/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2013, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TComTrQuant.cpp \brief transform and quantization class */ #include #include #include #include "TComTrQuant.h" #include "TComPic.h" #include "ContextTables.h" #define MAYBE_BUGFIX 1 typedef struct { Int iNNZbeforePos0; Double d64CodedLevelandDist; // distortion and level cost only Double d64UncodedDist; // all zero coded block distortion Double d64SigCost; Double d64SigCost_0; #if MAYBE_BUGFIX Void init() { iNNZbeforePos0 = 0; d64CodedLevelandDist = 0; d64UncodedDist = 0; d64SigCost = 0; d64SigCost_0 = 0; } #endif } coeffGroupRDStats; //! \ingroup TLibCommon //! \{ // ==================================================================================================================== // Constants // ==================================================================================================================== #define RDOQ_CHROMA 1 ///< use of RDOQ in chroma // ==================================================================================================================== // Tables // ==================================================================================================================== // RDOQ parameter // ==================================================================================================================== // Qp class member functions // ==================================================================================================================== QpParam::QpParam() { } // ==================================================================================================================== // TComTrQuant class member functions // ==================================================================================================================== TComTrQuant::TComTrQuant() { m_cQP.clear(); // allocate temporary buffers m_plTempCoeff = new Int[ MAX_CU_SIZE*MAX_CU_SIZE ]; // allocate bit estimation class (for RDOQ) m_pcEstBitsSbac = new estBitsSbacStruct; initScalingList(); } TComTrQuant::~TComTrQuant() { // delete temporary buffers if ( m_plTempCoeff ) { delete [] m_plTempCoeff; m_plTempCoeff = NULL; } // delete bit estimation class if ( m_pcEstBitsSbac ) { delete m_pcEstBitsSbac; } destroyScalingList(); } #if ADAPTIVE_QP_SELECTION Void TComTrQuant::storeSliceQpNext(TComSlice* pcSlice) { Int qpBase = pcSlice->getSliceQpBase(); Int sliceQpused = pcSlice->getSliceQp(); Int sliceQpnext; Double alpha = qpBase < 17 ? 0.5 : 1; Int cnt=0; for(Int u=1; u<=LEVEL_RANGE; u++) { cnt += m_sliceNsamples[u] ; } if( !m_useRDOQ ) { sliceQpused = qpBase; alpha = 0.5; } if( cnt > 120 ) { Double sum = 0; Int k = 0; for(Int u=1; u>shift_1st; } } /* Vertical transform */ if (uiTrSize==4) { if (uiMode != REG_DCT && g_aucDCTDSTMode_Vert[uiMode]) { iT = g_as_DST_MAT_4[0]; } else { iT = g_aiT4[0]; } } for (i=0; i>shift_2nd; } } } /** NxN inverse transform (2D) using brute force matrix multiplication (3 nested loops) * \param coeff pointer to input data (transform coefficients) * \param block pointer to output data (residual) * \param uiStride stride of output data * \param uiTrSize transform size (uiTrSize x uiTrSize) * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only */ void xITr(Int *coeff, Pel *block, UInt uiStride, UInt uiTrSize, UInt uiMode) { Int i,j,k,iSum; Int tmp[32*32]; const Short *iT; if (uiTrSize==4) { iT = g_aiT4[0]; } else if (uiTrSize==8) { iT = g_aiT8[0]; } else if (uiTrSize==16) { iT = g_aiT16[0]; } else if (uiTrSize==32) { iT = g_aiT32[0]; } else { assert(0); } Int shift_1st = SHIFT_INV_1ST; Int add_1st = 1<<(shift_1st-1); Int shift_2nd = SHIFT_INV_2ND - g_bitDepth-8; Int add_2nd = 1<<(shift_2nd-1); if (uiTrSize==4) { if (uiMode != REG_DCT && g_aucDCTDSTMode_Vert[uiMode] ) // Check for DCT or DST { iT = g_as_DST_MAT_4[0]; } } /* Horizontal transform */ for (i=0; i>shift_1st); // Clipping is normative } } if (uiTrSize==4) { if (uiMode != REG_DCT && g_aucDCTDSTMode_Hor[uiMode] ) // Check for DCT or DST { iT = g_as_DST_MAT_4[0]; } else { iT = g_aiT4[0]; } } /* Vertical transform */ for (i=0; i>shift_2nd); // Clipping is non-normative } } } #else //MATRIX_MULT /** 4x4 forward transform implemented using partial butterfly structure (1D) * \param src input data (residual) * \param dst output data (transform coefficients) * \param shift specifies right shift after 1D transform */ void partialButterfly4(Short *src,Short *dst,Int shift, Int line) { Int j; Int E[2],O[2]; Int add = 1<<(shift-1); for (j=0; j>shift; dst[2*line] = (g_aiT4[2][0]*E[0] + g_aiT4[2][1]*E[1] + add)>>shift; dst[line] = (g_aiT4[1][0]*O[0] + g_aiT4[1][1]*O[1] + add)>>shift; dst[3*line] = (g_aiT4[3][0]*O[0] + g_aiT4[3][1]*O[1] + add)>>shift; src += 4; dst ++; } } // Fast DST Algorithm. Full matrix multiplication for DST and Fast DST algorithm // give identical results void fastForwardDst(Short *block,Short *coeff,Int shift) // input block, output coeff { Int i, c[4]; Int rnd_factor = 1<<(shift-1); for (i=0; i<4; i++) { // Intermediate Variables c[0] = block[4*i+0] + block[4*i+3]; c[1] = block[4*i+1] + block[4*i+3]; c[2] = block[4*i+0] - block[4*i+1]; c[3] = 74* block[4*i+2]; coeff[ i] = ( 29 * c[0] + 55 * c[1] + c[3] + rnd_factor ) >> shift; coeff[ 4+i] = ( 74 * (block[4*i+0]+ block[4*i+1] - block[4*i+3]) + rnd_factor ) >> shift; coeff[ 8+i] = ( 29 * c[2] + 55 * c[0] - c[3] + rnd_factor ) >> shift; coeff[12+i] = ( 55 * c[2] - 29 * c[1] + c[3] + rnd_factor ) >> shift; } } void fastInverseDst(Short *tmp,Short *block,Int shift) // input tmp, output block { Int i, c[4]; Int rnd_factor = 1<<(shift-1); for (i=0; i<4; i++) { // Intermediate Variables c[0] = tmp[ i] + tmp[ 8+i]; c[1] = tmp[8+i] + tmp[12+i]; c[2] = tmp[ i] - tmp[12+i]; c[3] = 74* tmp[4+i]; block[4*i+0] = Clip3( -32768, 32767, ( 29 * c[0] + 55 * c[1] + c[3] + rnd_factor ) >> shift ); block[4*i+1] = Clip3( -32768, 32767, ( 55 * c[2] - 29 * c[1] + c[3] + rnd_factor ) >> shift ); block[4*i+2] = Clip3( -32768, 32767, ( 74 * (tmp[i] - tmp[8+i] + tmp[12+i]) + rnd_factor ) >> shift ); block[4*i+3] = Clip3( -32768, 32767, ( 55 * c[0] + 29 * c[2] - c[3] + rnd_factor ) >> shift ); } } void partialButterflyInverse4(Short *src,Short *dst,Int shift, Int line) { Int j; Int E[2],O[2]; Int add = 1<<(shift-1); for (j=0; j>shift ); dst[1] = Clip3( -32768, 32767, (E[1] + O[1] + add)>>shift ); dst[2] = Clip3( -32768, 32767, (E[1] - O[1] + add)>>shift ); dst[3] = Clip3( -32768, 32767, (E[0] - O[0] + add)>>shift ); src ++; dst += 4; } } void partialButterfly8(Short *src,Short *dst,Int shift, Int line) { Int j,k; Int E[4],O[4]; Int EE[2],EO[2]; Int add = 1<<(shift-1); for (j=0; j>shift; dst[4*line] = (g_aiT8[4][0]*EE[0] + g_aiT8[4][1]*EE[1] + add)>>shift; dst[2*line] = (g_aiT8[2][0]*EO[0] + g_aiT8[2][1]*EO[1] + add)>>shift; dst[6*line] = (g_aiT8[6][0]*EO[0] + g_aiT8[6][1]*EO[1] + add)>>shift; dst[line] = (g_aiT8[1][0]*O[0] + g_aiT8[1][1]*O[1] + g_aiT8[1][2]*O[2] + g_aiT8[1][3]*O[3] + add)>>shift; dst[3*line] = (g_aiT8[3][0]*O[0] + g_aiT8[3][1]*O[1] + g_aiT8[3][2]*O[2] + g_aiT8[3][3]*O[3] + add)>>shift; dst[5*line] = (g_aiT8[5][0]*O[0] + g_aiT8[5][1]*O[1] + g_aiT8[5][2]*O[2] + g_aiT8[5][3]*O[3] + add)>>shift; dst[7*line] = (g_aiT8[7][0]*O[0] + g_aiT8[7][1]*O[1] + g_aiT8[7][2]*O[2] + g_aiT8[7][3]*O[3] + add)>>shift; src += 8; dst ++; } } void partialButterflyInverse8(Short *src,Short *dst,Int shift, Int line) { Int j,k; Int E[4],O[4]; Int EE[2],EO[2]; Int add = 1<<(shift-1); for (j=0; j>shift ); dst[ k+4 ] = Clip3( -32768, 32767, (E[3-k] - O[3-k] + add)>>shift ); } src ++; dst += 8; } } void partialButterfly16(Short *src,Short *dst,Int shift, Int line) { Int j,k; Int E[8],O[8]; Int EE[4],EO[4]; Int EEE[2],EEO[2]; Int add = 1<<(shift-1); for (j=0; j>shift; dst[ 8*line ] = (g_aiT16[ 8][0]*EEE[0] + g_aiT16[ 8][1]*EEE[1] + add)>>shift; dst[ 4*line ] = (g_aiT16[ 4][0]*EEO[0] + g_aiT16[ 4][1]*EEO[1] + add)>>shift; dst[ 12*line] = (g_aiT16[12][0]*EEO[0] + g_aiT16[12][1]*EEO[1] + add)>>shift; for (k=2;k<16;k+=4) { dst[ k*line ] = (g_aiT16[k][0]*EO[0] + g_aiT16[k][1]*EO[1] + g_aiT16[k][2]*EO[2] + g_aiT16[k][3]*EO[3] + add)>>shift; } for (k=1;k<16;k+=2) { dst[ k*line ] = (g_aiT16[k][0]*O[0] + g_aiT16[k][1]*O[1] + g_aiT16[k][2]*O[2] + g_aiT16[k][3]*O[3] + g_aiT16[k][4]*O[4] + g_aiT16[k][5]*O[5] + g_aiT16[k][6]*O[6] + g_aiT16[k][7]*O[7] + add)>>shift; } src += 16; dst ++; } } void partialButterflyInverse16(Short *src,Short *dst,Int shift, Int line) { Int j,k; Int E[8],O[8]; Int EE[4],EO[4]; Int EEE[2],EEO[2]; Int add = 1<<(shift-1); for (j=0; j>shift ); dst[k+8] = Clip3( -32768, 32767, (E[7-k] - O[7-k] + add)>>shift ); } src ++; dst += 16; } } void partialButterfly32(Short *src,Short *dst,Int shift, Int line) { Int j,k; Int E[16],O[16]; Int EE[8],EO[8]; Int EEE[4],EEO[4]; Int EEEE[2],EEEO[2]; Int add = 1<<(shift-1); for (j=0; j>shift; dst[ 16*line ] = (g_aiT32[16][0]*EEEE[0] + g_aiT32[16][1]*EEEE[1] + add)>>shift; dst[ 8*line ] = (g_aiT32[ 8][0]*EEEO[0] + g_aiT32[ 8][1]*EEEO[1] + add)>>shift; dst[ 24*line ] = (g_aiT32[24][0]*EEEO[0] + g_aiT32[24][1]*EEEO[1] + add)>>shift; for (k=4;k<32;k+=8) { dst[ k*line ] = (g_aiT32[k][0]*EEO[0] + g_aiT32[k][1]*EEO[1] + g_aiT32[k][2]*EEO[2] + g_aiT32[k][3]*EEO[3] + add)>>shift; } for (k=2;k<32;k+=4) { dst[ k*line ] = (g_aiT32[k][0]*EO[0] + g_aiT32[k][1]*EO[1] + g_aiT32[k][2]*EO[2] + g_aiT32[k][3]*EO[3] + g_aiT32[k][4]*EO[4] + g_aiT32[k][5]*EO[5] + g_aiT32[k][6]*EO[6] + g_aiT32[k][7]*EO[7] + add)>>shift; } for (k=1;k<32;k+=2) { dst[ k*line ] = (g_aiT32[k][ 0]*O[ 0] + g_aiT32[k][ 1]*O[ 1] + g_aiT32[k][ 2]*O[ 2] + g_aiT32[k][ 3]*O[ 3] + g_aiT32[k][ 4]*O[ 4] + g_aiT32[k][ 5]*O[ 5] + g_aiT32[k][ 6]*O[ 6] + g_aiT32[k][ 7]*O[ 7] + g_aiT32[k][ 8]*O[ 8] + g_aiT32[k][ 9]*O[ 9] + g_aiT32[k][10]*O[10] + g_aiT32[k][11]*O[11] + g_aiT32[k][12]*O[12] + g_aiT32[k][13]*O[13] + g_aiT32[k][14]*O[14] + g_aiT32[k][15]*O[15] + add)>>shift; } src += 32; dst ++; } } void partialButterflyInverse32(Short *src,Short *dst,Int shift, Int line) { Int j,k; Int E[16],O[16]; Int EE[8],EO[8]; Int EEE[4],EEO[4]; Int EEEE[2],EEEO[2]; Int add = 1<<(shift-1); for (j=0; j>shift ); dst[k+16] = Clip3( -32768, 32767, (E[15-k] - O[15-k] + add)>>shift ); } src ++; dst += 32; } } /** MxN forward transform (2D) * \param block input data (residual) * \param coeff output data (transform coefficients) * \param iWidth input data (width of transform) * \param iHeight input data (height of transform) */ void xTrMxN(Int bitDepth, Short *block,Short *coeff, Int iWidth, Int iHeight, UInt uiMode) { Int shift_1st = g_aucConvertToBit[iWidth] + 1 + bitDepth-8; // log2(iWidth) - 1 + g_bitDepth - 8 Int shift_2nd = g_aucConvertToBit[iHeight] + 8; // log2(iHeight) + 6 Short tmp[ 64 * 64 ]; if( iWidth == 4 && iHeight == 4) { if (uiMode != REG_DCT) { fastForwardDst(block,tmp,shift_1st); // Forward DST BY FAST ALGORITHM, block input, tmp output fastForwardDst(tmp,coeff,shift_2nd); // Forward DST BY FAST ALGORITHM, tmp input, coeff output } else { partialButterfly4(block, tmp, shift_1st, iHeight); partialButterfly4(tmp, coeff, shift_2nd, iWidth); } } else if( iWidth == 8 && iHeight == 8) { partialButterfly8( block, tmp, shift_1st, iHeight ); partialButterfly8( tmp, coeff, shift_2nd, iWidth ); } else if( iWidth == 16 && iHeight == 16) { partialButterfly16( block, tmp, shift_1st, iHeight ); partialButterfly16( tmp, coeff, shift_2nd, iWidth ); } else if( iWidth == 32 && iHeight == 32) { partialButterfly32( block, tmp, shift_1st, iHeight ); partialButterfly32( tmp, coeff, shift_2nd, iWidth ); } } /** MxN inverse transform (2D) * \param coeff input data (transform coefficients) * \param block output data (residual) * \param iWidth input data (width of transform) * \param iHeight input data (height of transform) */ void xITrMxN(Int bitDepth, Short *coeff,Short *block, Int iWidth, Int iHeight, UInt uiMode) { Int shift_1st = SHIFT_INV_1ST; Int shift_2nd = SHIFT_INV_2ND - (bitDepth-8); Short tmp[ 64*64]; if( iWidth == 4 && iHeight == 4) { if (uiMode != REG_DCT) { fastInverseDst(coeff,tmp,shift_1st); // Inverse DST by FAST Algorithm, coeff input, tmp output fastInverseDst(tmp,block,shift_2nd); // Inverse DST by FAST Algorithm, tmp input, coeff output } else { partialButterflyInverse4(coeff,tmp,shift_1st,iWidth); partialButterflyInverse4(tmp,block,shift_2nd,iHeight); } } else if( iWidth == 8 && iHeight == 8) { partialButterflyInverse8(coeff,tmp,shift_1st,iWidth); partialButterflyInverse8(tmp,block,shift_2nd,iHeight); } else if( iWidth == 16 && iHeight == 16) { partialButterflyInverse16(coeff,tmp,shift_1st,iWidth); partialButterflyInverse16(tmp,block,shift_2nd,iHeight); } else if( iWidth == 32 && iHeight == 32) { partialButterflyInverse32(coeff,tmp,shift_1st,iWidth); partialButterflyInverse32(tmp,block,shift_2nd,iHeight); } } #endif //MATRIX_MULT // To minimize the distortion only. No rate is considered. Void TComTrQuant::signBitHidingHDQ( TCoeff* pQCoef, TCoeff* pCoef, UInt const *scan, Int* deltaU, Int width, Int height ) { Int lastCG = -1; Int absSum = 0 ; Int n ; for( Int subSet = (width*height-1) >> LOG2_SCAN_SET_SIZE; subSet >= 0; subSet-- ) { Int subPos = subSet << LOG2_SCAN_SET_SIZE; Int firstNZPosInCG=SCAN_SET_SIZE , lastNZPosInCG=-1 ; absSum = 0 ; for(n = SCAN_SET_SIZE-1; n >= 0; --n ) { if( pQCoef[ scan[ n + subPos ]] ) { lastNZPosInCG = n; break; } } for(n = 0; n =0 && lastCG==-1) { lastCG = 1 ; } if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD ) { UInt signbit = (pQCoef[scan[subPos+firstNZPosInCG]]>0?0:1) ; if( signbit!=(absSum&0x1) ) //compare signbit with sum_parity { Int minCostInc = MAX_INT, minPos =-1, finalChange=0, curCost=MAX_INT, curChange=0; for( n = (lastCG==1?lastNZPosInCG:SCAN_SET_SIZE-1) ; n >= 0; --n ) { UInt blkPos = scan[ n+subPos ]; if(pQCoef[ blkPos ] != 0 ) { if(deltaU[blkPos]>0) { curCost = - deltaU[blkPos]; curChange=1 ; } else { //curChange =-1; if(n==firstNZPosInCG && abs(pQCoef[blkPos])==1) { curCost=MAX_INT ; } else { curCost = deltaU[blkPos]; curChange =-1; } } } else { if(n=0?0:1); if(thisSignBit != signbit ) { curCost = MAX_INT; } else { curCost = - (deltaU[blkPos]) ; curChange = 1 ; } } else { curCost = - (deltaU[blkPos]) ; curChange = 1 ; } } if( curCost=0) { pQCoef[minPos] += finalChange ; } else { pQCoef[minPos] -= finalChange ; } } // Hide } if(lastCG==1) { lastCG=0 ; } } // TU loop return; } Void TComTrQuant::xQuant( TComDataCU* pcCU, Int* pSrc, TCoeff* pDes, #if ADAPTIVE_QP_SELECTION Int*& pArlDes, #endif Int iWidth, Int iHeight, UInt& uiAcSum, TextType eTType, UInt uiAbsPartIdx ) { Int* piCoef = pSrc; TCoeff* piQCoef = pDes; #if ADAPTIVE_QP_SELECTION Int* piArlCCoef = pArlDes; #endif Int iAdd = 0; Bool useRDOQ = pcCU->getTransformSkip(uiAbsPartIdx,eTType) ? m_useRDOQTS:m_useRDOQ; if ( useRDOQ && (eTType == TEXT_LUMA || RDOQ_CHROMA)) { #if ADAPTIVE_QP_SELECTION xRateDistOptQuant( pcCU, piCoef, pDes, pArlDes, iWidth, iHeight, uiAcSum, eTType, uiAbsPartIdx ); #else xRateDistOptQuant( pcCU, piCoef, pDes, iWidth, iHeight, uiAcSum, eTType, uiAbsPartIdx ); #endif } else { const UInt log2BlockSize = g_aucConvertToBit[ iWidth ] + 2; UInt scanIdx = pcCU->getCoefScanIdx(uiAbsPartIdx, iWidth, eTType==TEXT_LUMA, pcCU->isIntra(uiAbsPartIdx)); const UInt *scan = g_auiSigLastScan[ scanIdx ][ log2BlockSize - 1 ]; Int deltaU[32*32] ; #if ADAPTIVE_QP_SELECTION QpParam cQpBase; Int iQpBase = pcCU->getSlice()->getSliceQpBase(); Int qpScaled; #if REPN_FORMAT_IN_VPS Int qpBDOffset = (eTType == TEXT_LUMA)? pcCU->getSlice()->getQpBDOffsetY() : pcCU->getSlice()->getQpBDOffsetC(); #else Int qpBDOffset = (eTType == TEXT_LUMA)? pcCU->getSlice()->getSPS()->getQpBDOffsetY() : pcCU->getSlice()->getSPS()->getQpBDOffsetC(); #endif if(eTType == TEXT_LUMA) { qpScaled = iQpBase + qpBDOffset; } else { Int chromaQPOffset; if(eTType == TEXT_CHROMA_U) { chromaQPOffset = pcCU->getSlice()->getPPS()->getChromaCbQpOffset() + pcCU->getSlice()->getSliceQpDeltaCb(); } else { chromaQPOffset = pcCU->getSlice()->getPPS()->getChromaCrQpOffset() + pcCU->getSlice()->getSliceQpDeltaCr(); } iQpBase = iQpBase + chromaQPOffset; qpScaled = Clip3( -qpBDOffset, 57, iQpBase); if(qpScaled < 0) { qpScaled = qpScaled + qpBDOffset; } else { qpScaled = g_aucChromaScale[ qpScaled ] + qpBDOffset; } } cQpBase.setQpParam(qpScaled); #endif UInt uiLog2TrSize = g_aucConvertToBit[ iWidth ] + 2; Int scalingListType = (pcCU->isIntra(uiAbsPartIdx) ? 0 : 3) + g_eTTable[(Int)eTType]; assert(scalingListType < 6); Int *piQuantCoeff = 0; piQuantCoeff = getQuantCoeff(scalingListType,m_cQP.m_iRem,uiLog2TrSize-2); UInt uiBitDepth = eTType == TEXT_LUMA ? g_bitDepthY : g_bitDepthC; Int iTransformShift = MAX_TR_DYNAMIC_RANGE - uiBitDepth - uiLog2TrSize; // Represents scaling through forward transform #if ADAPTIVE_QP_SELECTION Int iQBits = QUANT_SHIFT + cQpBase.m_iPer + iTransformShift; iAdd = (pcCU->getSlice()->getSliceType()==I_SLICE ? 171 : 85) << (iQBits-9); Int iQBitsC = QUANT_SHIFT + cQpBase.m_iPer + iTransformShift - ARL_C_PRECISION; Int iAddC = 1 << (iQBitsC-1); #else Int iQBits = QUANT_SHIFT + m_cQP.m_iPer + iTransformShift; // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits iAdd = (pcCU->getSlice()->getSliceType()==I_SLICE ? 171 : 85) << (iQBits-9); #endif Int qBits8 = iQBits-8; for( Int n = 0; n < iWidth*iHeight; n++ ) { Int iLevel; Int iSign; UInt uiBlockPos = n; iLevel = piCoef[uiBlockPos]; iSign = (iLevel < 0 ? -1: 1); #if ADAPTIVE_QP_SELECTION Int64 tmpLevel = (Int64)abs(iLevel) * piQuantCoeff[uiBlockPos]; if( m_bUseAdaptQpSelect ) { piArlCCoef[uiBlockPos] = (Int)((tmpLevel + iAddC ) >> iQBitsC); } iLevel = (Int)((tmpLevel + iAdd ) >> iQBits); deltaU[uiBlockPos] = (Int)((tmpLevel - (iLevel<> qBits8); #else iLevel = ((Int64)abs(iLevel) * piQuantCoeff[uiBlockPos] + iAdd ) >> iQBits; deltaU[uiBlockPos] = (Int)( ((Int64)abs(piCoef[uiBlockPos]) * piQuantCoeff[uiBlockPos] - (iLevel<> qBits8 ); #endif uiAcSum += iLevel; iLevel *= iSign; piQCoef[uiBlockPos] = Clip3( -32768, 32767, iLevel ); } // for n if( pcCU->getSlice()->getPPS()->getSignHideFlag() ) { if(uiAcSum>=2) { signBitHidingHDQ( piQCoef, piCoef, scan, deltaU, iWidth, iHeight ) ; } } } //if RDOQ //return; } Void TComTrQuant::xDeQuant(Int bitDepth, const TCoeff* pSrc, Int* pDes, Int iWidth, Int iHeight, Int scalingListType ) { const TCoeff* piQCoef = pSrc; Int* piCoef = pDes; if ( iWidth > (Int)m_uiMaxTrSize ) { iWidth = m_uiMaxTrSize; iHeight = m_uiMaxTrSize; } Int iShift,iAdd,iCoeffQ; UInt uiLog2TrSize = g_aucConvertToBit[ iWidth ] + 2; Int iTransformShift = MAX_TR_DYNAMIC_RANGE - bitDepth - uiLog2TrSize; iShift = QUANT_IQUANT_SHIFT - QUANT_SHIFT - iTransformShift; TCoeff clipQCoef; if(getUseScalingList()) { iShift += 4; Int *piDequantCoef = getDequantCoeff(scalingListType,m_cQP.m_iRem,uiLog2TrSize-2); if(iShift > m_cQP.m_iPer) { iAdd = 1 << (iShift - m_cQP.m_iPer - 1); for( Int n = 0; n < iWidth*iHeight; n++ ) { clipQCoef = Clip3( -32768, 32767, piQCoef[n] ); iCoeffQ = ((clipQCoef * piDequantCoef[n]) + iAdd ) >> (iShift - m_cQP.m_iPer); piCoef[n] = Clip3(-32768,32767,iCoeffQ); } } else { for( Int n = 0; n < iWidth*iHeight; n++ ) { clipQCoef = Clip3( -32768, 32767, piQCoef[n] ); iCoeffQ = Clip3( -32768, 32767, clipQCoef * piDequantCoef[n] ); // Clip to avoid possible overflow in following shift left operation piCoef[n] = Clip3( -32768, 32767, iCoeffQ << ( m_cQP.m_iPer - iShift ) ); } } } else { iAdd = 1 << (iShift-1); Int scale = g_invQuantScales[m_cQP.m_iRem] << m_cQP.m_iPer; for( Int n = 0; n < iWidth*iHeight; n++ ) { clipQCoef = Clip3( -32768, 32767, piQCoef[n] ); iCoeffQ = ( clipQCoef * scale + iAdd ) >> iShift; piCoef[n] = Clip3(-32768,32767,iCoeffQ); } } } Void TComTrQuant::init( UInt uiMaxTrSize, Bool bUseRDOQ, Bool bUseRDOQTS, Bool bEnc, Bool useTransformSkipFast #if ADAPTIVE_QP_SELECTION , Bool bUseAdaptQpSelect #endif ) { m_uiMaxTrSize = uiMaxTrSize; m_bEnc = bEnc; m_useRDOQ = bUseRDOQ; m_useRDOQTS = bUseRDOQTS; #if ADAPTIVE_QP_SELECTION m_bUseAdaptQpSelect = bUseAdaptQpSelect; #endif m_useTransformSkipFast = useTransformSkipFast; } Void TComTrQuant::transformNxN( TComDataCU* pcCU, Pel* pcResidual, UInt uiStride, TCoeff* rpcCoeff, #if ADAPTIVE_QP_SELECTION Int*& rpcArlCoeff, #endif UInt uiWidth, UInt uiHeight, UInt& uiAbsSum, TextType eTType, UInt uiAbsPartIdx, Bool useTransformSkip ) { if (pcCU->getCUTransquantBypass(uiAbsPartIdx)) { uiAbsSum=0; for (UInt k = 0; kgetPredictionMode(uiAbsPartIdx) == MODE_INTRA ) { uiMode = pcCU->getLumaIntraDir( uiAbsPartIdx ); } else { uiMode = REG_DCT; } uiAbsSum = 0; assert( (pcCU->getSlice()->getSPS()->getMaxTrSize() >= uiWidth) ); Int bitDepth = eTType == TEXT_LUMA ? g_bitDepthY : g_bitDepthC; if(useTransformSkip) { xTransformSkip(bitDepth, pcResidual, uiStride, m_plTempCoeff, uiWidth, uiHeight ); } else { xT(bitDepth, uiMode, pcResidual, uiStride, m_plTempCoeff, uiWidth, uiHeight ); } xQuant( pcCU, m_plTempCoeff, rpcCoeff, #if ADAPTIVE_QP_SELECTION rpcArlCoeff, #endif uiWidth, uiHeight, uiAbsSum, eTType, uiAbsPartIdx ); } Void TComTrQuant::invtransformNxN( Bool transQuantBypass, TextType eText, UInt uiMode,Pel* rpcResidual, UInt uiStride, TCoeff* pcCoeff, UInt uiWidth, UInt uiHeight, Int scalingListType, Bool useTransformSkip ) { if(transQuantBypass) { for (UInt k = 0; kgetCbf(uiAbsPartIdx, eTxt, uiTrMode) ) { return; } const UInt stopTrMode = pcCU->getTransformIdx( uiAbsPartIdx ); if( uiTrMode == stopTrMode ) { UInt uiDepth = pcCU->getDepth( uiAbsPartIdx ) + uiTrMode; UInt uiLog2TrSize = g_aucConvertToBit[ pcCU->getSlice()->getSPS()->getMaxCUWidth() >> uiDepth ] + 2; if( eTxt != TEXT_LUMA && uiLog2TrSize == 2 ) { UInt uiQPDiv = pcCU->getPic()->getNumPartInCU() >> ( ( uiDepth - 1 ) << 1 ); if( ( uiAbsPartIdx % uiQPDiv ) != 0 ) { return; } uiWidth <<= 1; uiHeight <<= 1; } Pel* pResi = rpcResidual + uiAddr; Int scalingListType = (pcCU->isIntra(uiAbsPartIdx) ? 0 : 3) + g_eTTable[(Int)eTxt]; assert(scalingListType < 6); invtransformNxN( pcCU->getCUTransquantBypass(uiAbsPartIdx), eTxt, REG_DCT, pResi, uiStride, rpcCoeff, uiWidth, uiHeight, scalingListType, pcCU->getTransformSkip(uiAbsPartIdx, eTxt) ); } else { uiTrMode++; uiWidth >>= 1; uiHeight >>= 1; Int trWidth = uiWidth, trHeight = uiHeight; UInt uiAddrOffset = trHeight * uiStride; UInt uiCoefOffset = trWidth * trHeight; UInt uiPartOffset = pcCU->getTotalNumPart() >> ( uiTrMode << 1 ); { invRecurTransformNxN( pcCU, uiAbsPartIdx, eTxt, rpcResidual, uiAddr , uiStride, uiWidth, uiHeight, uiMaxTrMode, uiTrMode, rpcCoeff ); rpcCoeff += uiCoefOffset; uiAbsPartIdx += uiPartOffset; invRecurTransformNxN( pcCU, uiAbsPartIdx, eTxt, rpcResidual, uiAddr + trWidth , uiStride, uiWidth, uiHeight, uiMaxTrMode, uiTrMode, rpcCoeff ); rpcCoeff += uiCoefOffset; uiAbsPartIdx += uiPartOffset; invRecurTransformNxN( pcCU, uiAbsPartIdx, eTxt, rpcResidual, uiAddr + uiAddrOffset , uiStride, uiWidth, uiHeight, uiMaxTrMode, uiTrMode, rpcCoeff ); rpcCoeff += uiCoefOffset; uiAbsPartIdx += uiPartOffset; invRecurTransformNxN( pcCU, uiAbsPartIdx, eTxt, rpcResidual, uiAddr + uiAddrOffset + trWidth, uiStride, uiWidth, uiHeight, uiMaxTrMode, uiTrMode, rpcCoeff ); } } } // ------------------------------------------------------------------------------------------------ // Logical transform // ------------------------------------------------------------------------------------------------ /** Wrapper function between HM interface and core NxN forward transform (2D) * \param piBlkResi input data (residual) * \param psCoeff output data (transform coefficients) * \param uiStride stride of input residual data * \param iSize transform size (iSize x iSize) * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only */ Void TComTrQuant::xT(Int bitDepth, UInt uiMode, Pel* piBlkResi, UInt uiStride, Int* psCoeff, Int iWidth, Int iHeight ) { #if MATRIX_MULT Int iSize = iWidth; xTr(bitDepth, piBlkResi,psCoeff,uiStride,(UInt)iSize,uiMode); #else Int j; Short block[ 32 * 32 ]; Short coeff[ 32 * 32 ]; for (j = 0; j < iHeight; j++) { memcpy( block + j * iWidth, piBlkResi + j * uiStride, iWidth * sizeof( Short ) ); } xTrMxN(bitDepth, block, coeff, iWidth, iHeight, uiMode ); for ( j = 0; j < iHeight * iWidth; j++ ) { psCoeff[ j ] = coeff[ j ]; } #endif } /** Wrapper function between HM interface and core NxN inverse transform (2D) * \param plCoef input data (transform coefficients) * \param pResidual output data (residual) * \param uiStride stride of input residual data * \param iSize transform size (iSize x iSize) * \param uiMode is Intra Prediction mode used in Mode-Dependent DCT/DST only */ Void TComTrQuant::xIT(Int bitDepth, UInt uiMode, Int* plCoef, Pel* pResidual, UInt uiStride, Int iWidth, Int iHeight ) { #if MATRIX_MULT Int iSize = iWidth; xITr(bitDepth, plCoef,pResidual,uiStride,(UInt)iSize,uiMode); #else Int j; { Short block[ 32 * 32 ]; Short coeff[ 32 * 32 ]; for ( j = 0; j < iHeight * iWidth; j++ ) { coeff[j] = (Short)plCoef[j]; } xITrMxN(bitDepth, coeff, block, iWidth, iHeight, uiMode ); { for ( j = 0; j < iHeight; j++ ) { memcpy( pResidual + j * uiStride, block + j * iWidth, iWidth * sizeof(Short) ); } } return ; } #endif } /** Wrapper function between HM interface and core 4x4 transform skipping * \param piBlkResi input data (residual) * \param psCoeff output data (transform coefficients) * \param uiStride stride of input residual data * \param iSize transform size (iSize x iSize) */ Void TComTrQuant::xTransformSkip(Int bitDepth, Pel* piBlkResi, UInt uiStride, Int* psCoeff, Int width, Int height ) { assert( width == height ); UInt uiLog2TrSize = g_aucConvertToBit[ width ] + 2; Int shift = MAX_TR_DYNAMIC_RANGE - bitDepth - uiLog2TrSize; UInt transformSkipShift; Int j,k; if(shift >= 0) { transformSkipShift = shift; for (j = 0; j < height; j++) { for(k = 0; k < width; k ++) { psCoeff[j*height + k] = piBlkResi[j * uiStride + k] << transformSkipShift; } } } else { //The case when uiBitDepth > 13 Int offset; transformSkipShift = -shift; offset = (1 << (transformSkipShift - 1)); for (j = 0; j < height; j++) { for(k = 0; k < width; k ++) { psCoeff[j*height + k] = (piBlkResi[j * uiStride + k] + offset) >> transformSkipShift; } } } } /** Wrapper function between HM interface and core NxN transform skipping * \param plCoef input data (coefficients) * \param pResidual output data (residual) * \param uiStride stride of input residual data * \param iSize transform size (iSize x iSize) */ Void TComTrQuant::xITransformSkip(Int bitDepth, Int* plCoef, Pel* pResidual, UInt uiStride, Int width, Int height ) { assert( width == height ); UInt uiLog2TrSize = g_aucConvertToBit[ width ] + 2; Int shift = MAX_TR_DYNAMIC_RANGE - bitDepth - uiLog2TrSize; UInt transformSkipShift; Int j,k; if(shift > 0) { Int offset; transformSkipShift = shift; offset = (1 << (transformSkipShift -1)); for ( j = 0; j < height; j++ ) { for(k = 0; k < width; k ++) { pResidual[j * uiStride + k] = (plCoef[j*width+k] + offset) >> transformSkipShift; } } } else { //The case when uiBitDepth >= 13 transformSkipShift = - shift; for ( j = 0; j < height; j++ ) { for(k = 0; k < width; k ++) { pResidual[j * uiStride + k] = plCoef[j*width+k] << transformSkipShift; } } } } /** RDOQ with CABAC * \param pcCU pointer to coding unit structure * \param plSrcCoeff pointer to input buffer * \param piDstCoeff reference to pointer to output buffer * \param uiWidth block width * \param uiHeight block height * \param uiAbsSum reference to absolute sum of quantized transform coefficient * \param eTType plane type / luminance or chrominance * \param uiAbsPartIdx absolute partition index * \returns Void * Rate distortion optimized quantization for entropy * coding engines using probability models like CABAC */ Void TComTrQuant::xRateDistOptQuant ( TComDataCU* pcCU, Int* plSrcCoeff, TCoeff* piDstCoeff, #if ADAPTIVE_QP_SELECTION Int*& piArlDstCoeff, #endif UInt uiWidth, UInt uiHeight, UInt& uiAbsSum, TextType eTType, UInt uiAbsPartIdx ) { UInt uiLog2TrSize = g_aucConvertToBit[ uiWidth ] + 2; UInt uiBitDepth = eTType == TEXT_LUMA ? g_bitDepthY : g_bitDepthC; Int iTransformShift = MAX_TR_DYNAMIC_RANGE - uiBitDepth - uiLog2TrSize; // Represents scaling through forward transform UInt uiGoRiceParam = 0; Double d64BlockUncodedCost = 0; const UInt uiLog2BlkSize = g_aucConvertToBit[ uiWidth ] + 2; const UInt uiMaxNumCoeff = uiWidth * uiHeight; Int scalingListType = (pcCU->isIntra(uiAbsPartIdx) ? 0 : 3) + g_eTTable[(Int)eTType]; assert(scalingListType < 6); Int iQBits = QUANT_SHIFT + m_cQP.m_iPer + iTransformShift; // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits Double *pdErrScaleOrg = getErrScaleCoeff(scalingListType,uiLog2TrSize-2,m_cQP.m_iRem); Int *piQCoefOrg = getQuantCoeff(scalingListType,m_cQP.m_iRem,uiLog2TrSize-2); Int *piQCoef = piQCoefOrg; Double *pdErrScale = pdErrScaleOrg; #if ADAPTIVE_QP_SELECTION Int iQBitsC = iQBits - ARL_C_PRECISION; Int iAddC = 1 << (iQBitsC-1); #endif UInt uiScanIdx = pcCU->getCoefScanIdx(uiAbsPartIdx, uiWidth, eTType==TEXT_LUMA, pcCU->isIntra(uiAbsPartIdx)); #if ADAPTIVE_QP_SELECTION memset(piArlDstCoeff, 0, sizeof(Int) * uiMaxNumCoeff); #endif Double pdCostCoeff [ 32 * 32 ]; Double pdCostSig [ 32 * 32 ]; Double pdCostCoeff0[ 32 * 32 ]; ::memset( pdCostCoeff, 0, sizeof(Double) * uiMaxNumCoeff ); ::memset( pdCostSig, 0, sizeof(Double) * uiMaxNumCoeff ); Int rateIncUp [ 32 * 32 ]; Int rateIncDown [ 32 * 32 ]; Int sigRateDelta[ 32 * 32 ]; Int deltaU [ 32 * 32 ]; ::memset( rateIncUp, 0, sizeof(Int) * uiMaxNumCoeff ); ::memset( rateIncDown, 0, sizeof(Int) * uiMaxNumCoeff ); ::memset( sigRateDelta, 0, sizeof(Int) * uiMaxNumCoeff ); ::memset( deltaU, 0, sizeof(Int) * uiMaxNumCoeff ); const UInt * scanCG; { scanCG = g_auiSigLastScan[ uiScanIdx ][ uiLog2BlkSize > 3 ? uiLog2BlkSize-2-1 : 0 ]; if( uiLog2BlkSize == 3 ) { scanCG = g_sigLastScan8x8[ uiScanIdx ]; } else if( uiLog2BlkSize == 5 ) { scanCG = g_sigLastScanCG32x32; } } const UInt uiCGSize = (1 << MLS_CG_SIZE); // 16 Double pdCostCoeffGroupSig[ MLS_GRP_NUM ]; UInt uiSigCoeffGroupFlag[ MLS_GRP_NUM ]; UInt uiNumBlkSide = uiWidth / MLS_CG_SIZE; Int iCGLastScanPos = -1; UInt uiCtxSet = 0; Int c1 = 1; Int c2 = 0; Double d64BaseCost = 0; Int iLastScanPos = -1; UInt c1Idx = 0; UInt c2Idx = 0; Int baseLevel; const UInt *scan = g_auiSigLastScan[ uiScanIdx ][ uiLog2BlkSize - 1 ]; ::memset( pdCostCoeffGroupSig, 0, sizeof(Double) * MLS_GRP_NUM ); ::memset( uiSigCoeffGroupFlag, 0, sizeof(UInt) * MLS_GRP_NUM ); UInt uiCGNum = uiWidth * uiHeight >> MLS_CG_SIZE; Int iScanPos; coeffGroupRDStats rdStats; for (Int iCGScanPos = uiCGNum-1; iCGScanPos >= 0; iCGScanPos--) { UInt uiCGBlkPos = scanCG[ iCGScanPos ]; UInt uiCGPosY = uiCGBlkPos / uiNumBlkSide; UInt uiCGPosX = uiCGBlkPos - (uiCGPosY * uiNumBlkSide); #if MAYBE_BUGFIX rdStats.init(); #else ::memset( &rdStats, 0, sizeof (coeffGroupRDStats)); #endif const Int patternSigCtx = TComTrQuant::calcPatternSigCtx(uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, uiWidth, uiHeight); for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) { iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; //===== quantization ===== UInt uiBlkPos = scan[iScanPos]; // set coeff Int uiQ = piQCoef[uiBlkPos]; Double dTemp = pdErrScale[uiBlkPos]; Int lLevelDouble = plSrcCoeff[ uiBlkPos ]; lLevelDouble = (Int)min((Int64)abs((Int)lLevelDouble) * uiQ , MAX_INT - (1 << (iQBits - 1))); #if ADAPTIVE_QP_SELECTION if( m_bUseAdaptQpSelect ) { piArlDstCoeff[uiBlkPos] = (Int)(( lLevelDouble + iAddC) >> iQBitsC ); } #endif UInt uiMaxAbsLevel = (lLevelDouble + (1 << (iQBits - 1))) >> iQBits; Double dErr = Double( lLevelDouble ); pdCostCoeff0[ iScanPos ] = dErr * dErr * dTemp; d64BlockUncodedCost += pdCostCoeff0[ iScanPos ]; piDstCoeff[ uiBlkPos ] = uiMaxAbsLevel; if ( uiMaxAbsLevel > 0 && iLastScanPos < 0 ) { iLastScanPos = iScanPos; uiCtxSet = (iScanPos < SCAN_SET_SIZE || eTType!=TEXT_LUMA) ? 0 : 2; iCGLastScanPos = iCGScanPos; } if ( iLastScanPos >= 0 ) { //===== coefficient level estimation ===== UInt uiLevel; UInt uiOneCtx = 4 * uiCtxSet + c1; UInt uiAbsCtx = uiCtxSet + c2; if( iScanPos == iLastScanPos ) { uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ], lLevelDouble, uiMaxAbsLevel, 0, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, iQBits, dTemp, 1 ); } else { UInt uiPosY = uiBlkPos >> uiLog2BlkSize; UInt uiPosX = uiBlkPos - ( uiPosY << uiLog2BlkSize ); UShort uiCtxSig = getSigCtxInc( patternSigCtx, uiScanIdx, uiPosX, uiPosY, uiLog2BlkSize, eTType ); uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ], lLevelDouble, uiMaxAbsLevel, uiCtxSig, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx, iQBits, dTemp, 0 ); sigRateDelta[ uiBlkPos ] = m_pcEstBitsSbac->significantBits[ uiCtxSig ][ 1 ] - m_pcEstBitsSbac->significantBits[ uiCtxSig ][ 0 ]; } deltaU[ uiBlkPos ] = (lLevelDouble - ((Int)uiLevel << iQBits)) >> (iQBits-8); if( uiLevel > 0 ) { Int rateNow = xGetICRate( uiLevel, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx ); rateIncUp [ uiBlkPos ] = xGetICRate( uiLevel+1, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx ) - rateNow; rateIncDown [ uiBlkPos ] = xGetICRate( uiLevel-1, uiOneCtx, uiAbsCtx, uiGoRiceParam, c1Idx, c2Idx ) - rateNow; } else // uiLevel == 0 { rateIncUp [ uiBlkPos ] = m_pcEstBitsSbac->m_greaterOneBits[ uiOneCtx ][ 0 ]; } piDstCoeff[ uiBlkPos ] = uiLevel; d64BaseCost += pdCostCoeff [ iScanPos ]; baseLevel = (c1Idx < C1FLAG_NUMBER) ? (2 + (c2Idx < C2FLAG_NUMBER)) : 1; if( uiLevel >= baseLevel ) { if(uiLevel > 3*(1<(uiGoRiceParam+ 1, 4); } } if ( uiLevel >= 1) { c1Idx ++; } //===== update bin model ===== if( uiLevel > 1 ) { c1 = 0; c2 += (c2 < 2); c2Idx ++; } else if( (c1 < 3) && (c1 > 0) && uiLevel) { c1++; } //===== context set update ===== if( ( iScanPos % SCAN_SET_SIZE == 0 ) && ( iScanPos > 0 ) ) { c2 = 0; uiGoRiceParam = 0; c1Idx = 0; c2Idx = 0; uiCtxSet = (iScanPos == SCAN_SET_SIZE || eTType!=TEXT_LUMA) ? 0 : 2; if( c1 == 0 ) { uiCtxSet++; } c1 = 1; } } else { d64BaseCost += pdCostCoeff0[ iScanPos ]; } rdStats.d64SigCost += pdCostSig[ iScanPos ]; if (iScanPosinCG == 0 ) { rdStats.d64SigCost_0 = pdCostSig[ iScanPos ]; } if (piDstCoeff[ uiBlkPos ] ) { uiSigCoeffGroupFlag[ uiCGBlkPos ] = 1; rdStats.d64CodedLevelandDist += pdCostCoeff[ iScanPos ] - pdCostSig[ iScanPos ]; rdStats.d64UncodedDist += pdCostCoeff0[ iScanPos ]; if ( iScanPosinCG != 0 ) { rdStats.iNNZbeforePos0++; } } } //end for (iScanPosinCG) if (iCGLastScanPos >= 0) { if( iCGScanPos ) { if (uiSigCoeffGroupFlag[ uiCGBlkPos ] == 0) { UInt uiCtxSig = getSigCoeffGroupCtxInc( uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, uiWidth, uiHeight); d64BaseCost += xGetRateSigCoeffGroup(0, uiCtxSig) - rdStats.d64SigCost;; pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(0, uiCtxSig); } else { if (iCGScanPos < iCGLastScanPos) //skip the last coefficient group, which will be handled together with last position below. { if ( rdStats.iNNZbeforePos0 == 0 ) { d64BaseCost -= rdStats.d64SigCost_0; rdStats.d64SigCost -= rdStats.d64SigCost_0; } // rd-cost if SigCoeffGroupFlag = 0, initialization Double d64CostZeroCG = d64BaseCost; // add SigCoeffGroupFlag cost to total cost UInt uiCtxSig = getSigCoeffGroupCtxInc( uiSigCoeffGroupFlag, uiCGPosX, uiCGPosY, uiWidth, uiHeight); if (iCGScanPos < iCGLastScanPos) { d64BaseCost += xGetRateSigCoeffGroup(1, uiCtxSig); d64CostZeroCG += xGetRateSigCoeffGroup(0, uiCtxSig); pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(1, uiCtxSig); } // try to convert the current coeff group from non-zero to all-zero d64CostZeroCG += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels d64CostZeroCG -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels d64CostZeroCG -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels // if we can save cost, change this block to all-zero block if ( d64CostZeroCG < d64BaseCost ) { uiSigCoeffGroupFlag[ uiCGBlkPos ] = 0; d64BaseCost = d64CostZeroCG; if (iCGScanPos < iCGLastScanPos) { pdCostCoeffGroupSig[ iCGScanPos ] = xGetRateSigCoeffGroup(0, uiCtxSig); } // reset coeffs to 0 in this block for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) { iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; UInt uiBlkPos = scan[ iScanPos ]; if (piDstCoeff[ uiBlkPos ]) { piDstCoeff [ uiBlkPos ] = 0; pdCostCoeff[ iScanPos ] = pdCostCoeff0[ iScanPos ]; pdCostSig [ iScanPos ] = 0; } } } // end if ( d64CostAllZeros < d64BaseCost ) } } // end if if (uiSigCoeffGroupFlag[ uiCGBlkPos ] == 0) } else { uiSigCoeffGroupFlag[ uiCGBlkPos ] = 1; } } } //end for (iCGScanPos) //===== estimate last position ===== if ( iLastScanPos < 0 ) { return; } Double d64BestCost = 0; Int ui16CtxCbf = 0; Int iBestLastIdxP1 = 0; if( !pcCU->isIntra( uiAbsPartIdx ) && eTType == TEXT_LUMA && pcCU->getTransformIdx( uiAbsPartIdx ) == 0 ) { ui16CtxCbf = 0; d64BestCost = d64BlockUncodedCost + xGetICost( m_pcEstBitsSbac->blockRootCbpBits[ ui16CtxCbf ][ 0 ] ); d64BaseCost += xGetICost( m_pcEstBitsSbac->blockRootCbpBits[ ui16CtxCbf ][ 1 ] ); } else { ui16CtxCbf = pcCU->getCtxQtCbf( eTType, pcCU->getTransformIdx( uiAbsPartIdx ) ); ui16CtxCbf = ( eTType ? TEXT_CHROMA : eTType ) * NUM_QT_CBF_CTX + ui16CtxCbf; d64BestCost = d64BlockUncodedCost + xGetICost( m_pcEstBitsSbac->blockCbpBits[ ui16CtxCbf ][ 0 ] ); d64BaseCost += xGetICost( m_pcEstBitsSbac->blockCbpBits[ ui16CtxCbf ][ 1 ] ); } Bool bFoundLast = false; for (Int iCGScanPos = iCGLastScanPos; iCGScanPos >= 0; iCGScanPos--) { UInt uiCGBlkPos = scanCG[ iCGScanPos ]; d64BaseCost -= pdCostCoeffGroupSig [ iCGScanPos ]; if (uiSigCoeffGroupFlag[ uiCGBlkPos ]) { for (Int iScanPosinCG = uiCGSize-1; iScanPosinCG >= 0; iScanPosinCG--) { iScanPos = iCGScanPos*uiCGSize + iScanPosinCG; if (iScanPos > iLastScanPos) continue; UInt uiBlkPos = scan[iScanPos]; if( piDstCoeff[ uiBlkPos ] ) { UInt uiPosY = uiBlkPos >> uiLog2BlkSize; UInt uiPosX = uiBlkPos - ( uiPosY << uiLog2BlkSize ); Double d64CostLast= uiScanIdx == SCAN_VER ? xGetRateLast( uiPosY, uiPosX ) : xGetRateLast( uiPosX, uiPosY ); Double totalCost = d64BaseCost + d64CostLast - pdCostSig[ iScanPos ]; if( totalCost < d64BestCost ) { iBestLastIdxP1 = iScanPos + 1; d64BestCost = totalCost; } if( piDstCoeff[ uiBlkPos ] > 1 ) { bFoundLast = true; break; } d64BaseCost -= pdCostCoeff[ iScanPos ]; d64BaseCost += pdCostCoeff0[ iScanPos ]; } else { d64BaseCost -= pdCostSig[ iScanPos ]; } } //end for if (bFoundLast) { break; } } // end if (uiSigCoeffGroupFlag[ uiCGBlkPos ]) } // end for for ( Int scanPos = 0; scanPos < iBestLastIdxP1; scanPos++ ) { Int blkPos = scan[ scanPos ]; Int level = piDstCoeff[ blkPos ]; uiAbsSum += level; piDstCoeff[ blkPos ] = ( plSrcCoeff[ blkPos ] < 0 ) ? -level : level; } //===== clean uncoded coefficients ===== for ( Int scanPos = iBestLastIdxP1; scanPos <= iLastScanPos; scanPos++ ) { piDstCoeff[ scan[ scanPos ] ] = 0; } if( pcCU->getSlice()->getPPS()->getSignHideFlag() && uiAbsSum>=2) { Int64 rdFactor = (Int64) ( g_invQuantScales[m_cQP.rem()] * g_invQuantScales[m_cQP.rem()] * (1<<(2*m_cQP.m_iPer)) / m_dLambda / 16 / (1<> LOG2_SCAN_SET_SIZE; subSet >= 0; subSet-- ) { Int subPos = subSet << LOG2_SCAN_SET_SIZE; Int firstNZPosInCG=SCAN_SET_SIZE , lastNZPosInCG=-1 ; absSum = 0 ; for(n = SCAN_SET_SIZE-1; n >= 0; --n ) { if( piDstCoeff[ scan[ n + subPos ]] ) { lastNZPosInCG = n; break; } } for(n = 0; n =0 && lastCG==-1) { lastCG = 1; } if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD ) { UInt signbit = (piDstCoeff[scan[subPos+firstNZPosInCG]]>0?0:1); if( signbit!=(absSum&0x1) ) // hide but need tune { // calculate the cost Int64 minCostInc = MAX_INT64, curCost=MAX_INT64; Int minPos =-1, finalChange=0, curChange=0; for( n = (lastCG==1?lastNZPosInCG:SCAN_SET_SIZE-1) ; n >= 0; --n ) { UInt uiBlkPos = scan[ n + subPos ]; if(piDstCoeff[ uiBlkPos ] != 0 ) { Int64 costUp = rdFactor * ( - deltaU[uiBlkPos] ) + rateIncUp[uiBlkPos] ; Int64 costDown = rdFactor * ( deltaU[uiBlkPos] ) + rateIncDown[uiBlkPos] - ((abs(piDstCoeff[uiBlkPos]) == 1) ? sigRateDelta[uiBlkPos] : 0); if(lastCG==1 && lastNZPosInCG==n && abs(piDstCoeff[uiBlkPos])==1) { costDown -= (4<<15) ; } if(costUp=0?0:1); if(thissignbit != signbit ) { curCost = MAX_INT64; } } } if( curCost=0) { piDstCoeff[minPos] += finalChange ; } else { piDstCoeff[minPos] -= finalChange ; } } } if(lastCG==1) { lastCG=0 ; } } } } /** Pattern decision for context derivation process of significant_coeff_flag * \param sigCoeffGroupFlag pointer to prior coded significant coeff group * \param posXCG column of current coefficient group * \param posYCG row of current coefficient group * \param width width of the block * \param height height of the block * \returns pattern for current coefficient group */ Int TComTrQuant::calcPatternSigCtx( const UInt* sigCoeffGroupFlag, UInt posXCG, UInt posYCG, Int width, Int height ) { if( width == 4 && height == 4 ) return -1; UInt sigRight = 0; UInt sigLower = 0; width >>= 2; height >>= 2; if( posXCG < width - 1 ) { sigRight = (sigCoeffGroupFlag[ posYCG * width + posXCG + 1 ] != 0); } if (posYCG < height - 1 ) { sigLower = (sigCoeffGroupFlag[ (posYCG + 1 ) * width + posXCG ] != 0); } return sigRight + (sigLower<<1); } /** Context derivation process of coeff_abs_significant_flag * \param patternSigCtx pattern for current coefficient group * \param posX column of current scan position * \param posY row of current scan position * \param log2BlockSize log2 value of block size (square block) * \param width width of the block * \param height height of the block * \param textureType texture type (TEXT_LUMA...) * \returns ctxInc for current scan position */ Int TComTrQuant::getSigCtxInc ( Int patternSigCtx, UInt scanIdx, Int posX, Int posY, Int log2BlockSize, TextType textureType ) { const Int ctxIndMap[16] = { 0, 1, 4, 5, 2, 3, 4, 5, 6, 6, 8, 8, 7, 7, 8, 8 }; if( posX + posY == 0 ) { return 0; } if ( log2BlockSize == 2 ) { return ctxIndMap[ 4 * posY + posX ]; } Int offset = log2BlockSize == 3 ? (scanIdx==SCAN_DIAG ? 9 : 15) : (textureType == TEXT_LUMA ? 21 : 12); Int posXinSubset = posX-((posX>>2)<<2); Int posYinSubset = posY-((posY>>2)<<2); Int cnt = 0; if(patternSigCtx==0) { cnt = posXinSubset+posYinSubset<=2 ? (posXinSubset+posYinSubset==0 ? 2 : 1) : 0; } else if(patternSigCtx==1) { cnt = posYinSubset<=1 ? (posYinSubset==0 ? 2 : 1) : 0; } else if(patternSigCtx==2) { cnt = posXinSubset<=1 ? (posXinSubset==0 ? 2 : 1) : 0; } else { cnt = 2; } return (( textureType == TEXT_LUMA && ((posX>>2) + (posY>>2)) > 0 ) ? 3 : 0) + offset + cnt; } /** Get the best level in RD sense * \param rd64CodedCost reference to coded cost * \param rd64CodedCost0 reference to cost when coefficient is 0 * \param rd64CodedCostSig reference to cost of significant coefficient * \param lLevelDouble reference to unscaled quantized level * \param uiMaxAbsLevel scaled quantized level * \param ui16CtxNumSig current ctxInc for coeff_abs_significant_flag * \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) * \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) * \param ui16AbsGoRice current Rice parameter for coeff_abs_level_minus3 * \param iQBits quantization step size * \param dTemp correction factor * \param bLast indicates if the coefficient is the last significant * \returns best quantized transform level for given scan position * This method calculates the best quantized transform level for a given scan position. */ __inline UInt TComTrQuant::xGetCodedLevel ( Double& rd64CodedCost, Double& rd64CodedCost0, Double& rd64CodedCostSig, Int lLevelDouble, UInt uiMaxAbsLevel, UShort ui16CtxNumSig, UShort ui16CtxNumOne, UShort ui16CtxNumAbs, UShort ui16AbsGoRice, UInt c1Idx, UInt c2Idx, Int iQBits, Double dTemp, Bool bLast ) const { Double dCurrCostSig = 0; UInt uiBestAbsLevel = 0; if( !bLast && uiMaxAbsLevel < 3 ) { rd64CodedCostSig = xGetRateSigCoef( 0, ui16CtxNumSig ); rd64CodedCost = rd64CodedCost0 + rd64CodedCostSig; if( uiMaxAbsLevel == 0 ) { return uiBestAbsLevel; } } else { rd64CodedCost = MAX_DOUBLE; } if( !bLast ) { dCurrCostSig = xGetRateSigCoef( 1, ui16CtxNumSig ); } UInt uiMinAbsLevel = ( uiMaxAbsLevel > 1 ? uiMaxAbsLevel - 1 : 1 ); for( Int uiAbsLevel = uiMaxAbsLevel; uiAbsLevel >= uiMinAbsLevel ; uiAbsLevel-- ) { Double dErr = Double( lLevelDouble - ( uiAbsLevel << iQBits ) ); Double dCurrCost = dErr * dErr * dTemp + xGetICost(xGetICRate( uiAbsLevel, ui16CtxNumOne, ui16CtxNumAbs, ui16AbsGoRice, c1Idx, c2Idx )); dCurrCost += dCurrCostSig; if( dCurrCost < rd64CodedCost ) { uiBestAbsLevel = uiAbsLevel; rd64CodedCost = dCurrCost; rd64CodedCostSig = dCurrCostSig; } } return uiBestAbsLevel; } /** Calculates the cost for specific absolute transform level * \param uiAbsLevel scaled quantized level * \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) * \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) * \param ui16AbsGoRice Rice parameter for coeff_abs_level_minus3 * \returns cost of given absolute transform level */ __inline Int TComTrQuant::xGetICRate ( UInt uiAbsLevel, UShort ui16CtxNumOne, UShort ui16CtxNumAbs, UShort ui16AbsGoRice , UInt c1Idx, UInt c2Idx ) const { Int iRate = Int(xGetIEPRate()); UInt baseLevel = (c1Idx < C1FLAG_NUMBER)? (2 + (c2Idx < C2FLAG_NUMBER)) : 1; if ( uiAbsLevel >= baseLevel ) { UInt symbol = uiAbsLevel - baseLevel; UInt length; if (symbol < (COEF_REMAIN_BIN_REDUCTION << ui16AbsGoRice)) { length = symbol>>ui16AbsGoRice; iRate += (length+1+ui16AbsGoRice)<< 15; } else { length = ui16AbsGoRice; symbol = symbol - ( COEF_REMAIN_BIN_REDUCTION << ui16AbsGoRice); while (symbol >= (1<m_greaterOneBits[ ui16CtxNumOne ][ 1 ]; if (c2Idx < C2FLAG_NUMBER) { iRate += m_pcEstBitsSbac->m_levelAbsBits[ ui16CtxNumAbs ][ 1 ]; } } } else if( uiAbsLevel == 1 ) { iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 0 ]; } else if( uiAbsLevel == 2 ) { iRate += m_pcEstBitsSbac->m_greaterOneBits[ ui16CtxNumOne ][ 1 ]; iRate += m_pcEstBitsSbac->m_levelAbsBits[ ui16CtxNumAbs ][ 0 ]; } else { iRate = 0; } return iRate; } __inline Double TComTrQuant::xGetRateSigCoeffGroup ( UShort uiSignificanceCoeffGroup, UShort ui16CtxNumSig ) const { return xGetICost( m_pcEstBitsSbac->significantCoeffGroupBits[ ui16CtxNumSig ][ uiSignificanceCoeffGroup ] ); } /** Calculates the cost of signaling the last significant coefficient in the block * \param uiPosX X coordinate of the last significant coefficient * \param uiPosY Y coordinate of the last significant coefficient * \returns cost of last significant coefficient */ /* * \param uiWidth width of the transform unit (TU) */ __inline Double TComTrQuant::xGetRateLast ( const UInt uiPosX, const UInt uiPosY ) const { UInt uiCtxX = g_uiGroupIdx[uiPosX]; UInt uiCtxY = g_uiGroupIdx[uiPosY]; Double uiCost = m_pcEstBitsSbac->lastXBits[ uiCtxX ] + m_pcEstBitsSbac->lastYBits[ uiCtxY ]; if( uiCtxX > 3 ) { uiCost += xGetIEPRate() * ((uiCtxX-2)>>1); } if( uiCtxY > 3 ) { uiCost += xGetIEPRate() * ((uiCtxY-2)>>1); } return xGetICost( uiCost ); } /** Calculates the cost for specific absolute transform level * \param uiAbsLevel scaled quantized level * \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) * \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) * \param ui16CtxBase current global offset for coeff_abs_level_greater1 and coeff_abs_level_greater2 * \returns cost of given absolute transform level */ __inline Double TComTrQuant::xGetRateSigCoef ( UShort uiSignificance, UShort ui16CtxNumSig ) const { return xGetICost( m_pcEstBitsSbac->significantBits[ ui16CtxNumSig ][ uiSignificance ] ); } /** Get the cost for a specific rate * \param dRate rate of a bit * \returns cost at the specific rate */ __inline Double TComTrQuant::xGetICost ( Double dRate ) const { return m_dLambda * dRate; } /** Get the cost of an equal probable bit * \returns cost of equal probable bit */ __inline Double TComTrQuant::xGetIEPRate ( ) const { return 32768; } /** Context derivation process of coeff_abs_significant_flag * \param uiSigCoeffGroupFlag significance map of L1 * \param uiBlkX column of current scan position * \param uiBlkY row of current scan position * \param uiLog2BlkSize log2 value of block size * \returns ctxInc for current scan position */ UInt TComTrQuant::getSigCoeffGroupCtxInc ( const UInt* uiSigCoeffGroupFlag, const UInt uiCGPosX, const UInt uiCGPosY, Int width, Int height) { UInt uiRight = 0; UInt uiLower = 0; width >>= 2; height >>= 2; if( uiCGPosX < width - 1 ) { uiRight = (uiSigCoeffGroupFlag[ uiCGPosY * width + uiCGPosX + 1 ] != 0); } if (uiCGPosY < height - 1 ) { uiLower = (uiSigCoeffGroupFlag[ (uiCGPosY + 1 ) * width + uiCGPosX ] != 0); } return (uiRight || uiLower); } /** set quantized matrix coefficient for encode * \param scalingList quantaized matrix address */ Void TComTrQuant::setScalingList(TComScalingList *scalingList) { UInt size,list; UInt qp; for(size=0;sizegetScalingListAddress(sizeId,listId); quantcoeff = getQuantCoeff(listId, qp, sizeId); processScalingListEnc(coeff,quantcoeff,g_quantScales[qp]<<4,height,width,ratio,min(MAX_MATRIX_SIZE_NUM,(Int)g_scalingListSizeX[sizeId]),scalingList->getScalingListDC(sizeId,listId)); } /** set quantized matrix coefficient for decode * \param scalingList quantaized matrix address * \param list List index * \param size size index * \param uiQP Quantization parameter */ Void TComTrQuant::xSetScalingListDec(TComScalingList *scalingList, UInt listId, UInt sizeId, UInt qp) { UInt width = g_scalingListSizeX[sizeId]; UInt height = g_scalingListSizeX[sizeId]; UInt ratio = g_scalingListSizeX[sizeId]/min(MAX_MATRIX_SIZE_NUM,(Int)g_scalingListSizeX[sizeId]); Int *dequantcoeff; Int *coeff = scalingList->getScalingListAddress(sizeId,listId); dequantcoeff = getDequantCoeff(listId, qp, sizeId); processScalingListDec(coeff,dequantcoeff,g_invQuantScales[qp],height,width,ratio,min(MAX_MATRIX_SIZE_NUM,(Int)g_scalingListSizeX[sizeId]),scalingList->getScalingListDC(sizeId,listId)); } /** set flat matrix value to quantized coefficient */ Void TComTrQuant::setFlatScalingList() { UInt size,list; UInt qp; for(size=0;size 1) { quantcoeff[0] = quantScales / dc; } } /** set quantized matrix coefficient for decode * \param coeff quantaized matrix address * \param dequantcoeff quantaized matrix address * \param invQuantScales IQ(QP%6)) * \param height height * \param width width * \param ratio ratio for upscale * \param sizuNum matrix size * \param dc dc parameter */ Void TComTrQuant::processScalingListDec( Int *coeff, Int *dequantcoeff, Int invQuantScales, UInt height, UInt width, UInt ratio, Int sizuNum, UInt dc) { for(UInt j=0;j 1) { dequantcoeff[0] = invQuantScales * dc; } } /** initialization process of scaling list array */ Void TComTrQuant::initScalingList() { for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(UInt listId = 0; listId < g_scalingListNum[sizeId]; listId++) { for(UInt qp = 0; qp < SCALING_LIST_REM_NUM; qp++) { m_quantCoef [sizeId][listId][qp] = new Int [g_scalingListSize[sizeId]]; m_dequantCoef [sizeId][listId][qp] = new Int [g_scalingListSize[sizeId]]; m_errScale [sizeId][listId][qp] = new Double [g_scalingListSize[sizeId]]; } } } // alias list [1] as [3]. for(UInt qp = 0; qp < SCALING_LIST_REM_NUM; qp++) { m_quantCoef [SCALING_LIST_32x32][3][qp] = m_quantCoef [SCALING_LIST_32x32][1][qp]; m_dequantCoef [SCALING_LIST_32x32][3][qp] = m_dequantCoef [SCALING_LIST_32x32][1][qp]; m_errScale [SCALING_LIST_32x32][3][qp] = m_errScale [SCALING_LIST_32x32][1][qp]; } } /** destroy quantization matrix array */ Void TComTrQuant::destroyScalingList() { for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(UInt listId = 0; listId < g_scalingListNum[sizeId]; listId++) { for(UInt qp = 0; qp < SCALING_LIST_REM_NUM; qp++) { if(m_quantCoef [sizeId][listId][qp]) delete [] m_quantCoef [sizeId][listId][qp]; if(m_dequantCoef [sizeId][listId][qp]) delete [] m_dequantCoef [sizeId][listId][qp]; if(m_errScale [sizeId][listId][qp]) delete [] m_errScale [sizeId][listId][qp]; } } } } //! \}