/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2012, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncRateCtrl.cpp \brief Rate control manager class */ #include "TEncRateCtrl.h" #include "../TLibCommon/TComPic.h" #include using namespace std; #define ADJUSTMENT_FACTOR 0.60 #define HIGH_QSTEP_THRESHOLD 9.5238 #define HIGH_QSTEP_ALPHA 4.9371 #define HIGH_QSTEP_BETA 0.0922 #define LOW_QSTEP_ALPHA 16.7429 #define LOW_QSTEP_BETA -1.1494 #define MAD_PRED_Y1 1.0 #define MAD_PRED_Y2 0.0 enum MAD_HISOTRY { MAD_PPPrevious = 0, MAD_PPrevious = 1, MAD_Previous = 2 }; Void MADLinearModel::initMADLinearModel() { m_activeOn = false; m_paramY1 = 1.0; m_paramY2 = 0.0; m_costMADs[0] = m_costMADs[1] = m_costMADs[2] = 0.0; } Double MADLinearModel::getMAD() { Double costPredMAD = m_paramY1 * m_costMADs[MAD_Previous] + m_paramY2; if(costPredMAD < 0) { costPredMAD = m_costMADs[MAD_Previous]; m_paramY1 = MAD_PRED_Y1; m_paramY2 = MAD_PRED_Y2; } return costPredMAD; } Void MADLinearModel::updateMADLiearModel() { Double dNewY1 = ((m_costMADs[MAD_Previous] - m_costMADs[MAD_PPrevious]) / (m_costMADs[MAD_PPrevious] - m_costMADs[MAD_PPPrevious])); Double dNewY2 = (m_costMADs[MAD_Previous] - (dNewY1*m_costMADs[MAD_PPrevious])); m_paramY1 = 0.70+0.20*m_paramY1+ 0.10*dNewY1; m_paramY2 = 0.20*m_paramY2+ 0.10*dNewY2; } Void MADLinearModel::updateMADHistory(Double dMAD) { m_costMADs[MAD_PPPrevious] = m_costMADs[MAD_PPrevious]; m_costMADs[MAD_PPrevious ] = m_costMADs[MAD_Previous ]; m_costMADs[MAD_Previous ] = dMAD; m_activeOn = (m_costMADs[MAD_Previous ] && m_costMADs[MAD_PPrevious ] && m_costMADs[MAD_PPPrevious]); } Void PixelBaseURQQuadraticModel::initPixelBaseQuadraticModel() { m_paramHighX1 = HIGH_QSTEP_ALPHA; m_paramHighX2 = HIGH_QSTEP_BETA; m_paramLowX1 = LOW_QSTEP_ALPHA; m_paramLowX2 = LOW_QSTEP_BETA; } Int PixelBaseURQQuadraticModel::getQP(Int qp, Int targetBits, Int numberOfPixels, Double costPredMAD) { Double qStep; Double bppPerMAD = (Double)(targetBits/(numberOfPixels*costPredMAD)); if(xConvertQP2QStep(qp) >= HIGH_QSTEP_THRESHOLD) { #if J0260 qStep = 1/( sqrt((bppPerMAD/m_paramHighX1)+((m_paramHighX2*m_paramHighX2)/(4*m_paramHighX1*m_paramHighX1))) - (m_paramHighX2/(2*m_paramHighX1))); #else qStep = 1/( sqrt((bppPerMAD/m_paramHighX1)+((m_paramHighX2*m_paramHighX2)/(4*m_paramHighX1*m_paramHighX1*m_paramHighX1))) - (m_paramHighX2/(2*m_paramHighX1))); #endif } else { #if J0260 qStep = 1/( sqrt((bppPerMAD/m_paramLowX1)+((m_paramLowX2*m_paramLowX2)/(4*m_paramLowX1*m_paramLowX1))) - (m_paramLowX2/(2*m_paramLowX1))); #else qStep = 1/( sqrt((bppPerMAD/m_paramLowX1)+((m_paramLowX2*m_paramLowX2)/(4*m_paramLowX1*m_paramLowX1*m_paramLowX1))) - (m_paramLowX2/(2*m_paramLowX1))); #endif } return xConvertQStep2QP(qStep); } Void PixelBaseURQQuadraticModel::updatePixelBasedURQQuadraticModel (Int qp, Int bits, Int numberOfPixels, Double costMAD) { Double qStep = xConvertQP2QStep(qp); Double invqStep = (1/qStep); Double paramNewX1, paramNewX2; if(qStep >= HIGH_QSTEP_THRESHOLD) { paramNewX2 = (((bits/(numberOfPixels*costMAD))-(23.3772*invqStep*invqStep))/((1-200*invqStep)*invqStep)); paramNewX1 = (23.3772-200*paramNewX2); m_paramHighX1 = 0.70*HIGH_QSTEP_ALPHA + 0.20 * m_paramHighX1 + 0.10 * paramNewX1; m_paramHighX2 = 0.70*HIGH_QSTEP_BETA + 0.20 * m_paramHighX2 + 0.10 * paramNewX2; } else { paramNewX2 = (((bits/(numberOfPixels*costMAD))-(5.8091*invqStep*invqStep))/((1-9.5455*invqStep)*invqStep)); paramNewX1 = (5.8091-9.5455*paramNewX2); m_paramLowX1 = 0.90*LOW_QSTEP_ALPHA + 0.09 * m_paramLowX1 + 0.01 * paramNewX1; m_paramLowX2 = 0.90*LOW_QSTEP_BETA + 0.09 * m_paramLowX2 + 0.01 * paramNewX2; } } Bool PixelBaseURQQuadraticModel::checkUpdateAvailable(Int qpReference ) { Double qStep = xConvertQP2QStep(qpReference); if (qStep > xConvertQP2QStep(MAX_QP) ||qStep < xConvertQP2QStep(MIN_QP) ) { return false; } return true; } Double PixelBaseURQQuadraticModel::xConvertQP2QStep(Int qp ) { Int i; Double qStep; static const Double mapQP2QSTEP[6] = { 0.625, 0.703, 0.797, 0.891, 1.000, 1.125 }; qStep = mapQP2QSTEP[qp % 6]; for( i=0; i<(qp/6); i++) { qStep *= 2; } return qStep; } Int PixelBaseURQQuadraticModel::xConvertQStep2QP(Double qStep ) { Int per = 0, rem = 0; if( qStep < xConvertQP2QStep(MIN_QP)) { return MIN_QP; } else if (qStep > xConvertQP2QStep(MAX_QP) ) { return MAX_QP; } while( qStep > xConvertQP2QStep(5) ) { qStep /= 2.0; per++; } if (qStep <= 0.625) { rem = 0; } else if (qStep <= 0.703) { rem = 1; } else if (qStep <= 0.797) { rem = 2; } else if (qStep <= 0.891) { rem = 3; } else if (qStep <= 1.000) { rem = 4; } else { rem = 5; } return (per * 6 + rem); } Void TEncRateCtrl::create(Int sizeIntraPeriod, Int sizeGOP, Int frameRate, Int targetKbps, Int qp, Int numLCUInBasicUnit, Int sourceWidth, Int sourceHeight, Int maxCUWidth, Int maxCUHeight) { Int leftInHeight, leftInWidth; m_sourceWidthInLCU = (sourceWidth / maxCUWidth ) + (( sourceWidth % maxCUWidth ) ? 1 : 0); m_sourceHeightInLCU = (sourceHeight / maxCUHeight) + (( sourceHeight % maxCUHeight) ? 1 : 0); m_isLowdelay = (sizeIntraPeriod == -1) ? true : false; #if !BUFFERING_PERIOD_AND_TIMING_SEI m_prevBitrate = targetKbps*1000; m_currBitrate = targetKbps*1000; #else m_prevBitrate = ( targetKbps << 10 ); // in units of 1,024 bps m_currBitrate = ( targetKbps << 10 ); #endif m_frameRate = frameRate; m_refFrameNum = m_isLowdelay ? (sizeGOP) : (sizeGOP>>1); m_nonRefFrameNum = sizeGOP-m_refFrameNum; m_sizeGOP = sizeGOP; m_numOfPixels = ((sourceWidth*sourceHeight*3)>>1); m_indexGOP = 0; m_indexFrame = 0; m_indexLCU = 0; m_indexUnit = 0; m_indexRefFrame = 0; m_indexNonRefFrame = 0; m_occupancyVB = 0; m_initialOVB = 0; m_targetBufLevel = 0; m_initialTBL = 0; m_occupancyVBInFrame = 0; m_remainingBitsInGOP = (m_currBitrate*sizeGOP/m_frameRate); m_remainingBitsInFrame = 0; m_numUnitInFrame = m_sourceWidthInLCU*m_sourceHeightInLCU; m_cMADLinearModel. initMADLinearModel(); m_cPixelURQQuadraticModel.initPixelBaseQuadraticModel(); m_costRefAvgWeighting = 0.0; m_costNonRefAvgWeighting = 0.0; m_costAvgbpp = 0.0; m_activeUnitLevelOn = false; m_pcFrameData = new FrameData [sizeGOP+1]; initFrameData(qp); m_pcLCUData = new LCUData [m_numUnitInFrame]; initUnitData (qp); for(Int i = 0, addressUnit = 0; i < m_sourceHeightInLCU*maxCUHeight; i += maxCUHeight) { leftInHeight = sourceHeight - i; leftInHeight = min(leftInHeight, maxCUHeight); for(Int j = 0; j < m_sourceWidthInLCU*maxCUWidth; j += maxCUWidth, addressUnit++) { leftInWidth = sourceWidth - j; leftInWidth = min(leftInWidth, maxCUWidth); m_pcLCUData[addressUnit].m_widthInPixel = leftInWidth; m_pcLCUData[addressUnit].m_heightInPixel= leftInHeight; m_pcLCUData[addressUnit].m_pixels = ((leftInHeight*leftInWidth*3)>>1); } } } Void TEncRateCtrl::destroy() { if(m_pcFrameData) { delete [] m_pcFrameData; m_pcFrameData = NULL; } if(m_pcLCUData) { delete [] m_pcLCUData; m_pcLCUData = NULL; } } Void TEncRateCtrl::initFrameData (Int qp) { for(Int i = 0 ; i <= m_sizeGOP; i++) { m_pcFrameData[i].m_isReferenced = false; m_pcFrameData[i].m_costMAD = 0.0; m_pcFrameData[i].m_bits = 0; m_pcFrameData[i].m_qp = qp; } } Void TEncRateCtrl::initUnitData (Int qp) { for(Int i = 1 ; i < m_numUnitInFrame; i++) { m_pcLCUData[i].m_qp = qp; m_pcLCUData[i].m_bits = 0; m_pcLCUData[i].m_pixels = 0; m_pcLCUData[i].m_widthInPixel = 0; m_pcLCUData[i].m_heightInPixel = 0; m_pcLCUData[i].m_costMAD = 0.0; } } Int TEncRateCtrl::getFrameQP(Bool isReferenced, Int POC) { Int numofReferenced = 0; Int finalQP = 0; FrameData* pcFrameData; m_indexPOCInGOP = (POC%m_sizeGOP) == 0 ? m_sizeGOP : (POC%m_sizeGOP); pcFrameData = &m_pcFrameData[m_indexPOCInGOP]; if(m_indexFrame != 0) { if(isReferenced) { Double gamma = m_isLowdelay ? 0.5 : 0.25; Double beta = m_isLowdelay ? 0.9 : 0.6; Int numRemainingRefFrames = m_refFrameNum - m_indexRefFrame; Int numRemainingNRefFrames = m_nonRefFrameNum - m_indexNonRefFrame; Double targetBitsOccupancy = (m_currBitrate/(Double)m_frameRate) + gamma*(m_targetBufLevel-m_occupancyVB - (m_initialOVB/(Double)m_frameRate)); Double targetBitsLeftBudget = ((m_costRefAvgWeighting*m_remainingBitsInGOP)/((m_costRefAvgWeighting*numRemainingRefFrames)+(m_costNonRefAvgWeighting*numRemainingNRefFrames))); m_targetBits = (Int)(beta * targetBitsLeftBudget + (1-beta) * targetBitsOccupancy); if(m_targetBits <= 0 || m_remainingBitsInGOP <= 0) { finalQP = m_pcFrameData[m_indexPrevPOCInGOP].m_qp + 2; } else { Double costPredMAD = m_cMADLinearModel.getMAD(); Int qpLowerBound = m_pcFrameData[m_indexPrevPOCInGOP].m_qp-2; Int qpUpperBound = m_pcFrameData[m_indexPrevPOCInGOP].m_qp+2; finalQP = m_cPixelURQQuadraticModel.getQP(m_pcFrameData[m_indexPrevPOCInGOP].m_qp, m_targetBits, m_numOfPixels, costPredMAD); finalQP = max(qpLowerBound, min(qpUpperBound, finalQP)); m_activeUnitLevelOn = true; m_remainingBitsInFrame = m_targetBits; m_costAvgbpp = (m_targetBits/(Double)m_numOfPixels); } m_indexRefFrame++; } else { Int bwdQP = m_pcFrameData[m_indexPOCInGOP-1].m_qp; Int fwdQP = m_pcFrameData[m_indexPOCInGOP+1].m_qp; if( (fwdQP+bwdQP) == m_pcFrameData[m_indexPOCInGOP-1].m_qp ||(fwdQP+bwdQP) == m_pcFrameData[m_indexPOCInGOP+1].m_qp) { finalQP = (fwdQP+bwdQP); } else if(bwdQP != fwdQP) { finalQP = ((bwdQP+fwdQP+2)>>1); } else { finalQP = bwdQP+2; } m_indexNonRefFrame++; } } else { Int lastQPminus2 = m_pcFrameData[0].m_qp - 2; Int lastQPplus2 = m_pcFrameData[0].m_qp + 2; for(Int idx = 1; idx <= m_sizeGOP; idx++) { if(m_pcFrameData[idx].m_isReferenced) { finalQP += m_pcFrameData[idx].m_qp; numofReferenced++; } } finalQP = (numofReferenced == 0) ? m_pcFrameData[0].m_qp : ((finalQP + (1<<(numofReferenced>>1)))/numofReferenced); finalQP = max( lastQPminus2, min( lastQPplus2, finalQP)); Double costAvgFrameBits = m_remainingBitsInGOP/(Double)m_sizeGOP; Int bufLevel = m_occupancyVB + m_initialOVB; if(abs(bufLevel) > costAvgFrameBits) { if(bufLevel < 0) { finalQP -= 2; } else { finalQP += 2; } } m_indexRefFrame++; } finalQP = max(MIN_QP, min(MAX_QP, finalQP)); for(Int indexLCU = 0 ; indexLCU < m_numUnitInFrame; indexLCU++) { m_pcLCUData[indexLCU].m_qp = finalQP; } pcFrameData->m_isReferenced = isReferenced; pcFrameData->m_qp = finalQP; return finalQP; } Bool TEncRateCtrl::calculateUnitQP () { if(!m_activeUnitLevelOn || m_indexLCU == 0) { return false; } Int upperQPBound, lowerQPBound, finalQP; Int colQP = m_pcLCUData[m_indexLCU].m_qp; Double colMAD = m_pcLCUData[m_indexLCU].m_costMAD; Double budgetInUnit = m_pcLCUData[m_indexLCU].m_pixels*m_costAvgbpp; Int targetBitsOccupancy = (Int)(budgetInUnit - (m_occupancyVBInFrame/(m_numUnitInFrame-m_indexUnit))); Int targetBitsLeftBudget= (Int)((m_remainingBitsInFrame*m_pcLCUData[m_indexLCU].m_pixels)/(Double)(m_numOfPixels-m_codedPixels)); Int targetBits = (targetBitsLeftBudget>>1) + (targetBitsOccupancy>>1); if( m_indexLCU >= m_sourceWidthInLCU) { upperQPBound = ( (m_pcLCUData[m_indexLCU-1].m_qp + m_pcLCUData[m_indexLCU - m_sourceWidthInLCU].m_qp)>>1) + MAX_DELTA_QP; lowerQPBound = ( (m_pcLCUData[m_indexLCU-1].m_qp + m_pcLCUData[m_indexLCU - m_sourceWidthInLCU].m_qp)>>1) - MAX_DELTA_QP; } else { upperQPBound = m_pcLCUData[m_indexLCU-1].m_qp + MAX_DELTA_QP; lowerQPBound = m_pcLCUData[m_indexLCU-1].m_qp - MAX_DELTA_QP; } if(targetBits < 0) { finalQP = m_pcLCUData[m_indexLCU-1].m_qp + 1; } else { finalQP = m_cPixelURQQuadraticModel.getQP(colQP, targetBits, m_pcLCUData[m_indexLCU].m_pixels, colMAD); } finalQP = max(lowerQPBound, min(upperQPBound, finalQP)); m_pcLCUData[m_indexLCU].m_qp = max(MIN_QP, min(MAX_QP, finalQP)); return true; } Void TEncRateCtrl::updateRCGOPStatus() { m_remainingBitsInGOP = ((m_currBitrate/m_frameRate)*m_sizeGOP) - m_occupancyVB; FrameData cFrameData = m_pcFrameData[m_sizeGOP]; initFrameData(); m_pcFrameData[0] = cFrameData; m_indexGOP++; m_indexFrame = 0; m_indexRefFrame = 0; m_indexNonRefFrame = 0; } Void TEncRateCtrl::updataRCFrameStatus(Int frameBits, SliceType eSliceType) { FrameData* pcFrameData = &m_pcFrameData[m_indexPOCInGOP]; Int occupancyBits; Double adjustmentBits; m_remainingBitsInGOP = m_remainingBitsInGOP + ( ((m_currBitrate-m_prevBitrate)/m_frameRate)*(m_sizeGOP-m_indexFrame) ) - frameBits; occupancyBits = (Int)((Double)frameBits - (m_currBitrate/(Double)m_frameRate)); if( (occupancyBits < 0) && (m_initialOVB > 0) ) { adjustmentBits = xAdjustmentBits(occupancyBits, m_initialOVB ); if(m_initialOVB < 0) { adjustmentBits = m_initialOVB; occupancyBits += (Int)adjustmentBits; m_initialOVB = 0; } } else if( (occupancyBits > 0) && (m_initialOVB < 0) ) { adjustmentBits = xAdjustmentBits(m_initialOVB, occupancyBits ); if(occupancyBits < 0) { adjustmentBits = occupancyBits; m_initialOVB += (Int)adjustmentBits; occupancyBits = 0; } } if(m_indexGOP == 0) { m_initialOVB = occupancyBits; } else { m_occupancyVB= m_occupancyVB + occupancyBits; } if(pcFrameData->m_isReferenced) { m_costRefAvgWeighting = ((pcFrameData->m_bits*pcFrameData->m_qp)/8.0) + (7.0*(m_costRefAvgWeighting)/8.0); if(m_indexFrame == 0) { m_initialTBL = m_targetBufLevel = (frameBits - (m_currBitrate/m_frameRate)); } else { Int distance = (m_costNonRefAvgWeighting == 0) ? 0 : 1; m_targetBufLevel = m_targetBufLevel - (m_initialTBL/(m_refFrameNum-1)) + (Int)((m_costRefAvgWeighting*(distance+1)*m_currBitrate)/(m_frameRate*(m_costRefAvgWeighting+(m_costNonRefAvgWeighting*distance)))) - (m_currBitrate/m_frameRate); } if(m_cMADLinearModel.IsUpdateAvailable()) { m_cMADLinearModel.updateMADLiearModel(); } if(eSliceType != I_SLICE && m_cPixelURQQuadraticModel.checkUpdateAvailable(pcFrameData->m_qp)) { m_cPixelURQQuadraticModel.updatePixelBasedURQQuadraticModel(pcFrameData->m_qp, pcFrameData->m_bits, m_numOfPixels, pcFrameData->m_costMAD); } } else { m_costNonRefAvgWeighting = ((pcFrameData->m_bits*pcFrameData->m_qp)/8.0) + (7.0*(m_costNonRefAvgWeighting)/8.0); } m_indexFrame++; m_indexLCU = 0; m_indexUnit = 0; m_occupancyVBInFrame = 0; m_remainingBitsInFrame = 0; m_codedPixels = 0; m_activeUnitLevelOn = false; m_costAvgbpp = 0.0; } Void TEncRateCtrl::updataRCUnitStatus () { if(!m_activeUnitLevelOn || m_indexLCU == 0) { return; } m_codedPixels += m_pcLCUData[m_indexLCU-1].m_pixels; m_remainingBitsInFrame = m_remainingBitsInFrame - m_pcLCUData[m_indexLCU-1].m_bits; m_occupancyVBInFrame = (Int)(m_occupancyVBInFrame + m_pcLCUData[m_indexLCU-1].m_bits - m_pcLCUData[m_indexLCU-1].m_pixels*m_costAvgbpp); if( m_cPixelURQQuadraticModel.checkUpdateAvailable(m_pcLCUData[m_indexLCU-1].m_qp) ) { m_cPixelURQQuadraticModel.updatePixelBasedURQQuadraticModel(m_pcLCUData[m_indexLCU-1].m_qp, m_pcLCUData[m_indexLCU-1].m_bits, m_pcLCUData[m_indexLCU-1].m_pixels, m_pcLCUData[m_indexLCU-1].m_costMAD); } m_indexUnit++; } Void TEncRateCtrl::updateFrameData(UInt64 actualFrameBits) { Double costMAD = 0.0; for(Int i = 0; i < m_numUnitInFrame; i++) { costMAD += m_pcLCUData[i].m_costMAD; } m_pcFrameData[m_indexPOCInGOP].m_costMAD = (costMAD/(Double)m_numUnitInFrame); m_pcFrameData[m_indexPOCInGOP].m_bits = (Int)actualFrameBits; if(m_pcFrameData[m_indexPOCInGOP].m_isReferenced) { m_indexPrevPOCInGOP = m_indexPOCInGOP; m_cMADLinearModel.updateMADHistory(m_pcFrameData[m_indexPOCInGOP].m_costMAD); } } Void TEncRateCtrl::updateLCUData(TComDataCU* pcCU, UInt64 actualLCUBits, Int qp) { Int x, y; double costMAD = 0.0; Pel* pOrg = pcCU->getPic()->getPicYuvOrg()->getLumaAddr(pcCU->getAddr(), 0); Pel* pRec = pcCU->getPic()->getPicYuvRec()->getLumaAddr(pcCU->getAddr(), 0); Int stride = pcCU->getPic()->getStride(); Int width = m_pcLCUData[m_indexLCU].m_widthInPixel; Int height = m_pcLCUData[m_indexLCU].m_heightInPixel; for( y = 0; y < height; y++ ) { for( x = 0; x < width; x++ ) { costMAD += abs( pOrg[x] - pRec[x] ); } pOrg += stride; pRec += stride; } m_pcLCUData[m_indexLCU ].m_qp = qp; m_pcLCUData[m_indexLCU ].m_costMAD = (costMAD /(Double)(width*height)); m_pcLCUData[m_indexLCU++].m_bits = (Int)actualLCUBits; } Double TEncRateCtrl::xAdjustmentBits(Int& reductionBits, Int& compensationBits) { Double adjustment = ADJUSTMENT_FACTOR*reductionBits; reductionBits -= (Int)adjustment; compensationBits += (Int)adjustment; return adjustment; }