source: SHVCSoftware/branches/SHM-4.0-dev/source/Lib/TLibCommon/TComPrediction.cpp @ 448

Last change on this file since 448 was 448, checked in by seregin, 11 years ago

remove SCALED_REF_LAYER_OFFSETS macro

  • Property svn:eol-style set to native
File size: 25.4 KB
Line 
1/* The copyright in this software is being made available under the BSD
2 * License, included below. This software may be subject to other third party
3 * and contributor rights, including patent rights, and no such rights are
4 * granted under this license. 
5 *
6 * Copyright (c) 2010-2013, ITU/ISO/IEC
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions are met:
11 *
12 *  * Redistributions of source code must retain the above copyright notice,
13 *    this list of conditions and the following disclaimer.
14 *  * Redistributions in binary form must reproduce the above copyright notice,
15 *    this list of conditions and the following disclaimer in the documentation
16 *    and/or other materials provided with the distribution.
17 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
18 *    be used to endorse or promote products derived from this software without
19 *    specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34/** \file     TComPrediction.cpp
35    \brief    prediction class
36*/
37
38#include <memory.h>
39#include "TComPrediction.h"
40
41//! \ingroup TLibCommon
42//! \{
43
44// ====================================================================================================================
45// Constructor / destructor / initialize
46// ====================================================================================================================
47
48TComPrediction::TComPrediction()
49: m_pLumaRecBuffer(0)
50, m_iLumaRecStride(0)
51{
52  m_piYuvExt = NULL;
53}
54
55TComPrediction::~TComPrediction()
56{
57 
58  delete[] m_piYuvExt;
59
60  m_acYuvPred[0].destroy();
61  m_acYuvPred[1].destroy();
62
63  m_cYuvPredTemp.destroy();
64
65  if( m_pLumaRecBuffer )
66  {
67    delete [] m_pLumaRecBuffer;
68  }
69 
70  Int i, j;
71  for (i = 0; i < 4; i++)
72  {
73    for (j = 0; j < 4; j++)
74    {
75      m_filteredBlock[i][j].destroy();
76    }
77    m_filteredBlockTmp[i].destroy();
78  }
79}
80
81Void TComPrediction::initTempBuff()
82{
83  if( m_piYuvExt == NULL )
84  {
85    Int extWidth  = MAX_CU_SIZE + 16; 
86    Int extHeight = MAX_CU_SIZE + 1;
87    Int i, j;
88    for (i = 0; i < 4; i++)
89    {
90      m_filteredBlockTmp[i].create(extWidth, extHeight + 7);
91      for (j = 0; j < 4; j++)
92      {
93        m_filteredBlock[i][j].create(extWidth, extHeight);
94      }
95    }
96    m_iYuvExtHeight  = ((MAX_CU_SIZE + 2) << 4);
97    m_iYuvExtStride = ((MAX_CU_SIZE  + 8) << 4);
98    m_piYuvExt = new Int[ m_iYuvExtStride * m_iYuvExtHeight ];
99
100    // new structure
101    m_acYuvPred[0] .create( MAX_CU_SIZE, MAX_CU_SIZE );
102    m_acYuvPred[1] .create( MAX_CU_SIZE, MAX_CU_SIZE );
103
104    m_cYuvPredTemp.create( MAX_CU_SIZE, MAX_CU_SIZE );
105  }
106
107  if (m_iLumaRecStride != (MAX_CU_SIZE>>1) + 1)
108  {
109    m_iLumaRecStride =  (MAX_CU_SIZE>>1) + 1;
110    if (!m_pLumaRecBuffer)
111    {
112      m_pLumaRecBuffer = new Pel[ m_iLumaRecStride * m_iLumaRecStride ];
113    }
114  }
115}
116
117// ====================================================================================================================
118// Public member functions
119// ====================================================================================================================
120
121// Function for calculating DC value of the reference samples used in Intra prediction
122Pel TComPrediction::predIntraGetPredValDC( Int* pSrc, Int iSrcStride, UInt iWidth, UInt iHeight, Bool bAbove, Bool bLeft )
123{
124  assert(iWidth > 0 && iHeight > 0);
125  Int iInd, iSum = 0;
126  Pel pDcVal;
127
128  if (bAbove)
129  {
130    for (iInd = 0;iInd < iWidth;iInd++)
131    {
132      iSum += pSrc[iInd-iSrcStride];
133    }
134  }
135  if (bLeft)
136  {
137    for (iInd = 0;iInd < iHeight;iInd++)
138    {
139      iSum += pSrc[iInd*iSrcStride-1];
140    }
141  }
142
143  if (bAbove && bLeft)
144  {
145    pDcVal = (iSum + iWidth) / (iWidth + iHeight);
146  }
147  else if (bAbove)
148  {
149    pDcVal = (iSum + iWidth/2) / iWidth;
150  }
151  else if (bLeft)
152  {
153    pDcVal = (iSum + iHeight/2) / iHeight;
154  }
155  else
156  {
157    pDcVal = pSrc[-1]; // Default DC value already calculated and placed in the prediction array if no neighbors are available
158  }
159 
160  return pDcVal;
161}
162
163// Function for deriving the angular Intra predictions
164
165/** Function for deriving the simplified angular intra predictions.
166 * \param pSrc pointer to reconstructed sample array
167 * \param srcStride the stride of the reconstructed sample array
168 * \param rpDst reference to pointer for the prediction sample array
169 * \param dstStride the stride of the prediction sample array
170 * \param width the width of the block
171 * \param height the height of the block
172 * \param dirMode the intra prediction mode index
173 * \param blkAboveAvailable boolean indication if the block above is available
174 * \param blkLeftAvailable boolean indication if the block to the left is available
175 *
176 * This function derives the prediction samples for the angular mode based on the prediction direction indicated by
177 * the prediction mode index. The prediction direction is given by the displacement of the bottom row of the block and
178 * the reference row above the block in the case of vertical prediction or displacement of the rightmost column
179 * of the block and reference column left from the block in the case of the horizontal prediction. The displacement
180 * is signalled at 1/32 pixel accuracy. When projection of the predicted pixel falls inbetween reference samples,
181 * the predicted value for the pixel is linearly interpolated from the reference samples. All reference samples are taken
182 * from the extended main reference.
183 */
184Void TComPrediction::xPredIntraAng(Int bitDepth, Int* pSrc, Int srcStride, Pel*& rpDst, Int dstStride, UInt width, UInt height, UInt dirMode, Bool blkAboveAvailable, Bool blkLeftAvailable, Bool bFilter )
185{
186  Int k,l;
187  Int blkSize        = width;
188  Pel* pDst          = rpDst;
189
190  // Map the mode index to main prediction direction and angle
191  assert( dirMode > 0 ); //no planar
192  Bool modeDC        = dirMode < 2;
193  Bool modeHor       = !modeDC && (dirMode < 18);
194  Bool modeVer       = !modeDC && !modeHor;
195  Int intraPredAngle = modeVer ? (Int)dirMode - VER_IDX : modeHor ? -((Int)dirMode - HOR_IDX) : 0;
196  Int absAng         = abs(intraPredAngle);
197  Int signAng        = intraPredAngle < 0 ? -1 : 1;
198
199  // Set bitshifts and scale the angle parameter to block size
200  Int angTable[9]    = {0,    2,    5,   9,  13,  17,  21,  26,  32};
201  Int invAngTable[9] = {0, 4096, 1638, 910, 630, 482, 390, 315, 256}; // (256 * 32) / Angle
202  Int invAngle       = invAngTable[absAng];
203  absAng             = angTable[absAng];
204  intraPredAngle     = signAng * absAng;
205
206  // Do the DC prediction
207  if (modeDC)
208  {
209    Pel dcval = predIntraGetPredValDC(pSrc, srcStride, width, height, blkAboveAvailable, blkLeftAvailable);
210
211    for (k=0;k<blkSize;k++)
212    {
213      for (l=0;l<blkSize;l++)
214      {
215        pDst[k*dstStride+l] = dcval;
216      }
217    }
218  }
219
220  // Do angular predictions
221  else
222  {
223    Pel* refMain;
224    Pel* refSide;
225    Pel  refAbove[2*MAX_CU_SIZE+1];
226    Pel  refLeft[2*MAX_CU_SIZE+1];
227
228    // Initialise the Main and Left reference array.
229    if (intraPredAngle < 0)
230    {
231      for (k=0;k<blkSize+1;k++)
232      {
233        refAbove[k+blkSize-1] = pSrc[k-srcStride-1];
234      }
235      for (k=0;k<blkSize+1;k++)
236      {
237        refLeft[k+blkSize-1] = pSrc[(k-1)*srcStride-1];
238      }
239      refMain = (modeVer ? refAbove : refLeft) + (blkSize-1);
240      refSide = (modeVer ? refLeft : refAbove) + (blkSize-1);
241
242      // Extend the Main reference to the left.
243      Int invAngleSum    = 128;       // rounding for (shift by 8)
244      for (k=-1; k>blkSize*intraPredAngle>>5; k--)
245      {
246        invAngleSum += invAngle;
247        refMain[k] = refSide[invAngleSum>>8];
248      }
249    }
250    else
251    {
252      for (k=0;k<2*blkSize+1;k++)
253      {
254        refAbove[k] = pSrc[k-srcStride-1];
255      }
256      for (k=0;k<2*blkSize+1;k++)
257      {
258        refLeft[k] = pSrc[(k-1)*srcStride-1];
259      }
260      refMain = modeVer ? refAbove : refLeft;
261      refSide = modeVer ? refLeft  : refAbove;
262    }
263
264    if (intraPredAngle == 0)
265    {
266      for (k=0;k<blkSize;k++)
267      {
268        for (l=0;l<blkSize;l++)
269        {
270          pDst[k*dstStride+l] = refMain[l+1];
271        }
272      }
273
274      if ( bFilter )
275      {
276        for (k=0;k<blkSize;k++)
277        {
278          pDst[k*dstStride] = Clip3(0, (1<<bitDepth)-1, pDst[k*dstStride] + (( refSide[k+1] - refSide[0] ) >> 1) );
279        }
280      }
281    }
282    else
283    {
284      Int deltaPos=0;
285      Int deltaInt;
286      Int deltaFract;
287      Int refMainIndex;
288
289      for (k=0;k<blkSize;k++)
290      {
291        deltaPos += intraPredAngle;
292        deltaInt   = deltaPos >> 5;
293        deltaFract = deltaPos & (32 - 1);
294
295        if (deltaFract)
296        {
297          // Do linear filtering
298          for (l=0;l<blkSize;l++)
299          {
300            refMainIndex        = l+deltaInt+1;
301            pDst[k*dstStride+l] = (Pel) ( ((32-deltaFract)*refMain[refMainIndex]+deltaFract*refMain[refMainIndex+1]+16) >> 5 );
302          }
303        }
304        else
305        {
306          // Just copy the integer samples
307          for (l=0;l<blkSize;l++)
308          {
309            pDst[k*dstStride+l] = refMain[l+deltaInt+1];
310          }
311        }
312      }
313    }
314
315    // Flip the block if this is the horizontal mode
316    if (modeHor)
317    {
318      Pel  tmp;
319      for (k=0;k<blkSize-1;k++)
320      {
321        for (l=k+1;l<blkSize;l++)
322        {
323          tmp                 = pDst[k*dstStride+l];
324          pDst[k*dstStride+l] = pDst[l*dstStride+k];
325          pDst[l*dstStride+k] = tmp;
326        }
327      }
328    }
329  }
330}
331
332Void TComPrediction::predIntraLumaAng(TComPattern* pcTComPattern, UInt uiDirMode, Pel* piPred, UInt uiStride, Int iWidth, Int iHeight, Bool bAbove, Bool bLeft )
333{
334  Pel *pDst = piPred;
335  Int *ptrSrc;
336
337  assert( g_aucConvertToBit[ iWidth ] >= 0 ); //   4x  4
338  assert( g_aucConvertToBit[ iWidth ] <= 5 ); // 128x128
339  assert( iWidth == iHeight  );
340
341  ptrSrc = pcTComPattern->getPredictorPtr( uiDirMode, g_aucConvertToBit[ iWidth ] + 2, m_piYuvExt );
342
343  // get starting pixel in block
344  Int sw = 2 * iWidth + 1;
345
346  // Create the prediction
347  if ( uiDirMode == PLANAR_IDX )
348  {
349    xPredIntraPlanar( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight );
350  }
351  else
352  {
353    if ( (iWidth > 16) || (iHeight > 16) )
354    {
355      xPredIntraAng(g_bitDepthY, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, false );
356    }
357    else
358    {
359      xPredIntraAng(g_bitDepthY, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, true );
360
361      if( (uiDirMode == DC_IDX ) && bAbove && bLeft )
362      {
363        xDCPredFiltering( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight);
364      }
365    }
366  }
367}
368
369// Angular chroma
370Void TComPrediction::predIntraChromaAng( Int* piSrc, UInt uiDirMode, Pel* piPred, UInt uiStride, Int iWidth, Int iHeight, Bool bAbove, Bool bLeft )
371{
372  Pel *pDst = piPred;
373  Int *ptrSrc = piSrc;
374
375  // get starting pixel in block
376  Int sw = 2 * iWidth + 1;
377
378  if ( uiDirMode == PLANAR_IDX )
379  {
380    xPredIntraPlanar( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight );
381  }
382  else
383  {
384    // Create the prediction
385    xPredIntraAng(g_bitDepthC, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, false );
386  }
387}
388
389/** Function for checking identical motion.
390 * \param TComDataCU* pcCU
391 * \param UInt PartAddr
392 */
393Bool TComPrediction::xCheckIdenticalMotion ( TComDataCU* pcCU, UInt PartAddr )
394{
395  if( pcCU->getSlice()->isInterB() && !pcCU->getSlice()->getPPS()->getWPBiPred() )
396  {
397    if( pcCU->getCUMvField(REF_PIC_LIST_0)->getRefIdx(PartAddr) >= 0 && pcCU->getCUMvField(REF_PIC_LIST_1)->getRefIdx(PartAddr) >= 0)
398    {
399      Int RefPOCL0 = pcCU->getSlice()->getRefPic(REF_PIC_LIST_0, pcCU->getCUMvField(REF_PIC_LIST_0)->getRefIdx(PartAddr))->getPOC();
400      Int RefPOCL1 = pcCU->getSlice()->getRefPic(REF_PIC_LIST_1, pcCU->getCUMvField(REF_PIC_LIST_1)->getRefIdx(PartAddr))->getPOC();
401      if(RefPOCL0 == RefPOCL1 && pcCU->getCUMvField(REF_PIC_LIST_0)->getMv(PartAddr) == pcCU->getCUMvField(REF_PIC_LIST_1)->getMv(PartAddr))
402      {
403        return true;
404      }
405    }
406  }
407  return false;
408}
409
410Void TComPrediction::motionCompensation ( TComDataCU* pcCU, TComYuv* pcYuvPred, RefPicList eRefPicList, Int iPartIdx )
411{
412  Int         iWidth;
413  Int         iHeight;
414  UInt        uiPartAddr;
415
416  if ( iPartIdx >= 0 )
417  {
418    pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iWidth, iHeight );
419    if ( eRefPicList != REF_PIC_LIST_X )
420    {
421      if( pcCU->getSlice()->getPPS()->getUseWP())
422      {
423        xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred, true );
424      }
425      else
426      {
427        xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
428      }
429      if ( pcCU->getSlice()->getPPS()->getUseWP() )
430      {
431        xWeightedPredictionUni( pcCU, pcYuvPred, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
432      }
433    }
434    else
435    {
436      if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) )
437      {
438        xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred );
439      }
440      else
441      {
442        xPredInterBi  (pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred );
443      }
444    }
445    return;
446  }
447
448  for ( iPartIdx = 0; iPartIdx < pcCU->getNumPartInter(); iPartIdx++ )
449  {
450    pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iWidth, iHeight );
451
452    if ( eRefPicList != REF_PIC_LIST_X )
453    {
454      if( pcCU->getSlice()->getPPS()->getUseWP())
455      {
456        xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred, true );
457      }
458      else
459      {
460        xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
461      }
462      if ( pcCU->getSlice()->getPPS()->getUseWP() )
463      {
464        xWeightedPredictionUni( pcCU, pcYuvPred, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
465      }
466    }
467    else
468    {
469      if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) )
470      {
471        xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred );
472      }
473      else
474      {
475        xPredInterBi  (pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred );
476      }
477    }
478  }
479  return;
480}
481
482Void TComPrediction::xPredInterUni ( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, RefPicList eRefPicList, TComYuv*& rpcYuvPred, Bool bi )
483{
484  Int         iRefIdx     = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr );           assert (iRefIdx >= 0);
485  TComMv      cMv         = pcCU->getCUMvField( eRefPicList )->getMv( uiPartAddr );
486  pcCU->clipMv(cMv);
487
488#if REF_IDX_ME_ZEROMV
489  assert( ( pcCU->getSlice()->getRefPic(eRefPicList, iRefIdx)->isILR(pcCU->getLayerId()) && cMv.getHor() == 0 && cMv.getVer() == 0 ) || pcCU->getSlice()->getRefPic(eRefPicList, iRefIdx)->isILR(pcCU->getLayerId()) == false );
490#endif
491
492  xPredInterLumaBlk  ( pcCU, pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(), uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi );
493  xPredInterChromaBlk( pcCU, pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(), uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi );
494}
495
496Void TComPrediction::xPredInterBi ( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, TComYuv*& rpcYuvPred )
497{
498  TComYuv* pcMbYuv;
499  Int      iRefIdx[2] = {-1, -1};
500
501  for ( Int iRefList = 0; iRefList < 2; iRefList++ )
502  {
503    RefPicList eRefPicList = (iRefList ? REF_PIC_LIST_1 : REF_PIC_LIST_0);
504    iRefIdx[iRefList] = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr );
505
506    if ( iRefIdx[iRefList] < 0 )
507    {
508      continue;
509    }
510
511    assert( iRefIdx[iRefList] < pcCU->getSlice()->getNumRefIdx(eRefPicList) );
512
513    pcMbYuv = &m_acYuvPred[iRefList];
514    if( pcCU->getCUMvField( REF_PIC_LIST_0 )->getRefIdx( uiPartAddr ) >= 0 && pcCU->getCUMvField( REF_PIC_LIST_1 )->getRefIdx( uiPartAddr ) >= 0 )
515    {
516      xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv, true );
517    }
518    else
519    {
520      if ( ( pcCU->getSlice()->getPPS()->getUseWP()       && pcCU->getSlice()->getSliceType() == P_SLICE ) || 
521           ( pcCU->getSlice()->getPPS()->getWPBiPred() && pcCU->getSlice()->getSliceType() == B_SLICE ) )
522      {
523        xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv, true );
524      }
525      else
526      {
527        xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv );
528      }
529    }
530  }
531
532  if ( pcCU->getSlice()->getPPS()->getWPBiPred() && pcCU->getSlice()->getSliceType() == B_SLICE  )
533  {
534    xWeightedPredictionBi( pcCU, &m_acYuvPred[0], &m_acYuvPred[1], iRefIdx[0], iRefIdx[1], uiPartAddr, iWidth, iHeight, rpcYuvPred );
535  } 
536  else if ( pcCU->getSlice()->getPPS()->getUseWP() && pcCU->getSlice()->getSliceType() == P_SLICE )
537  {
538    xWeightedPredictionUni( pcCU, &m_acYuvPred[0], uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, rpcYuvPred ); 
539  }
540  else
541  {
542    xWeightedAverage( &m_acYuvPred[0], &m_acYuvPred[1], iRefIdx[0], iRefIdx[1], uiPartAddr, iWidth, iHeight, rpcYuvPred );
543  }
544}
545
546/**
547 * \brief Generate motion-compensated luma block
548 *
549 * \param cu       Pointer to current CU
550 * \param refPic   Pointer to reference picture
551 * \param partAddr Address of block within CU
552 * \param mv       Motion vector
553 * \param width    Width of block
554 * \param height   Height of block
555 * \param dstPic   Pointer to destination picture
556 * \param bi       Flag indicating whether bipred is used
557 */
558Void TComPrediction::xPredInterLumaBlk( TComDataCU *cu, TComPicYuv *refPic, UInt partAddr, TComMv *mv, Int width, Int height, TComYuv *&dstPic, Bool bi )
559{
560  Int refStride = refPic->getStride(); 
561  Int refOffset = ( mv->getHor() >> 2 ) + ( mv->getVer() >> 2 ) * refStride;
562  Pel *ref      = refPic->getLumaAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ) + refOffset;
563 
564  Int dstStride = dstPic->getStride();
565  Pel *dst      = dstPic->getLumaAddr( partAddr );
566 
567  Int xFrac = mv->getHor() & 0x3;
568  Int yFrac = mv->getVer() & 0x3;
569
570  if ( yFrac == 0 )
571  {
572    m_if.filterHorLuma( ref, refStride, dst, dstStride, width, height, xFrac,       !bi );
573  }
574  else if ( xFrac == 0 )
575  {
576    m_if.filterVerLuma( ref, refStride, dst, dstStride, width, height, yFrac, true, !bi );
577  }
578  else
579  {
580    Int tmpStride = m_filteredBlockTmp[0].getStride();
581    Short *tmp    = m_filteredBlockTmp[0].getLumaAddr();
582
583    Int filterSize = NTAPS_LUMA;
584    Int halfFilterSize = ( filterSize >> 1 );
585
586    m_if.filterHorLuma(ref - (halfFilterSize-1)*refStride, refStride, tmp, tmpStride, width, height+filterSize-1, xFrac, false     );
587    m_if.filterVerLuma(tmp + (halfFilterSize-1)*tmpStride, tmpStride, dst, dstStride, width, height,              yFrac, false, !bi);   
588  }
589}
590
591/**
592 * \brief Generate motion-compensated chroma block
593 *
594 * \param cu       Pointer to current CU
595 * \param refPic   Pointer to reference picture
596 * \param partAddr Address of block within CU
597 * \param mv       Motion vector
598 * \param width    Width of block
599 * \param height   Height of block
600 * \param dstPic   Pointer to destination picture
601 * \param bi       Flag indicating whether bipred is used
602 */
603Void TComPrediction::xPredInterChromaBlk( TComDataCU *cu, TComPicYuv *refPic, UInt partAddr, TComMv *mv, Int width, Int height, TComYuv *&dstPic, Bool bi )
604{
605  Int     refStride  = refPic->getCStride();
606  Int     dstStride  = dstPic->getCStride();
607 
608  Int     refOffset  = (mv->getHor() >> 3) + (mv->getVer() >> 3) * refStride;
609 
610  Pel*    refCb     = refPic->getCbAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ) + refOffset;
611  Pel*    refCr     = refPic->getCrAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ) + refOffset;
612 
613  Pel* dstCb = dstPic->getCbAddr( partAddr );
614  Pel* dstCr = dstPic->getCrAddr( partAddr );
615 
616  Int     xFrac  = mv->getHor() & 0x7;
617  Int     yFrac  = mv->getVer() & 0x7;
618  UInt    cxWidth  = width  >> 1;
619  UInt    cxHeight = height >> 1;
620 
621  Int     extStride = m_filteredBlockTmp[0].getStride();
622  Short*  extY      = m_filteredBlockTmp[0].getLumaAddr();
623 
624  Int filterSize = NTAPS_CHROMA;
625 
626  Int halfFilterSize = (filterSize>>1);
627 
628  if ( yFrac == 0 )
629  {
630    m_if.filterHorChroma(refCb, refStride, dstCb,  dstStride, cxWidth, cxHeight, xFrac, !bi);   
631    m_if.filterHorChroma(refCr, refStride, dstCr,  dstStride, cxWidth, cxHeight, xFrac, !bi);   
632  }
633  else if ( xFrac == 0 )
634  {
635    m_if.filterVerChroma(refCb, refStride, dstCb, dstStride, cxWidth, cxHeight, yFrac, true, !bi);   
636    m_if.filterVerChroma(refCr, refStride, dstCr, dstStride, cxWidth, cxHeight, yFrac, true, !bi);   
637  }
638  else
639  {
640    m_if.filterHorChroma(refCb - (halfFilterSize-1)*refStride, refStride, extY,  extStride, cxWidth, cxHeight+filterSize-1, xFrac, false);
641    m_if.filterVerChroma(extY  + (halfFilterSize-1)*extStride, extStride, dstCb, dstStride, cxWidth, cxHeight  , yFrac, false, !bi);
642   
643    m_if.filterHorChroma(refCr - (halfFilterSize-1)*refStride, refStride, extY,  extStride, cxWidth, cxHeight+filterSize-1, xFrac, false);
644    m_if.filterVerChroma(extY  + (halfFilterSize-1)*extStride, extStride, dstCr, dstStride, cxWidth, cxHeight  , yFrac, false, !bi);   
645  }
646}
647
648Void TComPrediction::xWeightedAverage( TComYuv* pcYuvSrc0, TComYuv* pcYuvSrc1, Int iRefIdx0, Int iRefIdx1, UInt uiPartIdx, Int iWidth, Int iHeight, TComYuv*& rpcYuvDst )
649{
650  if( iRefIdx0 >= 0 && iRefIdx1 >= 0 )
651  {
652    rpcYuvDst->addAvg( pcYuvSrc0, pcYuvSrc1, uiPartIdx, iWidth, iHeight );
653  }
654  else if ( iRefIdx0 >= 0 && iRefIdx1 <  0 )
655  {
656    pcYuvSrc0->copyPartToPartYuv( rpcYuvDst, uiPartIdx, iWidth, iHeight );
657  }
658  else if ( iRefIdx0 <  0 && iRefIdx1 >= 0 )
659  {
660    pcYuvSrc1->copyPartToPartYuv( rpcYuvDst, uiPartIdx, iWidth, iHeight );
661  }
662}
663
664// AMVP
665Void TComPrediction::getMvPredAMVP( TComDataCU* pcCU, UInt uiPartIdx, UInt uiPartAddr, RefPicList eRefPicList, TComMv& rcMvPred )
666{
667  AMVPInfo* pcAMVPInfo = pcCU->getCUMvField(eRefPicList)->getAMVPInfo();
668  if( pcAMVPInfo->iN <= 1 )
669  {
670    rcMvPred = pcAMVPInfo->m_acMvCand[0];
671
672    pcCU->setMVPIdxSubParts( 0, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
673    pcCU->setMVPNumSubParts( pcAMVPInfo->iN, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
674    return;
675  }
676
677  assert(pcCU->getMVPIdx(eRefPicList,uiPartAddr) >= 0);
678  rcMvPred = pcAMVPInfo->m_acMvCand[pcCU->getMVPIdx(eRefPicList,uiPartAddr)];
679  return;
680}
681
682/** Function for deriving planar intra prediction.
683 * \param pSrc pointer to reconstructed sample array
684 * \param srcStride the stride of the reconstructed sample array
685 * \param rpDst reference to pointer for the prediction sample array
686 * \param dstStride the stride of the prediction sample array
687 * \param width the width of the block
688 * \param height the height of the block
689 *
690 * This function derives the prediction samples for planar mode (intra coding).
691 */
692Void TComPrediction::xPredIntraPlanar( Int* pSrc, Int srcStride, Pel* rpDst, Int dstStride, UInt width, UInt height )
693{
694  assert(width == height);
695
696  Int k, l, bottomLeft, topRight;
697  Int horPred;
698  Int leftColumn[MAX_CU_SIZE+1], topRow[MAX_CU_SIZE+1], bottomRow[MAX_CU_SIZE], rightColumn[MAX_CU_SIZE];
699  UInt blkSize = width;
700  UInt offset2D = width;
701  UInt shift1D = g_aucConvertToBit[ width ] + 2;
702  UInt shift2D = shift1D + 1;
703
704  // Get left and above reference column and row
705  for(k=0;k<blkSize+1;k++)
706  {
707    topRow[k] = pSrc[k-srcStride];
708    leftColumn[k] = pSrc[k*srcStride-1];
709  }
710
711  // Prepare intermediate variables used in interpolation
712  bottomLeft = leftColumn[blkSize];
713  topRight   = topRow[blkSize];
714  for (k=0;k<blkSize;k++)
715  {
716    bottomRow[k]   = bottomLeft - topRow[k];
717    rightColumn[k] = topRight   - leftColumn[k];
718    topRow[k]      <<= shift1D;
719    leftColumn[k]  <<= shift1D;
720  }
721
722  // Generate prediction signal
723  for (k=0;k<blkSize;k++)
724  {
725    horPred = leftColumn[k] + offset2D;
726    for (l=0;l<blkSize;l++)
727    {
728      horPred += rightColumn[k];
729      topRow[l] += bottomRow[l];
730      rpDst[k*dstStride+l] = ( (horPred + topRow[l]) >> shift2D );
731    }
732  }
733}
734
735/** Function for filtering intra DC predictor.
736 * \param pSrc pointer to reconstructed sample array
737 * \param iSrcStride the stride of the reconstructed sample array
738 * \param rpDst reference to pointer for the prediction sample array
739 * \param iDstStride the stride of the prediction sample array
740 * \param iWidth the width of the block
741 * \param iHeight the height of the block
742 *
743 * This function performs filtering left and top edges of the prediction samples for DC mode (intra coding).
744 */
745Void TComPrediction::xDCPredFiltering( Int* pSrc, Int iSrcStride, Pel*& rpDst, Int iDstStride, Int iWidth, Int iHeight )
746{
747  Pel* pDst = rpDst;
748  Int x, y, iDstStride2, iSrcStride2;
749
750  // boundary pixels processing
751  pDst[0] = (Pel)((pSrc[-iSrcStride] + pSrc[-1] + 2 * pDst[0] + 2) >> 2);
752
753  for ( x = 1; x < iWidth; x++ )
754  {
755    pDst[x] = (Pel)((pSrc[x - iSrcStride] +  3 * pDst[x] + 2) >> 2);
756  }
757
758  for ( y = 1, iDstStride2 = iDstStride, iSrcStride2 = iSrcStride-1; y < iHeight; y++, iDstStride2+=iDstStride, iSrcStride2+=iSrcStride )
759  {
760    pDst[iDstStride2] = (Pel)((pSrc[iSrcStride2] + 3 * pDst[iDstStride2] + 2) >> 2);
761  }
762
763  return;
764}
765
766#if SVC_UPSAMPLING
767Void TComPrediction::upsampleBasePic( UInt refLayerIdc, TComPicYuv* pcUsPic, TComPicYuv* pcBasePic, TComPicYuv* pcTempPic, const Window window)
768{
769  m_cUsf.upsampleBasePic( refLayerIdc, pcUsPic, pcBasePic, pcTempPic, window);
770}
771#endif
772//! \}
Note: See TracBrowser for help on using the repository browser.