1)/m_iGOPSize)*m_iGOPSize + m_EhGOPList[layerIdx][curGOP].m_POC; if(m_EhGOPList[layerIdx][curGOP].m_POC<0) { printf("\nError: found fewer Reference Picture Sets than GOPSize\n"); errorGOP=true; } else { //check that all reference pictures are available, or have a POC < 0 meaning they might be available in the next GOP. Bool beforeI = false; for(Int i = 0; i< m_EhGOPList[layerIdx][curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_EhGOPList[layerIdx][curGOP].m_referencePics[i]; if(absPOC < 0) { beforeI=true; } else { Bool found=false; for(Int j=0; j 0) m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]]=m_EhGOPList[layerIdx][curGOP]; Int newRefs=0; for(Int i = 0; i< m_EhGOPList[layerIdx][curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_EhGOPList[layerIdx][curGOP].m_referencePics[i]; if(absPOC>=0) { m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_referencePics[newRefs]=m_EhGOPList[layerIdx][curGOP].m_referencePics[i]; m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_usedByCurrPic[newRefs]=m_EhGOPList[layerIdx][curGOP].m_usedByCurrPic[i]; newRefs++; } } Int numPrefRefs = m_EhGOPList[layerIdx][curGOP].m_numRefPicsActive; for(Int offset = -1; offset>-checkGOP; offset--) { //step backwards in coding order and include any extra available pictures we might find useful to replace the ones with POC < 0. Int offGOP = (checkGOP-1+offset)%m_iGOPSize; Int offPOC = ((checkGOP-1+offset)/m_iGOPSize)*m_iGOPSize + m_EhGOPList[layerIdx][offGOP].m_POC; if(offPOC>=0&&m_EhGOPList[layerIdx][offGOP].m_temporalId<=m_EhGOPList[layerIdx][curGOP].m_temporalId) { Bool newRef=false; for(Int i=0; i0) { insertPoint = j; break; } } Int prev = offPOC-curPOC; Int prevUsed = m_EhGOPList[layerIdx][offGOP].m_temporalId<=m_EhGOPList[layerIdx][curGOP].m_temporalId; for(Int j=insertPoint; j=numPrefRefs) { break; } } m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_numRefPics=newRefs; m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_POC = curPOC; if (m_extraRPSs[layerIdx] == 0) { m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_interRPSPrediction = 0; m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_numRefIdc = 0; } else { Int rIdx = m_iGOPSize + m_extraRPSs[layerIdx] - 1; Int refPOC = m_EhGOPList[layerIdx][rIdx].m_POC; Int refPics = m_EhGOPList[layerIdx][rIdx].m_numRefPics; Int newIdc=0; for(Int i = 0; i<= refPics; i++) { Int deltaPOC = ((i != refPics)? m_EhGOPList[layerIdx][rIdx].m_referencePics[i] : 0); // check if the reference abs POC is >= 0 Int absPOCref = refPOC+deltaPOC; Int refIdc = 0; for (Int j = 0; j < m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_numRefPics; j++) { if ( (absPOCref - curPOC) == m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_referencePics[j]) { if (m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_usedByCurrPic[j]) { refIdc = 1; } else { refIdc = 2; } } } m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_refIdc[newIdc]=refIdc; newIdc++; } m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_interRPSPrediction = 1; m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_numRefIdc = newIdc; m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_deltaRPS = refPOC - m_EhGOPList[layerIdx][m_iGOPSize+m_extraRPSs[layerIdx]].m_POC; } curGOP=m_iGOPSize+m_extraRPSs[layerIdx]; m_extraRPSs[layerIdx]++; } numRefs=0; for(Int i = 0; i< m_EhGOPList[layerIdx][curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_EhGOPList[layerIdx][curGOP].m_referencePics[i]; if(absPOC >= 0) { refList[numRefs]=absPOC; numRefs++; } } refList[numRefs]=curPOC; numRefs++; } checkGOP++; } xConfirmPara(errorGOP,"Invalid GOP structure given"); } #endif m_maxTempLayer = 1; for(Int i=0; i= m_maxTempLayer) { m_maxTempLayer = m_GOPList[i].m_temporalId+1; } xConfirmPara(m_GOPList[i].m_sliceType!='B' && m_GOPList[i].m_sliceType!='P' && m_GOPList[i].m_sliceType!='I', "Slice type must be equal to B or P or I"); } #if Q0108_TSA_STSA if( layerIdx > 0 ) { m_EhMaxTempLayer[layerIdx] = 1; for(Int i=0; i= m_EhMaxTempLayer[layerIdx] ) { m_EhMaxTempLayer[layerIdx] = m_EhGOPList[layerIdx][i].m_temporalId; } xConfirmPara(m_GOPList[i].m_sliceType!='B'&&m_GOPList[i].m_sliceType!='P'&&m_GOPList[i].m_sliceType!='I', "Slice type must be equal to B or P or I"); } } #endif for(Int i=0; i m_maxDecPicBuffering[m_GOPList[i].m_temporalId]) { m_maxDecPicBuffering[m_GOPList[i].m_temporalId] = m_GOPList[i].m_numRefPics + 1; } Int highestDecodingNumberWithLowerPOC = 0; for(Int j=0; j m_GOPList[i].m_POC) { numReorder++; } } if(numReorder > m_numReorderPics[m_GOPList[i].m_temporalId]) { m_numReorderPics[m_GOPList[i].m_temporalId] = numReorder; } } for(Int i=0; i m_maxDecPicBuffering[i] - 1) { m_maxDecPicBuffering[i] = m_numReorderPics[i] + 1; } // a lower layer can not have higher value of m_uiMaxDecPicBuffering than a higher layer if(m_maxDecPicBuffering[i+1] < m_maxDecPicBuffering[i]) { m_maxDecPicBuffering[i+1] = m_maxDecPicBuffering[i]; } } // the value of num_reorder_pics[ i ] shall be in the range of 0 to max_dec_pic_buffering[ i ] - 1, inclusive if(m_numReorderPics[MAX_TLAYER-1] > m_maxDecPicBuffering[MAX_TLAYER-1] - 1) { m_maxDecPicBuffering[MAX_TLAYER-1] = m_numReorderPics[MAX_TLAYER-1] + 1; } #if SVC_EXTENSION // ToDo: it should be checked for the case when parameters are different for the layers Int m_iSourceWidth = m_acLayerCfg[layerIdx].m_iSourceWidth; Int m_iSourceHeight = m_acLayerCfg[layerIdx].m_iSourceHeight; #if LAYER_CTB Int m_uiMaxCUWidth = m_acLayerCfg[layerIdx].m_uiMaxCUWidth; Int m_uiMaxCUHeight = m_acLayerCfg[layerIdx].m_uiMaxCUHeight; #endif Bool tileFlag = (m_numTileColumnsMinus1 > 0 || m_numTileRowsMinus1 > 0 ); Int m_iWaveFrontSynchro = m_acLayerCfg[layerIdx].m_waveFrontSynchro; xConfirmPara( tileFlag && m_iWaveFrontSynchro, "Tile and Wavefront can not be applied together"); #endif if(m_vuiParametersPresentFlag && m_bitstreamRestrictionFlag) { Int PicSizeInSamplesY = m_iSourceWidth * m_iSourceHeight; if(tileFlag) { Int maxTileWidth = 0; Int maxTileHeight = 0; Int widthInCU = (m_iSourceWidth % m_uiMaxCUWidth) ? m_iSourceWidth/m_uiMaxCUWidth + 1: m_iSourceWidth/m_uiMaxCUWidth; Int heightInCU = (m_iSourceHeight % m_uiMaxCUHeight) ? m_iSourceHeight/m_uiMaxCUHeight + 1: m_iSourceHeight/m_uiMaxCUHeight; if(m_tileUniformSpacingFlag) { maxTileWidth = m_uiMaxCUWidth*((widthInCU+m_numTileColumnsMinus1)/(m_numTileColumnsMinus1+1)); maxTileHeight = m_uiMaxCUHeight*((heightInCU+m_numTileRowsMinus1)/(m_numTileRowsMinus1+1)); // if only the last tile-row is one treeblock higher than the others // the maxTileHeight becomes smaller if the last row of treeblocks has lower height than the others if(!((heightInCU-1)%(m_numTileRowsMinus1+1))) { maxTileHeight = maxTileHeight - m_uiMaxCUHeight + (m_iSourceHeight % m_uiMaxCUHeight); } // if only the last tile-column is one treeblock wider than the others // the maxTileWidth becomes smaller if the last column of treeblocks has lower width than the others if(!((widthInCU-1)%(m_numTileColumnsMinus1+1))) { maxTileWidth = maxTileWidth - m_uiMaxCUWidth + (m_iSourceWidth % m_uiMaxCUWidth); } } else // not uniform spacing { if(m_numTileColumnsMinus1<1) { maxTileWidth = m_iSourceWidth; } else { Int accColumnWidth = 0; for(Int col=0; col<(m_numTileColumnsMinus1); col++) { maxTileWidth = m_tileColumnWidth[col]>maxTileWidth ? m_tileColumnWidth[col]:maxTileWidth; accColumnWidth += m_tileColumnWidth[col]; } maxTileWidth = (widthInCU-accColumnWidth)>maxTileWidth ? m_uiMaxCUWidth*(widthInCU-accColumnWidth):m_uiMaxCUWidth*maxTileWidth; } if(m_numTileRowsMinus1<1) { maxTileHeight = m_iSourceHeight; } else { Int accRowHeight = 0; for(Int row=0; row<(m_numTileRowsMinus1); row++) { maxTileHeight = m_tileRowHeight[row]>maxTileHeight ? m_tileRowHeight[row]:maxTileHeight; accRowHeight += m_tileRowHeight[row]; } maxTileHeight = (heightInCU-accRowHeight)>maxTileHeight ? m_uiMaxCUHeight*(heightInCU-accRowHeight):m_uiMaxCUHeight*maxTileHeight; } } Int maxSizeInSamplesY = maxTileWidth*maxTileHeight; m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/maxSizeInSamplesY-4; } else if(m_iWaveFrontSynchro) { m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/((2*m_iSourceHeight+m_iSourceWidth)*m_uiMaxCUHeight)-4; } else if(m_sliceMode == FIXED_NUMBER_OF_CTU) { m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/(m_sliceArgument*m_uiMaxCUWidth*m_uiMaxCUHeight)-4; } else { m_minSpatialSegmentationIdc = 0; } } #if !SVC_EXTENSION xConfirmPara( m_iWaveFrontSynchro < 0, "WaveFrontSynchro cannot be negative" ); xConfirmPara( m_iWaveFrontSubstreams <= 0, "WaveFrontSubstreams must be positive" ); xConfirmPara( m_iWaveFrontSubstreams > 1 && !m_iWaveFrontSynchro, "Must have WaveFrontSynchro > 0 in order to have WaveFrontSubstreams > 1" ); #endif xConfirmPara( m_decodedPictureHashSEIEnabled<0 || m_decodedPictureHashSEIEnabled>3, "this hash type is not correct!\n"); if (m_toneMappingInfoSEIEnabled) { xConfirmPara( m_toneMapCodedDataBitDepth < 8 || m_toneMapCodedDataBitDepth > 14 , "SEIToneMapCodedDataBitDepth must be in rage 8 to 14"); xConfirmPara( m_toneMapTargetBitDepth < 1 || (m_toneMapTargetBitDepth > 16 && m_toneMapTargetBitDepth < 255) , "SEIToneMapTargetBitDepth must be in rage 1 to 16 or equal to 255"); xConfirmPara( m_toneMapModelId < 0 || m_toneMapModelId > 4 , "SEIToneMapModelId must be in rage 0 to 4"); xConfirmPara( m_cameraIsoSpeedValue == 0, "SEIToneMapCameraIsoSpeedValue shall not be equal to 0"); xConfirmPara( m_exposureIndexValue == 0, "SEIToneMapExposureIndexValue shall not be equal to 0"); xConfirmPara( m_extendedRangeWhiteLevel < 100, "SEIToneMapExtendedRangeWhiteLevel should be greater than or equal to 100"); xConfirmPara( m_nominalBlackLevelLumaCodeValue >= m_nominalWhiteLevelLumaCodeValue, "SEIToneMapNominalWhiteLevelLumaCodeValue shall be greater than SEIToneMapNominalBlackLevelLumaCodeValue"); xConfirmPara( m_extendedWhiteLevelLumaCodeValue < m_nominalWhiteLevelLumaCodeValue, "SEIToneMapExtendedWhiteLevelLumaCodeValue shall be greater than or equal to SEIToneMapNominalWhiteLevelLumaCodeValue"); } if (m_kneeSEIEnabled && !m_kneeSEICancelFlag) { xConfirmPara( m_kneeSEINumKneePointsMinus1 < 0 || m_kneeSEINumKneePointsMinus1 > 998, "SEIKneeFunctionNumKneePointsMinus1 must be in the range of 0 to 998"); for ( UInt i=0; i<=m_kneeSEINumKneePointsMinus1; i++ ){ xConfirmPara( m_kneeSEIInputKneePoint[i] < 1 || m_kneeSEIInputKneePoint[i] > 999, "SEIKneeFunctionInputKneePointValue must be in the range of 1 to 999"); xConfirmPara( m_kneeSEIOutputKneePoint[i] < 0 || m_kneeSEIOutputKneePoint[i] > 1000, "SEIKneeFunctionInputKneePointValue must be in the range of 0 to 1000"); if ( i > 0 ) { xConfirmPara( m_kneeSEIInputKneePoint[i-1] >= m_kneeSEIInputKneePoint[i], "The i-th SEIKneeFunctionInputKneePointValue must be greater than the (i-1)-th value"); xConfirmPara( m_kneeSEIOutputKneePoint[i-1] > m_kneeSEIOutputKneePoint[i], "The i-th SEIKneeFunctionOutputKneePointValue must be greater than or equal to the (i-1)-th value"); } } } #if P0123_ALPHA_CHANNEL_SEI if( m_alphaSEIEnabled && !m_alphaCancelFlag ) { xConfirmPara(0 < m_alphaUseIdc || m_alphaUseIdc > 2, "SEIAlphaUseIdc greater than 2 is reserved for future use by ITU-T | ISO/IEC"); xConfirmPara(m_alphaBitDepthMinus8 < 0 || m_alphaBitDepthMinus8 > 7, "SEIAlphaBitDepthMinus8 shall be in the range 0 to 7 inclusive"); } #endif #if Q0096_OVERLAY_SEI if( m_overlaySEIEnabled && !m_overlayInfoCancelFlag ) { xConfirmPara( m_overlayContentAuxIdMinus128 < 0 || m_overlayContentAuxIdMinus128 > 31, "SEIOverlayContentAuxIdMinus128 must be in the range of 0 to 31"); xConfirmPara( m_overlayLabelAuxIdMinus128 < 0 || m_overlayLabelAuxIdMinus128 > 31, "SEIOverlayLabelAuxIdMinus128 must be in the range of 0 to 31"); xConfirmPara( m_overlayAlphaAuxIdMinus128 < 0 || m_overlayAlphaAuxIdMinus128 > 31, "SEIOverlayAlphaAuxIdMinus128 must be in the range of 0 to 31"); xConfirmPara( m_numOverlaysMinus1 < 0 || m_numOverlaysMinus1 > 15, "SEIOverlayNumOverlaysMinus1 must be in the range of 0 to 15"); for (Int i=0 ; i<=m_numOverlaysMinus1 ; i++ ) { xConfirmPara( m_overlayIdx[i] < 0 || m_overlayIdx[i] > 255, "SEIOverlayIdx must be in the range of 0 to 255"); xConfirmPara( m_numOverlayElementsMinus1[i] < 0 || m_numOverlayElementsMinus1[i] > 255, "SEIOverlayNumElementsMinus1 must be in the range of 0 to 255"); } } #endif #if Q0074_COLOUR_REMAPPING_SEI #if !SVC_EXTENSION if ( m_colourRemapSEIFile && !m_colourRemapSEICancelFlag ) { xConfirmPara( m_colourRemapSEIInputBitDepth < 8 || m_colourRemapSEIInputBitDepth > 16 , "colour_remap_input_bit_depth shall be in the range of 8 to 16, inclusive"); xConfirmPara( m_colourRemapSEIBitDepth < 8 || m_colourRemapSEIBitDepth > 16, "colour_remap_bit_depth shall be in the range of 8 to 16, inclusive"); for( Int c=0 ; c<3 ; c++) { xConfirmPara( m_colourRemapSEIPreLutNumValMinus1[c] < 0 || m_colourRemapSEIPreLutNumValMinus1[c] > 32, "pre_lut_num_val_minus1[c] shall be in the range of 0 to 32, inclusive"); if( m_colourRemapSEIPreLutNumValMinus1[c]>0 ) for( Int i=0 ; i<=m_colourRemapSEIPreLutNumValMinus1[c] ; i++) { xConfirmPara( m_colourRemapSEIPreLutCodedValue[c][i] < 0 || m_colourRemapSEIPreLutCodedValue[c][i] > ((1< ((1< 32, "post_lut_num_val_minus1[c] shall be in the range of 0 to 32, inclusive"); if( m_colourRemapSEIPostLutNumValMinus1[c]>0 ) for( Int i=0 ; i<=m_colourRemapSEIPostLutNumValMinus1[c] ; i++) { xConfirmPara( m_colourRemapSEIPostLutCodedValue[c][i] < 0 || m_colourRemapSEIPostLutCodedValue[c][i] > ((1< ((1< 15, "log2_matrix_denom shall be in the range of 0 to 15, inclusive"); for( Int c=0 ; c<3 ; c++) for( Int i=0 ; i<3 ; i++) xConfirmPara( m_colourRemapSEICoeffs[c][i] < -32768 || m_colourRemapSEICoeffs[c][i] > 32767, "colour_remap_coeffs[c][i] shall be in the range of -32768 and 32767, inclusive"); } } #endif #endif #if RC_SHVC_HARMONIZATION if ( m_acLayerCfg[layerIdx].m_RCEnableRateControl ) { if ( m_acLayerCfg[layerIdx].m_RCForceIntraQP ) { if ( m_acLayerCfg[layerIdx].m_RCInitialQP == 0 ) { printf( "\nInitial QP for rate control is not specified. Reset not to use force intra QP!" ); m_acLayerCfg[layerIdx].m_RCForceIntraQP = false; } } } xConfirmPara( m_uiDeltaQpRD > 0, "Rate control cannot be used together with slice level multiple-QP optimization!\n" ); #else if ( m_RCEnableRateControl ) { if ( m_RCForceIntraQP ) { if ( m_RCInitialQP == 0 ) { printf( "\nInitial QP for rate control is not specified. Reset not to use force intra QP!" ); m_RCForceIntraQP = false; } } xConfirmPara( m_uiDeltaQpRD > 0, "Rate control cannot be used together with slice level multiple-QP optimization!\n" ); } #endif xConfirmPara(!m_TransquantBypassEnableFlag && m_CUTransquantBypassFlagForce, "CUTransquantBypassFlagForce cannot be 1 when TransquantBypassEnableFlag is 0"); xConfirmPara(m_log2ParallelMergeLevel < 2, "Log2ParallelMergeLevel should be larger than or equal to 2"); if (m_framePackingSEIEnabled) { xConfirmPara(m_framePackingSEIType < 3 || m_framePackingSEIType > 5 , "SEIFramePackingType must be in rage 3 to 5"); } if (m_segmentedRectFramePackingSEIEnabled) { xConfirmPara(m_framePackingSEIEnabled > 0 , "SEISegmentedRectFramePacking must be 0 when SEIFramePacking is 1"); } if((m_numTileColumnsMinus1 <= 0) && (m_numTileRowsMinus1 <= 0) && m_tmctsSEIEnabled) { printf("SEITempMotionConstrainedTileSets is set to false to disable 'temporal_motion_constrained_tile_sets' SEI because there are no tiles enabled\n"); m_tmctsSEIEnabled = false; } if(m_timeCodeSEIEnabled) { xConfirmPara(m_timeCodeSEINumTs > MAX_TIMECODE_SEI_SETS, "Number of time sets cannot exceed 3"); } #if SVC_EXTENSION #if VPS_EXTN_DIRECT_REF_LAYERS xConfirmPara( (m_acLayerCfg[0].m_numSamplePredRefLayers != 0) && (m_acLayerCfg[0].m_numSamplePredRefLayers != -1), "Layer 0 cannot have any reference layers" ); // NOTE: m_numSamplePredRefLayers (for any layer) could be -1 (not signalled in cfg), in which case only the "previous layer" would be taken for reference if( layerIdx > 0 ) { xConfirmPara(m_acLayerCfg[layerIdx].m_numSamplePredRefLayers > layerIdx, "Cannot reference more layers than before current layer"); for(Int i = 0; i < m_acLayerCfg[layerIdx].m_numSamplePredRefLayers; i++) { xConfirmPara(m_acLayerCfg[layerIdx].m_samplePredRefLayerIds[i] > layerIdx, "Cannot reference higher layers"); xConfirmPara(m_acLayerCfg[layerIdx].m_samplePredRefLayerIds[i] == layerIdx, "Cannot reference the current layer itself"); } } xConfirmPara( (m_acLayerCfg[0].m_numMotionPredRefLayers != 0) && (m_acLayerCfg[0].m_numMotionPredRefLayers != -1), "Layer 0 cannot have any reference layers" ); // NOTE: m_numMotionPredRefLayers (for any layer) could be -1 (not signalled in cfg), in which case only the "previous layer" would be taken for reference if( layerIdx > 0 ) { xConfirmPara(m_acLayerCfg[layerIdx].m_numMotionPredRefLayers > layerIdx, "Cannot reference more layers than before current layer"); for(Int i = 0; i < m_acLayerCfg[layerIdx].m_numMotionPredRefLayers; i++) { xConfirmPara(m_acLayerCfg[layerIdx].m_motionPredRefLayerIds[i] > layerIdx, "Cannot reference higher layers"); xConfirmPara(m_acLayerCfg[layerIdx].m_motionPredRefLayerIds[i] == layerIdx, "Cannot reference the current layer itself"); } } xConfirmPara( (m_acLayerCfg[0].m_numActiveRefLayers != 0) && (m_acLayerCfg[0].m_numActiveRefLayers != -1), "Layer 0 cannot have any active reference layers" ); // NOTE: m_numActiveRefLayers (for any layer) could be -1 (not signalled in cfg), in which case only the "previous layer" would be taken for reference if( layerIdx > 0 ) { Bool predEnabledFlag[MAX_LAYERS]; for (Int refLayer = 0; refLayer < layerIdx; refLayer++) { predEnabledFlag[refLayer] = false; } for(Int i = 0; i < m_acLayerCfg[layerIdx].m_numSamplePredRefLayers; i++) { predEnabledFlag[m_acLayerCfg[layerIdx].m_samplePredRefLayerIds[i]] = true; } for(Int i = 0; i < m_acLayerCfg[layerIdx].m_numMotionPredRefLayers; i++) { predEnabledFlag[m_acLayerCfg[layerIdx].m_motionPredRefLayerIds[i]] = true; } Int numDirectRefLayers = 0; for (Int refLayer = 0; refLayer < layerIdx; refLayer++) { if (predEnabledFlag[refLayer] == true) numDirectRefLayers++; } xConfirmPara(m_acLayerCfg[layerIdx].m_numActiveRefLayers > numDirectRefLayers, "Cannot reference more layers than NumDirectRefLayers"); for(Int i = 0; i < m_acLayerCfg[layerIdx].m_numActiveRefLayers; i++) { xConfirmPara(m_acLayerCfg[layerIdx].m_predLayerIds[i] >= numDirectRefLayers, "Cannot reference higher layers"); } } #endif //VPS_EXTN_DIRECT_REF_LAYERS #if M0040_ADAPTIVE_RESOLUTION_CHANGE if (m_adaptiveResolutionChange > 0) { xConfirmPara(m_numLayers != 2, "Adaptive resolution change works with 2 layers only"); xConfirmPara(m_acLayerCfg[1].m_iIntraPeriod == 0 || (m_adaptiveResolutionChange % m_acLayerCfg[1].m_iIntraPeriod) != 0, "Adaptive resolution change must happen at enhancement layer RAP picture"); } #endif #if HIGHER_LAYER_IRAP_SKIP_FLAG if (m_adaptiveResolutionChange > 0) { xConfirmPara(m_crossLayerIrapAlignFlag != 0, "Cross layer IRAP alignment must be disabled when using adaptive resolution change."); } if (m_skipPictureAtArcSwitch) { xConfirmPara(m_adaptiveResolutionChange <= 0, "Skip picture at ARC switching only works when Adaptive Resolution Change is active (AdaptiveResolutionChange > 0)"); } #endif if( layerIdx < MAX_LAYERS-1 ) { xConfirmPara(m_acLayerCfg[layerIdx].m_maxTidIlRefPicsPlus1 < 0 || m_acLayerCfg[layerIdx].m_maxTidIlRefPicsPlus1 > 7, "MaxTidIlRefPicsPlus1 must be in range 0 to 7"); } #if AUXILIARY_PICTURES if( layerIdx < MAX_LAYERS-1 ) { #if R0062_AUX_PSEUDO_MONOCHROME xConfirmPara(m_acLayerCfg[layerIdx].m_auxId < 0 || m_acLayerCfg[layerIdx].m_auxId > 2, "AuxId must be in range 0 to 2"); #else xConfirmPara(m_acLayerCfg[layerIdx].m_auxId < 0 || m_acLayerCfg[layerIdx].m_auxId > 4, "AuxId must be in range 0 to 4"); xConfirmPara(m_acLayerCfg[layerIdx].m_auxId > 0 && m_acLayerCfg[layerIdx].m_chromaFormatIDC != CHROMA_400, "Auxiliary picture must be monochrome picture"); #endif } #endif #if Q0048_CGS_3D_ASYMLUT xConfirmPara( m_nCGSFlag < 0 || m_nCGSFlag > 1 , "0<=CGS<=1" ); #endif #endif //SVC_EXTENSION #undef xConfirmPara if (check_failed) { exit(EXIT_FAILURE); } } /** \todo use of global variables should be removed later */ #if LAYER_CTB Void TAppEncCfg::xSetGlobal(UInt layerId) { // set max CU width & height g_auiLayerMaxCUWidth[layerId] = m_acLayerCfg[layerId].m_uiMaxCUWidth; g_auiLayerMaxCUHeight[layerId] = m_acLayerCfg[layerId].m_uiMaxCUHeight; // compute actual CU depth with respect to config depth and max transform size g_auiLayerAddCUDepth[layerId] = 0; while( (m_acLayerCfg[layerId].m_uiMaxCUWidth>>m_acLayerCfg[layerId].m_uiMaxCUDepth) > ( 1 << ( m_acLayerCfg[layerId].m_uiQuadtreeTULog2MinSize + g_auiLayerAddCUDepth[layerId] ) ) ) g_auiLayerAddCUDepth[layerId]++; m_acLayerCfg[layerId].m_uiMaxCUDepth += g_auiLayerAddCUDepth[layerId]; g_auiLayerAddCUDepth[layerId]++; g_auiLayerMaxCUDepth[layerId] = m_acLayerCfg[layerId].m_uiMaxCUDepth; #if O0194_DIFFERENT_BITDEPTH_EL_BL // set internal bit-depth to constant value to make sure to be updated later g_bitDepthY = -1; g_bitDepthC = -1; g_uiPCMBitDepthLuma = -1; g_uiPCMBitDepthChroma = -1; #else // set internal bit-depth and constants g_bitDepthY = m_internalBitDepthY; g_bitDepthC = m_internalBitDepthC; g_uiPCMBitDepthLuma = m_bPCMInputBitDepthFlag ? m_inputBitDepthY : m_internalBitDepthY; g_uiPCMBitDepthChroma = m_bPCMInputBitDepthFlag ? m_inputBitDepthC : m_internalBitDepthC; #endif } #else Void TAppEncCfg::xSetGlobal() { #if SVC_EXTENSION // Check for layerIdx equal to 0, it has to pe extended to other layers. UInt layerIdx = 0; Bool m_useExtendedPrecision = m_acLayerCfg[layerIdx].m_useExtendedPrecision; Int m_internalBitDepth[] = {m_acLayerCfg[layerIdx].m_internalBitDepth[CHANNEL_TYPE_LUMA], m_acLayerCfg[layerIdx].m_internalBitDepth[CHANNEL_TYPE_CHROMA]}; Int m_MSBExtendedBitDepth[] = {m_acLayerCfg[layerIdx].m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA], m_acLayerCfg[layerIdx].m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA]}; ChromaFormat m_chromaFormatIDC = m_acLayerCfg[layerIdx].m_chromaFormatIDC; #endif // set max CU width & height g_uiMaxCUWidth = m_uiMaxCUWidth; g_uiMaxCUHeight = m_uiMaxCUHeight; // compute actual CU depth with respect to config depth and max transform size g_uiAddCUDepth = 0; while( (m_uiMaxCUWidth>>m_uiMaxCUDepth) > ( 1 << ( m_uiQuadtreeTULog2MinSize + g_uiAddCUDepth ) ) ) g_uiAddCUDepth++; g_uiAddCUDepth+=getMaxCUDepthOffset(m_chromaFormatIDC, m_uiQuadtreeTULog2MinSize); // if minimum TU larger than 4x4, allow for additional part indices for 4:2:2 SubTUs. m_uiMaxCUDepth += g_uiAddCUDepth; g_uiAddCUDepth++; g_uiMaxCUDepth = m_uiMaxCUDepth; // set internal bit-depth and constants for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++) { #if O0043_BEST_EFFORT_DECODING g_bitDepthInStream[channelType] = g_bitDepth[channelType] = m_internalBitDepth[channelType]; #else g_bitDepth [channelType] = m_internalBitDepth[channelType]; #endif g_PCMBitDepth[channelType] = m_bPCMInputBitDepthFlag ? m_MSBExtendedBitDepth[channelType] : m_internalBitDepth[channelType]; if (m_useExtendedPrecision) g_maxTrDynamicRange[channelType] = std::max(15, (g_bitDepth[channelType] + 6)); else g_maxTrDynamicRange[channelType] = 15; } } #endif const Char *profileToString(const Profile::Name profile) { static const UInt numberOfProfiles = sizeof(strToProfile)/sizeof(*strToProfile); for (UInt profileIndex = 0; profileIndex < numberOfProfiles; profileIndex++) { if (strToProfile[profileIndex].value == profile) return strToProfile[profileIndex].str; } //if we get here, we didn't find this profile in the list - so there is an error std::cerr << "ERROR: Unknown profile \"" << profile << "\" in profileToString" << std::endl; assert(false); exit(1); return ""; } Void TAppEncCfg::xPrintParameter() { printf("\n"); #if SVC_EXTENSION printf("Total number of layers : %d\n", m_numLayers ); printf("Multiview : %d\n", m_scalabilityMask[VIEW_ORDER_INDEX] ); printf("Scalable : %d\n", m_scalabilityMask[SCALABILITY_ID] ); #if AVC_BASE #if VPS_AVC_BL_FLAG_REMOVAL printf("Base layer : %s\n", m_nonHEVCBaseLayerFlag ? "Non-HEVC" : "HEVC"); #else printf("Base layer : %s\n", m_avcBaseLayerFlag ? "AVC" : "HEVC"); #endif #endif #if AUXILIARY_PICTURES printf("Auxiliary pictures : %d\n", m_scalabilityMask[AUX_ID] ); #endif #if M0040_ADAPTIVE_RESOLUTION_CHANGE printf("Adaptive Resolution Change : %d\n", m_adaptiveResolutionChange ); #endif #if HIGHER_LAYER_IRAP_SKIP_FLAG printf("Skip picture at ARC switch : %d\n", m_skipPictureAtArcSwitch ); #endif #if O0223_PICTURE_TYPES_ALIGN_FLAG printf("Align picture type : %d\n", m_crossLayerPictureTypeAlignFlag ); #endif printf("Cross layer IRAP alignment : %d\n", m_crossLayerIrapAlignFlag ); #if P0068_CROSS_LAYER_ALIGNED_IDR_ONLY_FOR_IRAP_FLAG printf("IDR only for IRAP : %d\n", m_crossLayerAlignedIdrOnlyFlag ); #endif #if O0194_WEIGHTED_PREDICTION_CGS printf("InterLayerWeightedPred : %d\n", m_useInterLayerWeightedPred ); #endif #if O0215_PHASE_ALIGNMENT printf("Cross-layer sample alignment : %d\n", m_phaseAlignFlag); #endif printf("\n"); for(UInt layer=0; layer 3 || chromaFormatIdx>3) ? NONE : validRExtProfileNames[intraIdx][bitDepthIdx][chromaFormatIdx]; std::string rextSubProfile; if (validProfileName!=NONE) rextSubProfile=enumToString(strToExtendedProfile, sizeof(strToExtendedProfile)/sizeof(*strToExtendedProfile), validProfileName); if (rextSubProfile == "main_444_16") rextSubProfile="main_444_16 [NON STANDARD]"; printf("Profile : %s (%s)\n", profileToString(m_profile), (rextSubProfile.empty())?"INVALID REXT PROFILE":rextSubProfile.c_str() ); } else { printf("Profile : %s\n", profileToString(m_profile) ); } #endif #if !LAYER_CTB printf("CU size / depth : %d / %d\n", m_uiMaxCUWidth, m_uiMaxCUDepth ); printf("RQT trans. size (min / max) : %d / %d\n", 1 << m_uiQuadtreeTULog2MinSize, 1 << m_uiQuadtreeTULog2MaxSize ); printf("Max RQT depth inter : %d\n", m_uiQuadtreeTUMaxDepthInter); printf("Max RQT depth intra : %d\n", m_uiQuadtreeTUMaxDepthIntra); #endif printf("Min PCM size : %d\n", 1 << m_uiPCMLog2MinSize); printf("Motion search range : %d\n", m_iSearchRange ); #if !SVC_EXTENSION printf("Intra period : %d\n", m_iIntraPeriod ); #endif printf("Decoding refresh type : %d\n", m_iDecodingRefreshType ); #if !SVC_EXTENSION printf("QP : %5.2f\n", m_fQP ); #endif printf("Max dQP signaling depth : %d\n", m_iMaxCuDQPDepth); printf("Cb QP Offset : %d\n", m_cbQpOffset ); printf("Cr QP Offset : %d\n", m_crQpOffset); printf("Max CU chroma QP adjustment depth : %d\n", m_maxCUChromaQpAdjustmentDepth); printf("QP adaptation : %d (range=%d)\n", m_bUseAdaptiveQP, (m_bUseAdaptiveQP ? m_iQPAdaptationRange : 0) ); printf("GOP size : %d\n", m_iGOPSize ); #if !O0194_DIFFERENT_BITDEPTH_EL_BL printf("Input bit depth : (Y:%d, C:%d)\n", m_inputBitDepth[CHANNEL_TYPE_LUMA], m_inputBitDepth[CHANNEL_TYPE_CHROMA] ); printf("MSB-extended bit depth : (Y:%d, C:%d)\n", m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA], m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA] ); printf("Internal bit depth : (Y:%d, C:%d)\n", m_internalBitDepth[CHANNEL_TYPE_LUMA], m_internalBitDepth[CHANNEL_TYPE_CHROMA] ); printf("PCM sample bit depth : (Y:%d, C:%d)\n", g_PCMBitDepth[CHANNEL_TYPE_LUMA], g_PCMBitDepth[CHANNEL_TYPE_CHROMA] ); printf("Extended precision processing : %s\n", (m_useExtendedPrecision ? "Enabled" : "Disabled") ); #endif printf("Intra reference smoothing : %s\n", (m_enableIntraReferenceSmoothing ? "Enabled" : "Disabled") ); printf("Implicit residual DPCM : %s\n", (m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT] ? "Enabled" : "Disabled") ); printf("Explicit residual DPCM : %s\n", (m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT] ? "Enabled" : "Disabled") ); printf("Residual rotation : %s\n", (m_useResidualRotation ? "Enabled" : "Disabled") ); printf("Single significance map context : %s\n", (m_useSingleSignificanceMapContext ? "Enabled" : "Disabled") ); printf("Cross-component prediction : %s\n", (m_useCrossComponentPrediction ? (m_reconBasedCrossCPredictionEstimate ? "Enabled (reconstructed-residual-based estimate)" : "Enabled (encoder-side-residual-based estimate)") : "Disabled") ); #if !O0194_DIFFERENT_BITDEPTH_EL_BL printf("High-precision prediction weight : %s\n", (m_useHighPrecisionPredictionWeighting ? "Enabled" : "Disabled") ); #endif printf("Golomb-Rice parameter adaptation : %s\n", (m_useGolombRiceParameterAdaptation ? "Enabled" : "Disabled") ); printf("CABAC bypass bit alignment : %s\n", (m_alignCABACBeforeBypass ? "Enabled" : "Disabled") ); if (m_bUseSAO) { printf("Sao Luma Offset bit shifts : %d\n", m_saoOffsetBitShift[CHANNEL_TYPE_LUMA]); printf("Sao Chroma Offset bit shifts : %d\n", m_saoOffsetBitShift[CHANNEL_TYPE_CHROMA]); } switch (m_costMode) { case COST_STANDARD_LOSSY: printf("Cost function: : Lossy coding (default)\n"); break; case COST_SEQUENCE_LEVEL_LOSSLESS: printf("Cost function: : Sequence_level_lossless coding\n"); break; case COST_LOSSLESS_CODING: printf("Cost function: : Lossless coding with fixed QP of %d\n", LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP); break; case COST_MIXED_LOSSLESS_LOSSY_CODING: printf("Cost function: : Mixed_lossless_lossy coding with QP'=%d for lossless evaluation\n", LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP_PRIME); break; default: printf("Cost function: : Unknown\n"); break; } #if !RC_SHVC_HARMONIZATION printf("RateControl : %d\n", m_RCEnableRateControl ); if(m_RCEnableRateControl) { printf("TargetBitrate : %d\n", m_RCTargetBitrate ); printf("KeepHierarchicalBit : %d\n", m_RCKeepHierarchicalBit ); printf("LCULevelRC : %d\n", m_RCLCULevelRC ); printf("UseLCUSeparateModel : %d\n", m_RCUseLCUSeparateModel ); printf("InitialQP : %d\n", m_RCInitialQP ); printf("ForceIntraQP : %d\n", m_RCForceIntraQP ); } #endif printf("Max Num Merge Candidates : %d\n", m_maxNumMergeCand); printf("\n"); printf("TOOL CFG: "); #if !O0194_DIFFERENT_BITDEPTH_EL_BL printf("IBD:%d ", ((g_bitDepth[CHANNEL_TYPE_LUMA] > m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA]) || (g_bitDepth[CHANNEL_TYPE_CHROMA] > m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA]))); #endif printf("HAD:%d ", m_bUseHADME ); printf("RDQ:%d ", m_useRDOQ ); printf("RDQTS:%d ", m_useRDOQTS ); printf("RDpenalty:%d ", m_rdPenalty ); printf("SQP:%d ", m_uiDeltaQpRD ); printf("ASR:%d ", m_bUseASR ); printf("FEN:%d ", m_bUseFastEnc ); printf("ECU:%d ", m_bUseEarlyCU ); printf("FDM:%d ", m_useFastDecisionForMerge ); printf("CFM:%d ", m_bUseCbfFastMode ); printf("ESD:%d ", m_useEarlySkipDetection ); #if FAST_INTRA_SHVC printf("FIS:%d ", m_useFastIntraScalable ); #endif printf("RQT:%d ", 1 ); printf("TransformSkip:%d ", m_useTransformSkip ); printf("TransformSkipFast:%d ", m_useTransformSkipFast ); printf("TransformSkipLog2MaxSize:%d ", m_transformSkipLog2MaxSize); printf("Slice: M=%d ", m_sliceMode); if (m_sliceMode!=NO_SLICES) { printf("A=%d ", m_sliceArgument); } printf("SliceSegment: M=%d ",m_sliceSegmentMode); if (m_sliceSegmentMode!=NO_SLICES) { printf("A=%d ", m_sliceSegmentArgument); } printf("CIP:%d ", m_bUseConstrainedIntraPred); printf("SAO:%d ", (m_bUseSAO)?(1):(0)); #if !LAYER_CTB printf("PCM:%d ", (m_usePCM && (1< 0 ) { Char *arrayEntry; Int i = 0; *arr = new Int[numEntries]; #if OUTPUT_LAYER_SETS_CONFIG if( tempChar == NULL ) { arrayEntry = NULL; } else { arrayEntry = strtok( tempChar, " ,"); } #else arrayEntry = strtok( tempChar, " ,"); #endif while(arrayEntry != NULL) { if( i >= numEntries ) { printf( "%s: The number of entries specified is larger than the allowed number.\n", logString ); exit( EXIT_FAILURE ); } *( *arr + i ) = atoi( arrayEntry ); arrayEntry = strtok(NULL, " ,"); i++; } if( i < numEntries ) { printf( "%s: Some entries are not specified.\n", logString ); exit( EXIT_FAILURE ); } } else { *arr = NULL; } if( tempChar ) { free( tempChar ); tempChar = NULL; } } #if OUTPUT_LAYER_SETS_CONFIG Bool TAppEncCfg::scanStringToArray(string const cfgString, Int const numEntries, const char* logString, Int * const returnArray) { Int *tempArray = NULL; // For all layer sets cfgStringToArray( &tempArray, cfgString, numEntries, logString ); if(tempArray) { for(Int i = 0; i < numEntries; i++) { returnArray[i] = tempArray[i]; } delete [] tempArray; tempArray = NULL; return true; } return false; } Bool TAppEncCfg::scanStringToArray(string const cfgString, Int const numEntries, const char* logString, std::vector & returnVector) { Int *tempArray = NULL; // For all layer sets cfgStringToArray( &tempArray, cfgString, numEntries, logString ); if(tempArray) { returnVector.empty(); for(Int i = 0; i < numEntries; i++) { returnVector.push_back(tempArray[i]); } delete [] tempArray; tempArray = NULL; return true; } return false; } #endif #if R0235_SMALLEST_LAYER_ID #if OUTPUT_LAYER_SETS_CONFIG Void TAppEncCfg::cfgStringToArrayNumEntries(Int **arr, string const cfgString, Int &numEntries, const char* logString) { Char *tempChar = cfgString.empty() ? NULL : strdup(cfgString.c_str()); if (numEntries > 0) { Char *arrayEntry; Int i = 0; *arr = new Int[numEntries]; if (tempChar == NULL) { arrayEntry = NULL; } else { arrayEntry = strtok(tempChar, " ,"); } while (arrayEntry != NULL) { if (i >= numEntries) { printf("%s: The number of entries specified is larger than the allowed number.\n", logString); exit(EXIT_FAILURE); } *(*arr + i) = atoi(arrayEntry); arrayEntry = strtok(NULL, " ,"); i++; } numEntries = i; /* if (i < numEntries) { printf("%s: Some entries are not specified.\n", logString); exit(EXIT_FAILURE); } */ } else { *arr = NULL; } if (tempChar) { free(tempChar); tempChar = NULL; } } Bool TAppEncCfg::scanStringToArrayNumEntries(string const cfgString, Int &numEntries, const char* logString, std::vector & returnVector) { Int *tempArray = NULL; numEntries = MAX_LAYERS; // For all layer sets cfgStringToArrayNumEntries(&tempArray, cfgString, numEntries, logString); if (tempArray) { returnVector.empty(); for (Int i = 0; i < numEntries; i++) { returnVector.push_back(tempArray[i]); } delete[] tempArray; tempArray = NULL; return true; } return false; } #endif #endif // R0235 #endif //SVC_EXTENSION //! \}