/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2012, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncGOP.cpp \brief GOP encoder class */ #include #include #include #include "TEncTop.h" #include "TEncGOP.h" #include "TEncAnalyze.h" #include "libmd5/MD5.h" #include "TLibCommon/SEI.h" #include "TLibCommon/NAL.h" #include "NALwrite.h" #include #include using namespace std; //! \ingroup TLibEncoder //! \{ // ==================================================================================================================== // Constructor / destructor / initialization / destroy // ==================================================================================================================== Int getLSB(Int poc, Int maxLSB) { if (poc >= 0) { return poc % maxLSB; } else { return (maxLSB - ((-poc) % maxLSB)) % maxLSB; } } TEncGOP::TEncGOP() { m_iLastIDR = 0; m_iGopSize = 0; m_iNumPicCoded = 0; //Niko m_bFirst = true; m_pcCfg = NULL; m_pcSliceEncoder = NULL; m_pcListPic = NULL; m_pcEntropyCoder = NULL; m_pcCavlcCoder = NULL; m_pcSbacCoder = NULL; m_pcBinCABAC = NULL; m_bSeqFirst = true; m_bRefreshPending = 0; m_pocCRA = 0; #if LTRP_IN_SPS m_numLongTermRefPicSPS = 0; ::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps)); ::memset(m_ltRefPicUsedByCurrPicFlag, 0, sizeof(m_ltRefPicUsedByCurrPicFlag)); #endif #if BUFFERING_PERIOD_AND_TIMING_SEI m_cpbRemovalDelay = 0; m_lastBPSEI = 0; #endif #if SVC_UPSAMPLING m_pcPredSearch = NULL; #endif return; } TEncGOP::~TEncGOP() { } /** Create list to contain pointers to LCU start addresses of slice. * \param iWidth, iHeight are picture width, height. iMaxCUWidth, iMaxCUHeight are LCU width, height. */ #if SVC_EXTENSION Void TEncGOP::create( Int iWidth, Int iHeight, UInt iMaxCUWidth, UInt iMaxCUHeight, UInt layerId ) #else Void TEncGOP::create( Int iWidth, Int iHeight, UInt iMaxCUWidth, UInt iMaxCUHeight ) #endif { m_bLongtermTestPictureHasBeenCoded = 0; m_bLongtermTestPictureHasBeenCoded2 = 0; #if SVC_EXTENSION m_layerId = layerId; #endif } Void TEncGOP::destroy() { } Void TEncGOP::init ( TEncTop* pcTEncTop ) { m_pcEncTop = pcTEncTop; m_pcCfg = pcTEncTop; m_pcSliceEncoder = pcTEncTop->getSliceEncoder(); m_pcListPic = pcTEncTop->getListPic(); #if SVC_EXTENSION m_ppcTEncTop = pcTEncTop->getLayerEnc(); #endif m_pcEntropyCoder = pcTEncTop->getEntropyCoder(); m_pcCavlcCoder = pcTEncTop->getCavlcCoder(); m_pcSbacCoder = pcTEncTop->getSbacCoder(); m_pcBinCABAC = pcTEncTop->getBinCABAC(); m_pcLoopFilter = pcTEncTop->getLoopFilter(); m_pcBitCounter = pcTEncTop->getBitCounter(); #if !REMOVE_ALF // Adaptive Loop filter m_pcAdaptiveLoopFilter = pcTEncTop->getAdaptiveLoopFilter(); #endif //--Adaptive Loop filter m_pcSAO = pcTEncTop->getSAO(); m_pcRateCtrl = pcTEncTop->getRateCtrl(); #if BUFFERING_PERIOD_AND_TIMING_SEI m_lastBPSEI = 0; m_totalCoded = 0; #endif #if SVC_UPSAMPLING m_pcPredSearch = pcTEncTop->getPredSearch(); ///< encoder search class #endif } // ==================================================================================================================== // Public member functions // ==================================================================================================================== #if SVC_EXTENSION Void TEncGOP::compressGOP( Int iPicIdInGOP, Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut, std::list& accessUnitsInGOP) #else Void TEncGOP::compressGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut, std::list& accessUnitsInGOP) #endif { TComPic* pcPic; TComPicYuv* pcPicYuvRecOut; TComSlice* pcSlice; TComOutputBitstream *pcBitstreamRedirect; pcBitstreamRedirect = new TComOutputBitstream; AccessUnit::iterator itLocationToPushSliceHeaderNALU; // used to store location where NALU containing slice header is to be inserted UInt uiOneBitstreamPerSliceLength = 0; TEncSbac* pcSbacCoders = NULL; TComOutputBitstream* pcSubstreamsOut = NULL; xInitGOP( iPOCLast, iNumPicRcvd, rcListPic, rcListPicYuvRecOut ); m_iNumPicCoded = 0; #if BUFFERING_PERIOD_AND_TIMING_SEI SEIPictureTiming pictureTimingSEI; UInt *accumBitsDU = NULL; UInt *accumNalsDU = NULL; #endif #if SVC_EXTENSION for ( Int iGOPid=iPicIdInGOP; iGOPid < iPicIdInGOP+1; iGOPid++ ) #else for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ ) #endif { UInt uiColDir = 1; //-- For time output for each slice long iBeforeTime = clock(); //select uiColDir Int iCloseLeft=1, iCloseRight=-1; for(Int i = 0; igetGOPEntry(iGOPid).m_numRefPics; i++) { Int iRef = m_pcCfg->getGOPEntry(iGOPid).m_referencePics[i]; if(iRef>0&&(iRefiCloseLeft||iCloseLeft==1)) { iCloseLeft=iRef; } } if(iCloseRight>-1) { iCloseRight=iCloseRight+m_pcCfg->getGOPEntry(iGOPid).m_POC-1; } if(iCloseLeft<1) { iCloseLeft=iCloseLeft+m_pcCfg->getGOPEntry(iGOPid).m_POC-1; while(iCloseLeft<0) { iCloseLeft+=m_iGopSize; } } Int iLeftQP=0, iRightQP=0; for(Int i=0; igetGOPEntry(i).m_POC==(iCloseLeft%m_iGopSize)+1) { iLeftQP= m_pcCfg->getGOPEntry(i).m_QPOffset; } if (m_pcCfg->getGOPEntry(i).m_POC==(iCloseRight%m_iGopSize)+1) { iRightQP=m_pcCfg->getGOPEntry(i).m_QPOffset; } } if(iCloseRight>-1&&iRightQPgetGOPEntry(iGOPid).m_POC; Int iTimeOffset = m_pcCfg->getGOPEntry(iGOPid).m_POC; if(iPOCLast == 0) { uiPOCCurr=0; iTimeOffset = 1; } if(uiPOCCurr>=m_pcCfg->getFrameToBeEncoded()) { continue; } #if SUPPORT_FOR_RAP_N_LP if( getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDR || getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDR_N_LP ) #else if(getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDR) #endif { m_iLastIDR = uiPOCCurr; } // start a new access unit: create an entry in the list of output access units accessUnitsInGOP.push_back(AccessUnit()); AccessUnit& accessUnit = accessUnitsInGOP.back(); xGetBuffer( rcListPic, rcListPicYuvRecOut, iNumPicRcvd, iTimeOffset, pcPic, pcPicYuvRecOut, uiPOCCurr ); // Slice data initialization pcPic->clearSliceBuffer(); assert(pcPic->getNumAllocatedSlice() == 1); m_pcSliceEncoder->setSliceIdx(0); pcPic->setCurrSliceIdx(0); #if SVC_EXTENSION pcPic->setLayerId( m_layerId ); #endif #if !REMOVE_APS std::vector& vAPS = m_pcEncTop->getAPS(); #endif m_pcSliceEncoder->initEncSlice ( pcPic, iPOCLast, uiPOCCurr, iNumPicRcvd, iGOPid, pcSlice, m_pcEncTop->getSPS(), m_pcEncTop->getPPS() ); pcSlice->setLastIDR(m_iLastIDR); pcSlice->setSliceIdx(0); //set default slice level flag to the same as SPS level flag #if MOVE_LOOP_FILTER_SLICES_FLAG pcSlice->setLFCrossSliceBoundaryFlag( pcSlice->getPPS()->getLoopFilterAcrossSlicesEnabledFlag() ); #else pcSlice->setLFCrossSliceBoundaryFlag( pcSlice->getSPS()->getLFCrossSliceBoundaryFlag() ); #endif pcSlice->setScalingList ( m_pcEncTop->getScalingList() ); #if TS_FLAT_QUANTIZATION_MATRIX pcSlice->getScalingList()->setUseTransformSkip(m_pcEncTop->getPPS()->getUseTransformSkip()); #endif if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_OFF) { m_pcEncTop->getTrQuant()->setFlatScalingList(); m_pcEncTop->getTrQuant()->setUseScalingList(false); m_pcEncTop->getSPS()->setScalingListPresentFlag(false); m_pcEncTop->getPPS()->setScalingListPresentFlag(false); } else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_DEFAULT) { pcSlice->setDefaultScalingList (); m_pcEncTop->getSPS()->setScalingListPresentFlag(false); m_pcEncTop->getPPS()->setScalingListPresentFlag(false); m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList()); m_pcEncTop->getTrQuant()->setUseScalingList(true); } else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_FILE_READ) { if(pcSlice->getScalingList()->xParseScalingList(m_pcCfg->getScalingListFile())) { pcSlice->setDefaultScalingList (); } pcSlice->getScalingList()->checkDcOfMatrix(); m_pcEncTop->getSPS()->setScalingListPresentFlag(pcSlice->checkDefaultScalingList()); m_pcEncTop->getPPS()->setScalingListPresentFlag(false); m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList()); m_pcEncTop->getTrQuant()->setUseScalingList(true); } else { printf("error : ScalingList == %d no support\n",m_pcEncTop->getUseScalingListId()); assert(0); } if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='P') { pcSlice->setSliceType(P_SLICE); } // Set the nal unit type pcSlice->setNalUnitType(getNalUnitType(uiPOCCurr)); #if REF_IDX_FRAMEWORK if (m_layerId > 0 && (uiPOCCurr % m_pcCfg->getIntraPeriod() == 0)) pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_CRA); if( m_layerId > 0 && !m_pcEncTop->getElRapSliceTypeB() ) { if( (pcSlice->getNalUnitType() >= NAL_UNIT_CODED_SLICE_BLA) && (pcSlice->getNalUnitType() <= NAL_UNIT_CODED_SLICE_CRA) && pcSlice->getSliceType() == B_SLICE ) pcSlice->setSliceType(P_SLICE); } #endif #if TEMPORAL_LAYER_NON_REFERENCE if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_TRAIL_R) { if(pcSlice->getTemporalLayerNonReferenceFlag()) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TRAIL_N); } } #endif // Do decoding refresh marking if any pcSlice->decodingRefreshMarking(m_pocCRA, m_bRefreshPending, rcListPic); m_pcEncTop->selectReferencePictureSet(pcSlice, uiPOCCurr, iGOPid,rcListPic); pcSlice->getRPS()->setNumberOfLongtermPictures(0); if(pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false) != 0) { pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS()); } pcSlice->applyReferencePictureSet(rcListPic, pcSlice->getRPS()); if(pcSlice->getTLayer() > 0) { if(pcSlice->isTemporalLayerSwitchingPoint(rcListPic, pcSlice->getRPS()) || pcSlice->getSPS()->getTemporalIdNestingFlag()) { #if TEMPORAL_LAYER_NON_REFERENCE if(pcSlice->getTemporalLayerNonReferenceFlag()) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TSA_N); } else { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TLA); } #else pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TLA); #endif } #if STSA else if(pcSlice->isStepwiseTemporalLayerSwitchingPointCandidate(rcListPic, pcSlice->getRPS())) { Bool isSTSA=true; for(Int ii=iGOPid+1;(iigetGOPSize() && isSTSA==true);ii++) { Int lTid= m_pcCfg->getGOPEntry(ii).m_temporalId; if(lTid==pcSlice->getTLayer()) { TComReferencePictureSet* nRPS = pcSlice->getSPS()->getRPSList()->getReferencePictureSet(ii); for(Int jj=0;jjgetNumberOfPictures();jj++) { if(nRPS->getUsed(jj)) { Int tPoc=m_pcCfg->getGOPEntry(ii).m_POC+nRPS->getDeltaPOC(jj); Int kk=0; for(kk=0;kkgetGOPSize();kk++) { if(m_pcCfg->getGOPEntry(kk).m_POC==tPoc) break; } Int tTid=m_pcCfg->getGOPEntry(kk).m_temporalId; if(tTid >= pcSlice->getTLayer()) { isSTSA=false; break; } } } } } if(isSTSA==true) { #if TEMPORAL_LAYER_NON_REFERENCE if(pcSlice->getTemporalLayerNonReferenceFlag()) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_N); } else { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_R); } #else pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_R); #endif } } #endif } arrangeLongtermPicturesInRPS(pcSlice, rcListPic); TComRefPicListModification* refPicListModification = pcSlice->getRefPicListModification(); refPicListModification->setRefPicListModificationFlagL0(0); refPicListModification->setRefPicListModificationFlagL1(0); pcSlice->setNumRefIdx(REF_PIC_LIST_0,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures())); pcSlice->setNumRefIdx(REF_PIC_LIST_1,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures())); #if ADAPTIVE_QP_SELECTION pcSlice->setTrQuant( m_pcEncTop->getTrQuant() ); #endif #if SVC_EXTENSION if(m_layerId > 0) { TComList *cListPic = m_ppcTEncTop[m_layerId-1]->getListPic(); pcSlice->setBaseColPic (*cListPic, m_layerId ); #if SVC_UPSAMPLING if ( pcPic->isSpatialEnhLayer()) { m_pcPredSearch->upsampleBasePic( pcPic->getFullPelBaseRec(), pcSlice->getBaseColPic()->getPicYuvRec(), pcPic->getPicYuvRec() ); } else { pcPic->setFullPelBaseRec( pcSlice->getBaseColPic()->getPicYuvRec() ); } pcSlice->setFullPelBaseRec ( pcPic->getFullPelBaseRec() ); #endif } #endif #if REF_IDX_FRAMEWORK if (pcSlice->getSliceType() == B_SLICE) pcSlice->setColFromL0Flag(1-uiColDir); #endif // Set reference list pcSlice->setRefPicList ( rcListPic ); #if REF_IDX_FRAMEWORK if(m_layerId > 0) { m_pcEncTop->setILRPic(pcPic); #if REF_IDX_MFM pcSlice->setRefPOCListILP(m_pcEncTop->getIlpList(), pcSlice->getBaseColPic()); #endif pcSlice->addRefPicList ( m_pcEncTop->getIlpList(), 1); #if REF_IDX_MFM Bool found = false; UInt ColFromL0Flag = pcSlice->getColFromL0Flag(); UInt ColRefIdx = pcSlice->getColRefIdx(); for(Int colIdx = 0; colIdx < pcSlice->getNumRefIdx( RefPicList(1 - ColFromL0Flag) ); colIdx++) { if( pcSlice->getRefPic( RefPicList(1 - ColFromL0Flag), colIdx)->getIsILR() ) { ColRefIdx = colIdx; found = true; break; } } if( found == false ) { ColFromL0Flag = 1 - ColFromL0Flag; for(Int colIdx = 0; colIdx < pcSlice->getNumRefIdx( RefPicList(1 - ColFromL0Flag) ); colIdx++) { if( pcSlice->getRefPic( RefPicList(1 - ColFromL0Flag), colIdx)->getIsILR() ) { ColRefIdx = colIdx; found = true; break; } } } if(found == true) { pcSlice->setColFromL0Flag(ColFromL0Flag); pcSlice->setColRefIdx(ColRefIdx); } #endif } #endif // Slice info. refinement if ( (pcSlice->getSliceType() == B_SLICE) && (pcSlice->getNumRefIdx(REF_PIC_LIST_1) == 0) ) { pcSlice->setSliceType ( P_SLICE ); } if (pcSlice->getSliceType() != B_SLICE || !pcSlice->getSPS()->getUseLComb()) { pcSlice->setNumRefIdx(REF_PIC_LIST_C, 0); pcSlice->setRefPicListCombinationFlag(false); pcSlice->setRefPicListModificationFlagLC(false); } else { pcSlice->setRefPicListCombinationFlag(pcSlice->getSPS()->getUseLComb()); pcSlice->setNumRefIdx(REF_PIC_LIST_C, pcSlice->getNumRefIdx(REF_PIC_LIST_0)); } if (pcSlice->getSliceType() == B_SLICE) { #if !REF_IDX_FRAMEWORK pcSlice->setColFromL0Flag(1-uiColDir); #endif Bool bLowDelay = true; Int iCurrPOC = pcSlice->getPOC(); Int iRefIdx = 0; for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_0) && bLowDelay; iRefIdx++) { if ( pcSlice->getRefPic(REF_PIC_LIST_0, iRefIdx)->getPOC() > iCurrPOC ) { bLowDelay = false; } } for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_1) && bLowDelay; iRefIdx++) { if ( pcSlice->getRefPic(REF_PIC_LIST_1, iRefIdx)->getPOC() > iCurrPOC ) { bLowDelay = false; } } pcSlice->setCheckLDC(bLowDelay); } uiColDir = 1-uiColDir; //------------------------------------------------------------- pcSlice->setRefPOCList(); pcSlice->setNoBackPredFlag( false ); if ( pcSlice->getSliceType() == B_SLICE && !pcSlice->getRefPicListCombinationFlag()) { if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) ) { pcSlice->setNoBackPredFlag( true ); int i; for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ ) { if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) ) { pcSlice->setNoBackPredFlag( false ); break; } } } } if(pcSlice->getNoBackPredFlag()) { pcSlice->setNumRefIdx(REF_PIC_LIST_C, 0); } pcSlice->generateCombinedList(); if (m_pcEncTop->getTMVPModeId() == 2) { if (iGOPid == 0) // first picture in SOP (i.e. forward B) { pcSlice->setEnableTMVPFlag(0); } else { // Note: pcSlice->getColFromL0Flag() is assumed to be always 0 and getcolRefIdx() is always 0. pcSlice->setEnableTMVPFlag(1); } pcSlice->getSPS()->setTMVPFlagsPresent(1); } else if (m_pcEncTop->getTMVPModeId() == 1) { pcSlice->getSPS()->setTMVPFlagsPresent(1); pcSlice->setEnableTMVPFlag(1); } else { pcSlice->getSPS()->setTMVPFlagsPresent(0); pcSlice->setEnableTMVPFlag(0); } /////////////////////////////////////////////////////////////////////////////////////////////////// Compress a slice // Slice compression if (m_pcCfg->getUseASR()) { m_pcSliceEncoder->setSearchRange(pcSlice); } Bool bGPBcheck=false; if ( pcSlice->getSliceType() == B_SLICE) { if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) ) { bGPBcheck=true; int i; for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ ) { if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) ) { bGPBcheck=false; break; } } } } if(bGPBcheck) { pcSlice->setMvdL1ZeroFlag(true); } else { pcSlice->setMvdL1ZeroFlag(false); } pcPic->getSlice(pcSlice->getSliceIdx())->setMvdL1ZeroFlag(pcSlice->getMvdL1ZeroFlag()); UInt uiNumSlices = 1; UInt uiInternalAddress = pcPic->getNumPartInCU()-4; UInt uiExternalAddress = pcPic->getPicSym()->getNumberOfCUsInFrame()-1; UInt uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); UInt uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while(uiPosX>=uiWidth||uiPosY>=uiHeight) { uiInternalAddress--; uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } uiInternalAddress++; if(uiInternalAddress==pcPic->getNumPartInCU()) { uiInternalAddress = 0; uiExternalAddress++; } UInt uiRealEndAddress = uiExternalAddress*pcPic->getNumPartInCU()+uiInternalAddress; UInt uiCummulativeTileWidth; UInt uiCummulativeTileHeight; Int p, j; UInt uiEncCUAddr; //set NumColumnsMinus1 and NumRowsMinus1 pcPic->getPicSym()->setNumColumnsMinus1( pcSlice->getPPS()->getNumColumnsMinus1() ); pcPic->getPicSym()->setNumRowsMinus1( pcSlice->getPPS()->getNumRowsMinus1() ); //create the TComTileArray pcPic->getPicSym()->xCreateTComTileArray(); if( pcSlice->getPPS()->getUniformSpacingFlag() == 1 ) { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )-> setTileWidth( (p+1)*pcPic->getPicSym()->getFrameWidthInCU()/(pcPic->getPicSym()->getNumColumnsMinus1()+1) - (p*pcPic->getPicSym()->getFrameWidthInCU())/(pcPic->getPicSym()->getNumColumnsMinus1()+1) ); } } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )-> setTileHeight( (p+1)*pcPic->getPicSym()->getFrameHeightInCU()/(pcPic->getPicSym()->getNumRowsMinus1()+1) - (p*pcPic->getPicSym()->getFrameHeightInCU())/(pcPic->getPicSym()->getNumRowsMinus1()+1) ); } } } else { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { uiCummulativeTileWidth = 0; for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1(); p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )->setTileWidth( pcSlice->getPPS()->getColumnWidth(p) ); uiCummulativeTileWidth += pcSlice->getPPS()->getColumnWidth(p); } pcPic->getPicSym()->getTComTile(j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p)->setTileWidth( pcPic->getPicSym()->getFrameWidthInCU()-uiCummulativeTileWidth ); } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { uiCummulativeTileHeight = 0; for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1(); p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )->setTileHeight( pcSlice->getPPS()->getRowHeight(p) ); uiCummulativeTileHeight += pcSlice->getPPS()->getRowHeight(p); } pcPic->getPicSym()->getTComTile(p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j)->setTileHeight( pcPic->getPicSym()->getFrameHeightInCU()-uiCummulativeTileHeight ); } } //intialize each tile of the current picture pcPic->getPicSym()->xInitTiles(); // Allocate some coders, now we know how many tiles there are. Int iNumSubstreams = pcSlice->getPPS()->getNumSubstreams(); //generate the Coding Order Map and Inverse Coding Order Map for(p=0, uiEncCUAddr=0; pgetPicSym()->getNumberOfCUsInFrame(); p++, uiEncCUAddr = pcPic->getPicSym()->xCalculateNxtCUAddr(uiEncCUAddr)) { pcPic->getPicSym()->setCUOrderMap(p, uiEncCUAddr); pcPic->getPicSym()->setInverseCUOrderMap(uiEncCUAddr, p); } pcPic->getPicSym()->setCUOrderMap(pcPic->getPicSym()->getNumberOfCUsInFrame(), pcPic->getPicSym()->getNumberOfCUsInFrame()); pcPic->getPicSym()->setInverseCUOrderMap(pcPic->getPicSym()->getNumberOfCUsInFrame(), pcPic->getPicSym()->getNumberOfCUsInFrame()); // Allocate some coders, now we know how many tiles there are. m_pcEncTop->createWPPCoders(iNumSubstreams); pcSbacCoders = m_pcEncTop->getSbacCoders(); pcSubstreamsOut = new TComOutputBitstream[iNumSubstreams]; UInt uiStartCUAddrSliceIdx = 0; // used to index "m_uiStoredStartCUAddrForEncodingSlice" containing locations of slice boundaries UInt uiStartCUAddrSlice = 0; // used to keep track of current slice's starting CU addr. pcSlice->setSliceCurStartCUAddr( uiStartCUAddrSlice ); // Setting "start CU addr" for current slice m_storedStartCUAddrForEncodingSlice.clear(); UInt uiStartCUAddrDependentSliceIdx = 0; // used to index "m_uiStoredStartCUAddrForEntropyEncodingSlice" containing locations of slice boundaries UInt uiStartCUAddrDependentSlice = 0; // used to keep track of current Dependent slice's starting CU addr. pcSlice->setDependentSliceCurStartCUAddr( uiStartCUAddrDependentSlice ); // Setting "start CU addr" for current Dependent slice m_storedStartCUAddrForEncodingDependentSlice.clear(); UInt uiNextCUAddr = 0; m_storedStartCUAddrForEncodingSlice.push_back (uiNextCUAddr); uiStartCUAddrSliceIdx++; m_storedStartCUAddrForEncodingDependentSlice.push_back(uiNextCUAddr); uiStartCUAddrDependentSliceIdx++; #if AVC_BASE if( m_layerId == 0 ) { pcPic->getPicYuvOrg()->copyToPic( pcPic->getPicYuvRec() ); return; } #endif while(uiNextCUAddrsetNextSlice ( false ); pcSlice->setNextDependentSlice( false ); assert(pcPic->getNumAllocatedSlice() == uiStartCUAddrSliceIdx); m_pcSliceEncoder->precompressSlice( pcPic ); m_pcSliceEncoder->compressSlice ( pcPic ); Bool bNoBinBitConstraintViolated = (!pcSlice->isNextSlice() && !pcSlice->isNextDependentSlice()); if (pcSlice->isNextSlice() || (bNoBinBitConstraintViolated && m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_LCU_IN_SLICE)) { uiStartCUAddrSlice = pcSlice->getSliceCurEndCUAddr(); // Reconstruction slice m_storedStartCUAddrForEncodingSlice.push_back(uiStartCUAddrSlice); uiStartCUAddrSliceIdx++; // Dependent slice if (uiStartCUAddrDependentSliceIdx>0 && m_storedStartCUAddrForEncodingDependentSlice[uiStartCUAddrDependentSliceIdx-1] != uiStartCUAddrSlice) { m_storedStartCUAddrForEncodingDependentSlice.push_back(uiStartCUAddrSlice); uiStartCUAddrDependentSliceIdx++; } if (uiStartCUAddrSlice < uiRealEndAddress) { pcPic->allocateNewSlice(); pcPic->setCurrSliceIdx ( uiStartCUAddrSliceIdx-1 ); m_pcSliceEncoder->setSliceIdx ( uiStartCUAddrSliceIdx-1 ); pcSlice = pcPic->getSlice ( uiStartCUAddrSliceIdx-1 ); pcSlice->copySliceInfo ( pcPic->getSlice(0) ); pcSlice->setSliceIdx ( uiStartCUAddrSliceIdx-1 ); pcSlice->setSliceCurStartCUAddr ( uiStartCUAddrSlice ); pcSlice->setDependentSliceCurStartCUAddr ( uiStartCUAddrSlice ); pcSlice->setSliceBits(0); uiNumSlices ++; } } else if (pcSlice->isNextDependentSlice() || (bNoBinBitConstraintViolated && m_pcCfg->getDependentSliceMode()==SHARP_FIXED_NUMBER_OF_LCU_IN_DEPENDENT_SLICE)) { uiStartCUAddrDependentSlice = pcSlice->getDependentSliceCurEndCUAddr(); m_storedStartCUAddrForEncodingDependentSlice.push_back(uiStartCUAddrDependentSlice); uiStartCUAddrDependentSliceIdx++; pcSlice->setDependentSliceCurStartCUAddr( uiStartCUAddrDependentSlice ); } else { uiStartCUAddrSlice = pcSlice->getSliceCurEndCUAddr(); uiStartCUAddrDependentSlice = pcSlice->getDependentSliceCurEndCUAddr(); } uiNextCUAddr = (uiStartCUAddrSlice > uiStartCUAddrDependentSlice) ? uiStartCUAddrSlice : uiStartCUAddrDependentSlice; } m_storedStartCUAddrForEncodingSlice.push_back( pcSlice->getSliceCurEndCUAddr()); uiStartCUAddrSliceIdx++; m_storedStartCUAddrForEncodingDependentSlice.push_back(pcSlice->getSliceCurEndCUAddr()); uiStartCUAddrDependentSliceIdx++; pcSlice = pcPic->getSlice(0); #if SAO_LCU_BOUNDARY // SAO parameter estimation using non-deblocked pixels for LCU bottom and right boundary areas if( m_pcCfg->getSaoLcuBasedOptimization() && m_pcCfg->getSaoLcuBoundary() ) { m_pcSAO->resetStats(); m_pcSAO->calcSaoStatsCu_BeforeDblk( pcPic ); } #endif //-- Loop filter Bool bLFCrossTileBoundary = pcSlice->getPPS()->getLoopFilterAcrossTilesEnabledFlag(); m_pcLoopFilter->setCfg(pcSlice->getPPS()->getDeblockingFilterControlPresentFlag(), pcSlice->getDeblockingFilterDisable(), pcSlice->getDeblockingFilterBetaOffsetDiv2(), pcSlice->getDeblockingFilterTcOffsetDiv2(), bLFCrossTileBoundary); m_pcLoopFilter->loopFilterPic( pcPic ); pcSlice = pcPic->getSlice(0); #if REMOVE_ALF if(pcSlice->getSPS()->getUseSAO()) #else if(pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) #endif { #if !REMOVE_FGS Int sliceGranularity = pcSlice->getPPS()->getSliceGranularity(); #endif std::vector LFCrossSliceBoundaryFlag; for(Int s=0; s< uiNumSlices; s++) { LFCrossSliceBoundaryFlag.push_back( ((uiNumSlices==1)?true:pcPic->getSlice(s)->getLFCrossSliceBoundaryFlag()) ); } m_storedStartCUAddrForEncodingSlice.resize(uiNumSlices+1); #if REMOVE_FGS pcPic->createNonDBFilterInfo(m_storedStartCUAddrForEncodingSlice, 0, &LFCrossSliceBoundaryFlag ,pcPic->getPicSym()->getNumTiles() ,bLFCrossTileBoundary); #else pcPic->createNonDBFilterInfo(m_storedStartCUAddrForEncodingSlice, sliceGranularity, &LFCrossSliceBoundaryFlag ,pcPic->getPicSym()->getNumTiles() ,bLFCrossTileBoundary); #endif } pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseSAO()) { m_pcSAO->createPicSaoInfo(pcPic, uiNumSlices); } #if !REMOVE_ALF pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseALF()) { m_pcAdaptiveLoopFilter->createPicAlfInfo(pcPic, uiNumSlices); } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// File writing // Set entropy coder m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); /* write various header sets. */ if ( m_bSeqFirst ) { #if SVC_EXTENSION #if REMOVE_NAL_REF_FLAG OutputNALUnit nalu(NAL_UNIT_VPS, 0, m_layerId); #else OutputNALUnit nalu(NAL_UNIT_VPS, true, 0, m_layerId); #endif #else #if REMOVE_NAL_REF_FLAG OutputNALUnit nalu(NAL_UNIT_VPS); #else OutputNALUnit nalu(NAL_UNIT_VPS, true); #endif #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodeVPS(m_pcEncTop->getVPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); #if SVC_EXTENSION #if REMOVE_NAL_REF_FLAG nalu = NALUnit(NAL_UNIT_SPS, 0, m_layerId); #else nalu = NALUnit(NAL_UNIT_SPS, true, 0, m_layerId); #endif #else #if REMOVE_NAL_REF_FLAG nalu = NALUnit(NAL_UNIT_SPS); #else nalu = NALUnit(NAL_UNIT_SPS, true); #endif #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); #if LTRP_IN_SPS if (m_bSeqFirst) { pcSlice->getSPS()->setNumLongTermRefPicSPS(m_numLongTermRefPicSPS); for (Int k = 0; k < m_numLongTermRefPicSPS; k++) { pcSlice->getSPS()->setLtRefPicPocLsbSps(k, m_ltRefPicPocLsbSps[k]); pcSlice->getSPS()->setUsedByCurrPicLtSPSFlag(k, m_ltRefPicUsedByCurrPicFlag[k]); } } #endif #if BUFFERING_PERIOD_AND_TIMING_SEI if( m_pcCfg->getPictureTimingSEIEnabled() ) { UInt maxCU = m_pcCfg->getSliceArgument() >> ( pcSlice->getSPS()->getMaxCUDepth() << 1); UInt numDU = ( m_pcCfg->getSliceMode() == 1 ) ? ( pcPic->getNumCUsInFrame() / maxCU ) : ( 0 ); if( pcPic->getNumCUsInFrame() % maxCU != 0 ) { numDU ++; } pcSlice->getSPS()->getVuiParameters()->setNumDU( numDU ); pcSlice->getSPS()->setHrdParameters( m_pcCfg->getFrameRate(), numDU, m_pcCfg->getTargetBitrate(), ( m_pcCfg->getIntraPeriod() > 0 ) ); } if( m_pcCfg->getBufferingPeriodSEIEnabled() || m_pcCfg->getPictureTimingSEIEnabled() ) { pcSlice->getSPS()->getVuiParameters()->setHrdParametersPresentFlag( true ); } #endif m_pcEntropyCoder->encodeSPS(pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); #if SVC_EXTENSION #if REMOVE_NAL_REF_FLAG nalu = NALUnit(NAL_UNIT_PPS, 0, m_layerId); #else nalu = NALUnit(NAL_UNIT_PPS, true, 0, m_layerId); #endif #else #if REMOVE_NAL_REF_FLAG nalu = NALUnit(NAL_UNIT_PPS); #else nalu = NALUnit(NAL_UNIT_PPS, true); #endif #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodePPS(pcSlice->getPPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); #if ACTIVE_PARAMETER_SETS_SEI_MESSAGE if(m_pcCfg->getActiveParameterSetsSEIEnabled()) { SEIActiveParameterSets sei_active_parameter_sets; sei_active_parameter_sets.activeVPSId = m_pcCfg->getVPS()->getVPSId(); sei_active_parameter_sets.activeSPSIdPresentFlag = m_pcCfg->getActiveParameterSetsSEIEnabled()==2 ? 1 : 0; if(sei_active_parameter_sets.activeSPSIdPresentFlag) { sei_active_parameter_sets.activeSeqParamSetId = pcSlice->getSPS()->getSPSId(); } sei_active_parameter_sets.activeParamSetSEIExtensionFlag = 0; nalu = NALUnit(NAL_UNIT_SEI); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_active_parameter_sets); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); } #endif m_bSeqFirst = false; } #if BUFFERING_PERIOD_AND_TIMING_SEI if( ( m_pcCfg->getPictureTimingSEIEnabled() ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getVclHrdParametersPresentFlag() ) ) ) { if( pcSlice->getSPS()->getVuiParameters()->getSubPicCpbParamsPresentFlag() ) { UInt numDU = pcSlice->getSPS()->getVuiParameters()->getNumDU(); pictureTimingSEI.m_numDecodingUnitsMinus1 = ( numDU - 1 ); pictureTimingSEI.m_duCommonCpbRemovalDelayFlag = 0; if( pictureTimingSEI.m_numNalusInDuMinus1 == NULL ) { pictureTimingSEI.m_numNalusInDuMinus1 = new UInt[ numDU ]; } if( pictureTimingSEI.m_duCpbRemovalDelayMinus1 == NULL ) { pictureTimingSEI.m_duCpbRemovalDelayMinus1 = new UInt[ numDU ]; } if( accumBitsDU == NULL ) { accumBitsDU = new UInt[ numDU ]; } if( accumNalsDU == NULL ) { accumNalsDU = new UInt[ numDU ]; } } pictureTimingSEI.m_auCpbRemovalDelay = m_totalCoded - m_lastBPSEI; pictureTimingSEI.m_picDpbOutputDelay = pcSlice->getSPS()->getNumReorderPics(0) + pcSlice->getPOC() - m_totalCoded; } if( ( m_pcCfg->getBufferingPeriodSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getVclHrdParametersPresentFlag() ) ) ) { OutputNALUnit nalu(NAL_UNIT_SEI); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); SEIBufferingPeriod sei_buffering_period; UInt uiInitialCpbRemovalDelay = (90000/2); // 0.5 sec sei_buffering_period.m_initialCpbRemovalDelay [0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialCpbRemovalDelayOffset[0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialCpbRemovalDelay [0][1] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialCpbRemovalDelayOffset[0][1] = uiInitialCpbRemovalDelay; Double dTmp = (Double)pcSlice->getSPS()->getVuiParameters()->getNumUnitsInTick() / (Double)pcSlice->getSPS()->getVuiParameters()->getTimeScale(); UInt uiTmp = (UInt)( dTmp * 90000.0 ); uiInitialCpbRemovalDelay -= uiTmp; uiInitialCpbRemovalDelay -= uiTmp / ( pcSlice->getSPS()->getVuiParameters()->getTickDivisorMinus2() + 2 ); sei_buffering_period.m_initialAltCpbRemovalDelay [0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialAltCpbRemovalDelay [0][1] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][1] = uiInitialCpbRemovalDelay; sei_buffering_period.m_altCpbParamsPresentFlag = 0; sei_buffering_period.m_sps = pcSlice->getSPS(); m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_buffering_period ); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); m_lastBPSEI = m_totalCoded; m_cpbRemovalDelay = 0; } m_cpbRemovalDelay ++; #endif #if RECOVERY_POINT_SEI if( ( m_pcEncTop->getRecoveryPointSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) ) { // Recovery point SEI OutputNALUnit nalu(NAL_UNIT_SEI); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); SEIRecoveryPoint sei_recovery_point; sei_recovery_point.m_recoveryPocCnt = 0; sei_recovery_point.m_exactMatchingFlag = ( pcSlice->getPOC() == 0 ) ? (true) : (false); sei_recovery_point.m_brokenLinkFlag = false; m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_recovery_point ); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); } #endif /* use the main bitstream buffer for storing the marshalled picture */ m_pcEntropyCoder->setBitstream(NULL); uiStartCUAddrSliceIdx = 0; uiStartCUAddrSlice = 0; uiStartCUAddrDependentSliceIdx = 0; uiStartCUAddrDependentSlice = 0; uiNextCUAddr = 0; pcSlice = pcPic->getSlice(uiStartCUAddrSliceIdx); #if REMOVE_ALF Int processingState = (pcSlice->getSPS()->getUseSAO())?(EXECUTE_INLOOPFILTER):(ENCODE_SLICE); #else Int processingState = (pcSlice->getSPS()->getUseALF() || pcSlice->getSPS()->getUseSAO())?(EXECUTE_INLOOPFILTER):(ENCODE_SLICE); #endif #if !REMOVE_APS static Int iCurrAPSIdx = 0; Int iCodedAPSIdx = 0; TComSlice* pcSliceForAPS = NULL; #endif bool skippedSlice=false; while (uiNextCUAddr < uiRealEndAddress) // Iterate over all slices { switch(processingState) { case ENCODE_SLICE: { pcSlice->setNextSlice ( false ); pcSlice->setNextDependentSlice( false ); if (uiNextCUAddr == m_storedStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx]) { pcSlice = pcPic->getSlice(uiStartCUAddrSliceIdx); if(uiStartCUAddrSliceIdx > 0 && pcSlice->getSliceType()!= I_SLICE) { pcSlice->checkColRefIdx(uiStartCUAddrSliceIdx, pcPic); } pcPic->setCurrSliceIdx(uiStartCUAddrSliceIdx); m_pcSliceEncoder->setSliceIdx(uiStartCUAddrSliceIdx); assert(uiStartCUAddrSliceIdx == pcSlice->getSliceIdx()); // Reconstruction slice pcSlice->setSliceCurStartCUAddr( uiNextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setSliceCurEndCUAddr ( m_storedStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx+1 ] ); // Dependent slice pcSlice->setDependentSliceCurStartCUAddr( uiNextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setDependentSliceCurEndCUAddr ( m_storedStartCUAddrForEncodingDependentSlice[uiStartCUAddrDependentSliceIdx+1 ] ); pcSlice->setNextSlice ( true ); uiStartCUAddrSliceIdx++; uiStartCUAddrDependentSliceIdx++; } else if (uiNextCUAddr == m_storedStartCUAddrForEncodingDependentSlice[uiStartCUAddrDependentSliceIdx]) { // Dependent slice pcSlice->setDependentSliceCurStartCUAddr( uiNextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setDependentSliceCurEndCUAddr ( m_storedStartCUAddrForEncodingDependentSlice[uiStartCUAddrDependentSliceIdx+1 ] ); pcSlice->setNextDependentSlice( true ); uiStartCUAddrDependentSliceIdx++; } pcSlice->setRPS(pcPic->getSlice(0)->getRPS()); pcSlice->setRPSidx(pcPic->getSlice(0)->getRPSidx()); UInt uiDummyStartCUAddr; UInt uiDummyBoundingCUAddr; m_pcSliceEncoder->xDetermineStartAndBoundingCUAddr(uiDummyStartCUAddr,uiDummyBoundingCUAddr,pcPic,true); uiInternalAddress = pcPic->getPicSym()->getPicSCUAddr(pcSlice->getDependentSliceCurEndCUAddr()-1) % pcPic->getNumPartInCU(); uiExternalAddress = pcPic->getPicSym()->getPicSCUAddr(pcSlice->getDependentSliceCurEndCUAddr()-1) / pcPic->getNumPartInCU(); uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while(uiPosX>=uiWidth||uiPosY>=uiHeight) { uiInternalAddress--; uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } uiInternalAddress++; if(uiInternalAddress==pcPic->getNumPartInCU()) { uiInternalAddress = 0; uiExternalAddress = pcPic->getPicSym()->getCUOrderMap(pcPic->getPicSym()->getInverseCUOrderMap(uiExternalAddress)+1); } UInt uiEndAddress = pcPic->getPicSym()->getPicSCUEncOrder(uiExternalAddress*pcPic->getNumPartInCU()+uiInternalAddress); if(uiEndAddress<=pcSlice->getDependentSliceCurStartCUAddr()) { UInt uiBoundingAddrSlice, uiBoundingAddrDependentSlice; uiBoundingAddrSlice = m_storedStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx]; uiBoundingAddrDependentSlice = m_storedStartCUAddrForEncodingDependentSlice[uiStartCUAddrDependentSliceIdx]; uiNextCUAddr = min(uiBoundingAddrSlice, uiBoundingAddrDependentSlice); if(pcSlice->isNextSlice()) { skippedSlice=true; } continue; } if(skippedSlice) { pcSlice->setNextSlice ( true ); pcSlice->setNextDependentSlice( false ); } skippedSlice=false; pcSlice->allocSubstreamSizes( iNumSubstreams ); for ( UInt ui = 0 ; ui < iNumSubstreams; ui++ ) { pcSubstreamsOut[ui].clear(); } m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); /* start slice NALunit */ #if SVC_EXTENSION #if REMOVE_NAL_REF_FLAG OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->getTLayer(), m_layerId ); #else OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->isReferenced(), pcSlice->getTLayer(), m_layerId ); #endif #else #if REMOVE_NAL_REF_FLAG OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->getTLayer() ); #else OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->isReferenced(), pcSlice->getTLayer() ); #endif #endif Bool bDependentSlice = (!pcSlice->isNextSlice()); if (!bDependentSlice) { uiOneBitstreamPerSliceLength = 0; // start of a new slice } m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodeSliceHeader(pcSlice); // is it needed? { if (!bDependentSlice) { pcBitstreamRedirect->writeAlignOne(); } else { // We've not completed our slice header info yet, do the alignment later. } m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); for ( UInt ui = 0 ; ui < pcSlice->getPPS()->getNumSubstreams() ; ui++ ) { m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->resetEntropy (); } } if(pcSlice->isNextSlice()) { // set entropy coder for writing m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); { for ( UInt ui = 0 ; ui < pcSlice->getPPS()->getNumSubstreams() ; ui++ ) { m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->resetEntropy (); } pcSbacCoders[0].load(m_pcSbacCoder); m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[0], pcSlice ); //ALF is written in substream #0 with CABAC coder #0 (see ALF param encoding below) } m_pcEntropyCoder->resetEntropy (); // File writing if (!bDependentSlice) { m_pcEntropyCoder->setBitstream(pcBitstreamRedirect); } else { m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); } // for now, override the TILES_DECODER setting in order to write substreams. m_pcEntropyCoder->setBitstream ( &pcSubstreamsOut[0] ); } pcSlice->setFinalized(true); m_pcSbacCoder->load( &pcSbacCoders[0] ); pcSlice->setTileOffstForMultES( uiOneBitstreamPerSliceLength ); if (!bDependentSlice) { pcSlice->setTileLocationCount ( 0 ); m_pcSliceEncoder->encodeSlice(pcPic, pcBitstreamRedirect, pcSubstreamsOut); // redirect is only used for CAVLC tile position info. } else { m_pcSliceEncoder->encodeSlice(pcPic, &nalu.m_Bitstream, pcSubstreamsOut); // nalu.m_Bitstream is only used for CAVLC tile position info. } { // Construct the final bitstream by flushing and concatenating substreams. // The final bitstream is either nalu.m_Bitstream or pcBitstreamRedirect; UInt* puiSubstreamSizes = pcSlice->getSubstreamSizes(); UInt uiTotalCodedSize = 0; // for padding calcs. UInt uiNumSubstreamsPerTile = iNumSubstreams; if (iNumSubstreams > 1) { uiNumSubstreamsPerTile /= pcPic->getPicSym()->getNumTiles(); } for ( UInt ui = 0 ; ui < iNumSubstreams; ui++ ) { // Flush all substreams -- this includes empty ones. // Terminating bit and flush. m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->setBitstream ( &pcSubstreamsOut[ui] ); m_pcEntropyCoder->encodeTerminatingBit( 1 ); m_pcEntropyCoder->encodeSliceFinish(); #if BYTE_ALIGNMENT pcSubstreamsOut[ui].writeByteAlignment(); // Byte-alignment in slice_data() at end of sub-stream #else //!KS: The following writes trailing_bits. Should use proper function call to writeRBSPTrailingBits() pcSubstreamsOut[ui].write( 1, 1 ); // stop bit. pcSubstreamsOut[ui].writeAlignZero(); #endif // Byte alignment is necessary between tiles when tiles are independent. uiTotalCodedSize += pcSubstreamsOut[ui].getNumberOfWrittenBits(); { Bool bNextSubstreamInNewTile = ((ui+1) < iNumSubstreams) && ((ui+1)%uiNumSubstreamsPerTile == 0); if (bNextSubstreamInNewTile) { // byte align. while (uiTotalCodedSize&0x7) { pcSubstreamsOut[ui].write(0, 1); uiTotalCodedSize++; } } Bool bRecordOffsetNext = bNextSubstreamInNewTile; if (bRecordOffsetNext) pcSlice->setTileLocation(ui/uiNumSubstreamsPerTile, pcSlice->getTileOffstForMultES()+(uiTotalCodedSize>>3)); } if (ui+1 < pcSlice->getPPS()->getNumSubstreams()) puiSubstreamSizes[ui] = pcSubstreamsOut[ui].getNumberOfWrittenBits(); } // Complete the slice header info. m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodeTilesWPPEntryPoint( pcSlice ); // Substreams... TComOutputBitstream *pcOut = pcBitstreamRedirect; #if !BYTE_ALIGNMENT // xWriteTileLocation will perform byte-alignment... { if (bDependentSlice) { // In these cases, padding is necessary here. pcOut = &nalu.m_Bitstream; pcOut->writeAlignOne(); } } #endif Int offs = 0; Int nss = pcSlice->getPPS()->getNumSubstreams(); #if TILES_WPP_ENTROPYSLICES_FLAGS if (pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag()) #else if (pcSlice->getPPS()->getTilesOrEntropyCodingSyncIdc() == 2) #endif { // 1st line present for WPP. #if DEPENDENT_SLICES offs = pcSlice->getDependentSliceCurStartCUAddr()/pcSlice->getPic()->getNumPartInCU()/pcSlice->getPic()->getFrameWidthInCU(); #else offs = pcSlice->getSliceCurStartCUAddr()/pcSlice->getPic()->getNumPartInCU()/pcSlice->getPic()->getFrameWidthInCU(); #endif nss = pcSlice->getNumEntryPointOffsets()+1; } for ( UInt ui = 0 ; ui < nss; ui++ ) { pcOut->addSubstream(&pcSubstreamsOut[ui+offs]); } } UInt uiBoundingAddrSlice, uiBoundingAddrDependentSlice; uiBoundingAddrSlice = m_storedStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx]; uiBoundingAddrDependentSlice = m_storedStartCUAddrForEncodingDependentSlice[uiStartCUAddrDependentSliceIdx]; uiNextCUAddr = min(uiBoundingAddrSlice, uiBoundingAddrDependentSlice); // If current NALU is the first NALU of slice (containing slice header) and more NALUs exist (due to multiple dependent slices) then buffer it. // If current NALU is the last NALU of slice and a NALU was buffered, then (a) Write current NALU (b) Update an write buffered NALU at approproate location in NALU list. Bool bNALUAlignedWrittenToList = false; // used to ensure current NALU is not written more than once to the NALU list. xWriteTileLocationToSliceHeader(nalu, pcBitstreamRedirect, pcSlice); accessUnit.push_back(new NALUnitEBSP(nalu)); bNALUAlignedWrittenToList = true; uiOneBitstreamPerSliceLength += nalu.m_Bitstream.getNumberOfWrittenBits(); // length of bitstream after byte-alignment if (!bNALUAlignedWrittenToList) { { nalu.m_Bitstream.writeAlignZero(); } accessUnit.push_back(new NALUnitEBSP(nalu)); uiOneBitstreamPerSliceLength += nalu.m_Bitstream.getNumberOfWrittenBits() + 24; // length of bitstream after byte-alignment + 3 byte startcode 0x000001 } #if BUFFERING_PERIOD_AND_TIMING_SEI if( ( m_pcCfg->getPictureTimingSEIEnabled() ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getVclHrdParametersPresentFlag() ) ) && ( pcSlice->getSPS()->getVuiParameters()->getSubPicCpbParamsPresentFlag() ) ) { UInt numRBSPBytes = 0; for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++) { UInt numRBSPBytes_nal = UInt((*it)->m_nalUnitData.str().size()); if ((*it)->m_nalUnitType != NAL_UNIT_SEI) { numRBSPBytes += numRBSPBytes_nal; } } accumBitsDU[ pcSlice->getSliceIdx() ] = ( numRBSPBytes << 3 ); accumNalsDU[ pcSlice->getSliceIdx() ] = (UInt)accessUnit.size(); } #endif processingState = ENCODE_SLICE; } break; case EXECUTE_INLOOPFILTER: { #if !REMOVE_APS TComAPS cAPS; allocAPS(&cAPS, pcSlice->getSPS()); #endif // set entropy coder for RD m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); if ( pcSlice->getSPS()->getUseSAO() ) { m_pcEntropyCoder->resetEntropy(); m_pcEntropyCoder->setBitstream( m_pcBitCounter ); m_pcSAO->startSaoEnc(pcPic, m_pcEntropyCoder, m_pcEncTop->getRDSbacCoder(), m_pcEncTop->getRDGoOnSbacCoder()); #if REMOVE_APS SAOParam& cSaoParam = *pcSlice->getPic()->getPicSym()->getSaoParam(); #else SAOParam& cSaoParam = *(cAPS.getSaoParam()); #endif #if SAO_CHROMA_LAMBDA #if SAO_ENCODING_CHOICE m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma(), pcPic->getSlice(0)->getDepth()); #else m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma()); #endif #else #if ALF_CHROMA_LAMBDA m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambdaLuma()); #else m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambda()); #endif #endif m_pcSAO->endSaoEnc(); #if !REMOVE_ALF m_pcAdaptiveLoopFilter->PCMLFDisableProcess(pcPic); #else m_pcSAO->PCMLFDisableProcess(pcPic); #endif } #if SAO_RDO m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); #endif // adaptive loop filter #if !REMOVE_ALF if ( pcSlice->getSPS()->getUseALF()) { #if ALF_CHROMA_LAMBDA m_pcAdaptiveLoopFilter->ALFProcess(cAPS.getAlfParam(), pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma() ); #else #if SAO_CHROMA_LAMBDA m_pcAdaptiveLoopFilter->ALFProcess(cAPS.getAlfParam(), pcPic->getSlice(0)->getLambdaLuma()); #else m_pcAdaptiveLoopFilter->ALFProcess(cAPS.getAlfParam(), pcPic->getSlice(0)->getLambda()); #endif #endif m_pcAdaptiveLoopFilter->PCMLFDisableProcess(pcPic); } #endif #if !REMOVE_APS iCodedAPSIdx = iCurrAPSIdx; pcSliceForAPS = pcSlice; assignNewAPS(cAPS, iCodedAPSIdx, vAPS, pcSliceForAPS); iCurrAPSIdx = (iCurrAPSIdx +1)%MAX_NUM_SUPPORTED_APS; #endif processingState = ENCODE_APS; //set APS link to the slices for(Int s=0; s< uiNumSlices; s++) { #if !REMOVE_ALF if (pcSlice->getSPS()->getUseALF()) { for(Int compIdx =0; compIdx< 3; compIdx++) { pcPic->getSlice(s)->setAlfEnabledFlag( cAPS.getAlfEnabled(compIdx), compIdx); } } #endif if (pcSlice->getSPS()->getUseSAO()) { #if REMOVE_APS pcPic->getSlice(s)->setSaoEnabledFlag((pcSlice->getPic()->getPicSym()->getSaoParam()->bSaoFlag[0]==1)?true:false); #else pcPic->getSlice(s)->setSaoEnabledFlag((cAPS.getSaoParam()->bSaoFlag[0]==1)?true:false); #endif } #if !REMOVE_APS pcPic->getSlice(s)->setAPS(&(vAPS[iCodedAPSIdx])); pcPic->getSlice(s)->setAPSId(iCodedAPSIdx); #endif } /* The destructor of cAPS that is about to be called will free * the resource held by cAPS, which will cause problems since it * has been aliased elsewhere. * Hint: never ever write an assignment operator that copies * pointers without the use of smart pointers. * The following will clear the saved state before the destructor. */ #if !REMOVE_APS cAPS = TComAPS(); #endif } break; case ENCODE_APS: { #if !REMOVE_APS OutputNALUnit nalu(NAL_UNIT_APS, true); encodeAPS(&(vAPS[iCodedAPSIdx]), nalu.m_Bitstream, pcSliceForAPS); accessUnit.push_back(new NALUnitEBSP(nalu)); #endif processingState = ENCODE_SLICE; } break; default: { printf("Not a supported encoding state\n"); assert(0); exit(-1); } } } // end iteration over slices #if REMOVE_ALF if(pcSlice->getSPS()->getUseSAO()) #else if(pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) #endif { if(pcSlice->getSPS()->getUseSAO()) { m_pcSAO->destroyPicSaoInfo(); } #if !REMOVE_ALF if(pcSlice->getSPS()->getUseALF()) { m_pcAdaptiveLoopFilter->destroyPicAlfInfo(); } #endif pcPic->destroyNonDBFilterInfo(); } pcPic->compressMotion(); //-- For time output for each slice Double dEncTime = (double)(clock()-iBeforeTime) / CLOCKS_PER_SEC; const char* digestStr = NULL; if (m_pcCfg->getDecodedPictureHashSEIEnabled()) { /* calculate MD5sum for entire reconstructed picture */ SEIDecodedPictureHash sei_recon_picture_digest; if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1) { sei_recon_picture_digest.method = SEIDecodedPictureHash::MD5; calcMD5(*pcPic->getPicYuvRec(), sei_recon_picture_digest.digest); digestStr = digestToString(sei_recon_picture_digest.digest, 16); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2) { sei_recon_picture_digest.method = SEIDecodedPictureHash::CRC; calcCRC(*pcPic->getPicYuvRec(), sei_recon_picture_digest.digest); digestStr = digestToString(sei_recon_picture_digest.digest, 2); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3) { sei_recon_picture_digest.method = SEIDecodedPictureHash::CHECKSUM; calcChecksum(*pcPic->getPicYuvRec(), sei_recon_picture_digest.digest); digestStr = digestToString(sei_recon_picture_digest.digest, 4); } #if SVC_EXTENSION #if REMOVE_NAL_REF_FLAG OutputNALUnit nalu(NAL_UNIT_SEI, pcSlice->getTLayer(), m_layerId); #else OutputNALUnit nalu(NAL_UNIT_SEI, false, pcSlice->getTLayer(), m_layerId); #endif #else #if REMOVE_NAL_REF_FLAG OutputNALUnit nalu(NAL_UNIT_SEI, pcSlice->getTLayer()); #else OutputNALUnit nalu(NAL_UNIT_SEI, false, pcSlice->getTLayer()); #endif #endif /* write the SEI messages */ m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_recon_picture_digest); writeRBSPTrailingBits(nalu.m_Bitstream); /* insert the SEI message NALUnit before any Slice NALUnits */ AccessUnit::iterator it = find_if(accessUnit.begin(), accessUnit.end(), mem_fun(&NALUnit::isSlice)); accessUnit.insert(it, new NALUnitEBSP(nalu)); } xCalculateAddPSNR( pcPic, pcPic->getPicYuvRec(), accessUnit, dEncTime ); if (digestStr) { if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1) { printf(" [MD5:%s]", digestStr); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2) { printf(" [CRC:%s]", digestStr); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3) { printf(" [Checksum:%s]", digestStr); } } if(m_pcCfg->getUseRateCtrl()) { unsigned frameBits = m_vRVM_RP[m_vRVM_RP.size()-1]; m_pcRateCtrl->updataRCFrameStatus((Int)frameBits, pcSlice->getSliceType()); } #if BUFFERING_PERIOD_AND_TIMING_SEI if( ( m_pcCfg->getPictureTimingSEIEnabled() ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getVclHrdParametersPresentFlag() ) ) ) { OutputNALUnit nalu(NAL_UNIT_SEI, pcSlice->getTLayer()); TComVUI *vui = pcSlice->getSPS()->getVuiParameters(); if( vui->getSubPicCpbParamsPresentFlag() ) { Int i; UInt64 ui64Tmp; UInt uiTmp, uiPrev, uiCurr; uiPrev = 0; for( i = 0; i < ( pictureTimingSEI.m_numDecodingUnitsMinus1 + 1 ); i ++ ) { pictureTimingSEI.m_numNalusInDuMinus1[ i ] = ( i == 0 ) ? ( accumNalsDU[ i ] ) : ( accumNalsDU[ i ] - accumNalsDU[ i - 1] - 1 ); ui64Tmp = ( ( ( accumBitsDU[ pictureTimingSEI.m_numDecodingUnitsMinus1 ] - accumBitsDU[ i ] ) * ( vui->getTimeScale() / vui->getNumUnitsInTick() ) * ( vui->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() << 10 ) ); uiTmp = (UInt)ui64Tmp; if( uiTmp >= ( vui->getTickDivisorMinus2() + 2 ) ) uiCurr = 0; else uiCurr = ( vui->getTickDivisorMinus2() + 2 ) - uiTmp; if( i == pictureTimingSEI.m_numDecodingUnitsMinus1 ) uiCurr = vui->getTickDivisorMinus2() + 2; if( uiCurr <= uiPrev ) uiCurr = uiPrev + 1; pictureTimingSEI.m_duCpbRemovalDelayMinus1[ i ] = (uiCurr - uiPrev) - 1; uiPrev = uiCurr; } } m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); pictureTimingSEI.m_sps = pcSlice->getSPS(); m_seiWriter.writeSEImessage(nalu.m_Bitstream, pictureTimingSEI); writeRBSPTrailingBits(nalu.m_Bitstream); AccessUnit::iterator it = find_if(accessUnit.begin(), accessUnit.end(), mem_fun(&NALUnit::isSlice)); accessUnit.insert(it, new NALUnitEBSP(nalu)); } #endif #if FIXED_ROUNDING_FRAME_MEMORY /* TODO: this should happen after copyToPic(pcPicYuvRecOut) */ pcPic->getPicYuvRec()->xFixedRoundingPic(); #endif pcPic->getPicYuvRec()->copyToPic(pcPicYuvRecOut); pcPic->setReconMark ( true ); m_bFirst = false; m_iNumPicCoded++; #if BUFFERING_PERIOD_AND_TIMING_SEI m_totalCoded ++; #endif /* logging: insert a newline at end of picture period */ printf("\n"); fflush(stdout); delete[] pcSubstreamsOut; } if(m_pcCfg->getUseRateCtrl()) { m_pcRateCtrl->updateRCGOPStatus(); } delete pcBitstreamRedirect; #if BUFFERING_PERIOD_AND_TIMING_SEI if( accumBitsDU != NULL) delete accumBitsDU; if( accumNalsDU != NULL) delete accumNalsDU; #endif #if SVC_EXTENSION assert ( m_iNumPicCoded <= 1 ); #else assert ( m_iNumPicCoded == iNumPicRcvd ); #endif } #if !REMOVE_APS /** Memory allocation for APS * \param [out] pAPS APS pointer * \param [in] pSPS SPS pointer */ Void TEncGOP::allocAPS (TComAPS* pAPS, TComSPS* pSPS) { if(pSPS->getUseSAO()) { pAPS->createSaoParam(); m_pcSAO->allocSaoParam(pAPS->getSaoParam()); } #if !REMOVE_ALF pAPS->createAlfParam(); #endif } /** Memory deallocation for APS * \param [out] pAPS APS pointer * \param [in] pSPS SPS pointer */ Void TEncGOP::freeAPS (TComAPS* pAPS, TComSPS* pSPS) { if(pSPS->getUseSAO()) { if(pAPS->getSaoParam() != NULL) { m_pcSAO->freeSaoParam(pAPS->getSaoParam()); pAPS->destroySaoParam(); } } #if !REMOVE_ALF pAPS->destroyAlfParam(); #endif } /** Assign APS object into APS container according to APS ID * \param [in] cAPS APS object * \param [in] apsID APS ID * \param [in,out] vAPS APS container * \param [in] pcSlice pointer to slice */ Void TEncGOP::assignNewAPS(TComAPS& cAPS, Int apsID, std::vector& vAPS, TComSlice* pcSlice) { cAPS.setAPSID(apsID); //assign new APS into APS container Int apsBufSize= (Int)vAPS.size(); if(apsID >= apsBufSize) { vAPS.resize(apsID +1); } freeAPS(&(vAPS[apsID]), pcSlice->getSPS()); vAPS[apsID] = cAPS; } /** encode APS syntax elements * \param [in] pcAPS APS pointer * \param [in, out] APSbs bitstream * \param [in] pointer to slice (just used for entropy coder initialization) */ Void TEncGOP::encodeAPS(TComAPS* pcAPS, TComOutputBitstream& APSbs, TComSlice* pcSlice) { m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->resetEntropy (); m_pcEntropyCoder->setBitstream(&APSbs); m_pcEntropyCoder->encodeAPSInitInfo(pcAPS); #if !REMOVE_ALF for(Int compIdx=0; compIdx < 3; compIdx++) { m_pcEntropyCoder->encodeAlfParam( (pcAPS->getAlfParam())[compIdx]); } #endif m_pcEntropyCoder->encodeApsExtensionFlag(); //neither SAO and ALF is enabled writeRBSPTrailingBits(APSbs); } #endif #if !SVC_EXTENSION Void TEncGOP::printOutSummary(UInt uiNumAllPicCoded) { assert (uiNumAllPicCoded == m_gcAnalyzeAll.getNumPic()); //--CFG_KDY m_gcAnalyzeAll.setFrmRate( m_pcCfg->getFrameRate() ); m_gcAnalyzeI.setFrmRate( m_pcCfg->getFrameRate() ); m_gcAnalyzeP.setFrmRate( m_pcCfg->getFrameRate() ); m_gcAnalyzeB.setFrmRate( m_pcCfg->getFrameRate() ); //-- all printf( "\n\nSUMMARY --------------------------------------------------------\n" ); m_gcAnalyzeAll.printOut('a'); printf( "\n\nI Slices--------------------------------------------------------\n" ); m_gcAnalyzeI.printOut('i'); printf( "\n\nP Slices--------------------------------------------------------\n" ); m_gcAnalyzeP.printOut('p'); printf( "\n\nB Slices--------------------------------------------------------\n" ); m_gcAnalyzeB.printOut('b'); #if _SUMMARY_OUT_ m_gcAnalyzeAll.printSummaryOut(); #endif #if _SUMMARY_PIC_ m_gcAnalyzeI.printSummary('I'); m_gcAnalyzeP.printSummary('P'); m_gcAnalyzeB.printSummary('B'); #endif printf("\nRVM: %.3lf\n" , xCalculateRVM()); } #endif Void TEncGOP::preLoopFilterPicAll( TComPic* pcPic, UInt64& ruiDist, UInt64& ruiBits ) { TComSlice* pcSlice = pcPic->getSlice(pcPic->getCurrSliceIdx()); Bool bCalcDist = false; m_pcLoopFilter->setCfg(pcSlice->getPPS()->getDeblockingFilterControlPresentFlag(), pcSlice->getDeblockingFilterDisable(), m_pcCfg->getLoopFilterBetaOffset(), m_pcCfg->getLoopFilterTcOffset(), m_pcCfg->getLFCrossTileBoundaryFlag()); m_pcLoopFilter->loopFilterPic( pcPic ); m_pcEntropyCoder->setEntropyCoder ( m_pcEncTop->getRDGoOnSbacCoder(), pcSlice ); m_pcEntropyCoder->resetEntropy (); m_pcEntropyCoder->setBitstream ( m_pcBitCounter ); pcSlice = pcPic->getSlice(0); #if REMOVE_ALF if(pcSlice->getSPS()->getUseSAO()) #else if(pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) #endif { std::vector LFCrossSliceBoundaryFlag(1, true); std::vector sliceStartAddress; sliceStartAddress.push_back(0); sliceStartAddress.push_back(pcPic->getNumCUsInFrame()* pcPic->getNumPartInCU()); pcPic->createNonDBFilterInfo(sliceStartAddress, 0, &LFCrossSliceBoundaryFlag); } #if !REMOVE_ALF // Adaptive Loop filter if( pcSlice->getSPS()->getUseALF() ) { m_pcAdaptiveLoopFilter->createPicAlfInfo(pcPic); ALFParam* alfPicParam[3]; for(Int compIdx=0; compIdx < 3; compIdx++) { alfPicParam[compIdx] = new ALFParam(compIdx); } #if ALF_CHROMA_LAMBDA m_pcAdaptiveLoopFilter->ALFProcess(alfPicParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma() ); #else #if SAO_CHROMA_LAMBDA m_pcAdaptiveLoopFilter->ALFProcess(alfPicParam, pcPic->getSlice(0)->getLambdaLuma()); #else m_pcAdaptiveLoopFilter->ALFProcess(alfPicParam, pcPic->getSlice(0)->getLambda()); #endif #endif for(Int compIdx=0; compIdx < 3; compIdx++) { delete alfPicParam[compIdx]; alfPicParam[compIdx] = NULL; } m_pcAdaptiveLoopFilter->PCMLFDisableProcess(pcPic); m_pcAdaptiveLoopFilter->destroyPicAlfInfo(); } #endif #if REMOVE_ALF if( pcSlice->getSPS()->getUseSAO()) #else if( pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) #endif { pcPic->destroyNonDBFilterInfo(); } m_pcEntropyCoder->resetEntropy (); ruiBits += m_pcEntropyCoder->getNumberOfWrittenBits(); if (!bCalcDist) ruiDist = xFindDistortionFrame(pcPic->getPicYuvOrg(), pcPic->getPicYuvRec()); } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== Void TEncGOP::xInitGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut ) { assert( iNumPicRcvd > 0 ); // Exception for the first frame if ( iPOCLast == 0 ) { m_iGopSize = 1; } else m_iGopSize = m_pcCfg->getGOPSize(); assert (m_iGopSize > 0); return; } Void TEncGOP::xGetBuffer( TComList& rcListPic, TComList& rcListPicYuvRecOut, Int iNumPicRcvd, Int iTimeOffset, TComPic*& rpcPic, TComPicYuv*& rpcPicYuvRecOut, UInt uiPOCCurr ) { Int i; // Rec. output TComList::iterator iterPicYuvRec = rcListPicYuvRecOut.end(); for ( i = 0; i < iNumPicRcvd - iTimeOffset + 1; i++ ) { iterPicYuvRec--; } rpcPicYuvRecOut = *(iterPicYuvRec); // Current pic. TComList::iterator iterPic = rcListPic.begin(); while (iterPic != rcListPic.end()) { rpcPic = *(iterPic); rpcPic->setCurrSliceIdx(0); if (rpcPic->getPOC() == (Int)uiPOCCurr) { break; } iterPic++; } assert (rpcPic->getPOC() == (Int)uiPOCCurr); return; } UInt64 TEncGOP::xFindDistortionFrame (TComPicYuv* pcPic0, TComPicYuv* pcPic1) { Int x, y; Pel* pSrc0 = pcPic0 ->getLumaAddr(); Pel* pSrc1 = pcPic1 ->getLumaAddr(); #if IBDI_DISTORTION Int iShift = g_uiBitIncrement; Int iOffset = 1<<(g_uiBitIncrement-1); #else UInt uiShift = g_uiBitIncrement<<1; #endif Int iTemp; Int iStride = pcPic0->getStride(); Int iWidth = pcPic0->getWidth(); Int iHeight = pcPic0->getHeight(); UInt64 uiTotalDiff = 0; for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { #if IBDI_DISTORTION iTemp = ((pSrc0[x]+iOffset)>>iShift) - ((pSrc1[x]+iOffset)>>iShift); uiTotalDiff += iTemp * iTemp; #else iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; #endif } pSrc0 += iStride; pSrc1 += iStride; } iHeight >>= 1; iWidth >>= 1; iStride >>= 1; pSrc0 = pcPic0->getCbAddr(); pSrc1 = pcPic1->getCbAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { #if IBDI_DISTORTION iTemp = ((pSrc0[x]+iOffset)>>iShift) - ((pSrc1[x]+iOffset)>>iShift); uiTotalDiff += iTemp * iTemp; #else iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; #endif } pSrc0 += iStride; pSrc1 += iStride; } pSrc0 = pcPic0->getCrAddr(); pSrc1 = pcPic1->getCrAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { #if IBDI_DISTORTION iTemp = ((pSrc0[x]+iOffset)>>iShift) - ((pSrc1[x]+iOffset)>>iShift); uiTotalDiff += iTemp * iTemp; #else iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; #endif } pSrc0 += iStride; pSrc1 += iStride; } return uiTotalDiff; } #if VERBOSE_RATE static const char* nalUnitTypeToString(NalUnitType type) { switch (type) { #if NAL_UNIT_TYPES_J1003_D7 case NAL_UNIT_CODED_SLICE_TRAIL_R: return "TRAIL_R"; case NAL_UNIT_CODED_SLICE_TRAIL_N: return "TRAIL_N"; case NAL_UNIT_CODED_SLICE_TLA: return "TLA"; case NAL_UNIT_CODED_SLICE_TSA_N: return "TSA_N"; case NAL_UNIT_CODED_SLICE_STSA_R: return "STSA_R"; case NAL_UNIT_CODED_SLICE_STSA_N: return "STSA_N"; case NAL_UNIT_CODED_SLICE_BLA: return "BLA"; case NAL_UNIT_CODED_SLICE_BLANT: return "BLANT"; case NAL_UNIT_CODED_SLICE_BLA_N_LP: return "BLA_N_LP"; case NAL_UNIT_CODED_SLICE_IDR: return "IDR"; case NAL_UNIT_CODED_SLICE_IDR_N_LP: return "IDR_N_LP"; case NAL_UNIT_CODED_SLICE_CRA: return "CRA"; case NAL_UNIT_CODED_SLICE_DLP: return "DLP"; case NAL_UNIT_CODED_SLICE_TFD: return "TFD"; #else case NAL_UNIT_CODED_SLICE: return "SLICE"; case NAL_UNIT_CODED_SLICE_TFD: return "TFD"; case NAL_UNIT_CODED_SLICE_TLA: return "TLA"; case NAL_UNIT_CODED_SLICE_CRA: return "CRA"; case NAL_UNIT_CODED_SLICE_CRANT: return "CRANT"; case NAL_UNIT_CODED_SLICE_BLA: return "BLA"; case NAL_UNIT_CODED_SLICE_BLANT: return "BLANT"; case NAL_UNIT_CODED_SLICE_IDR: return "IDR"; #endif case NAL_UNIT_VPS: return "VPS"; case NAL_UNIT_SPS: return "SPS"; case NAL_UNIT_PPS: return "PPS"; #if NAL_UNIT_TYPES_J1003_D7 case NAL_UNIT_ACCESS_UNIT_DELIMITER: return "AUD"; case NAL_UNIT_EOS: return "EOS"; case NAL_UNIT_EOB: return "EOB"; case NAL_UNIT_FILLER_DATA: return "FILLER"; case NAL_UNIT_SEI: return "SEI"; #else case NAL_UNIT_APS: return "APS"; case NAL_UNIT_ACCESS_UNIT_DELIMITER: return "AUD"; case NAL_UNIT_FILLER_DATA: return "FILLER"; case NAL_UNIT_SEI: return "SEI"; #endif default: return "UNK"; } } #endif Void TEncGOP::xCalculateAddPSNR( TComPic* pcPic, TComPicYuv* pcPicD, const AccessUnit& accessUnit, Double dEncTime ) { Int x, y; UInt64 uiSSDY = 0; UInt64 uiSSDU = 0; UInt64 uiSSDV = 0; Double dYPSNR = 0.0; Double dUPSNR = 0.0; Double dVPSNR = 0.0; //===== calculate PSNR ===== Pel* pOrg = pcPic ->getPicYuvOrg()->getLumaAddr(); Pel* pRec = pcPicD->getLumaAddr(); Int iStride = pcPicD->getStride(); Int iWidth; Int iHeight; iWidth = pcPicD->getWidth () - m_pcEncTop->getPad(0); iHeight = pcPicD->getHeight() - m_pcEncTop->getPad(1); Int iSize = iWidth*iHeight; for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDY += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } iHeight >>= 1; iWidth >>= 1; iStride >>= 1; pOrg = pcPic ->getPicYuvOrg()->getCbAddr(); pRec = pcPicD->getCbAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDU += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } pOrg = pcPic ->getPicYuvOrg()->getCrAddr(); pRec = pcPicD->getCrAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDV += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } unsigned int maxval = 255 * (1<<(g_uiBitDepth + g_uiBitIncrement -8)); Double fRefValueY = (double) maxval * maxval * iSize; Double fRefValueC = fRefValueY / 4.0; dYPSNR = ( uiSSDY ? 10.0 * log10( fRefValueY / (Double)uiSSDY ) : 99.99 ); dUPSNR = ( uiSSDU ? 10.0 * log10( fRefValueC / (Double)uiSSDU ) : 99.99 ); dVPSNR = ( uiSSDV ? 10.0 * log10( fRefValueC / (Double)uiSSDV ) : 99.99 ); /* calculate the size of the access unit, excluding: * - any AnnexB contributions (start_code_prefix, zero_byte, etc.,) * - SEI NAL units */ unsigned numRBSPBytes = 0; for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++) { unsigned numRBSPBytes_nal = unsigned((*it)->m_nalUnitData.str().size()); #if VERBOSE_RATE printf("*** %6s numBytesInNALunit: %u\n", nalUnitTypeToString((*it)->m_nalUnitType), numRBSPBytes_nal); #endif if ((*it)->m_nalUnitType != NAL_UNIT_SEI) numRBSPBytes += numRBSPBytes_nal; } unsigned uibits = numRBSPBytes * 8; m_vRVM_RP.push_back( uibits ); //===== add PSNR ===== #if SVC_EXTENSION m_gcAnalyzeAll[m_layerId].addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); TComSlice* pcSlice = pcPic->getSlice(0); if (pcSlice->isIntra()) { m_gcAnalyzeI[m_layerId].addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } if (pcSlice->isInterP()) { m_gcAnalyzeP[m_layerId].addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } if (pcSlice->isInterB()) { m_gcAnalyzeB[m_layerId].addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } #else m_gcAnalyzeAll.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); TComSlice* pcSlice = pcPic->getSlice(0); if (pcSlice->isIntra()) { m_gcAnalyzeI.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } if (pcSlice->isInterP()) { m_gcAnalyzeP.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } if (pcSlice->isInterB()) { m_gcAnalyzeB.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } #endif Char c = (pcSlice->isIntra() ? 'I' : pcSlice->isInterP() ? 'P' : 'B'); if (!pcSlice->isReferenced()) c += 32; #if SVC_EXTENSION #if ADAPTIVE_QP_SELECTION printf("POC %4d LId: %1d TId: %1d ( %c-SLICE, nQP %d QP %d ) %10d bits", pcSlice->getPOC(), pcSlice->getLayerId(), pcSlice->getTLayer(), c, pcSlice->getSliceQpBase(), pcSlice->getSliceQp(), uibits ); #else printf("POC %4d LId: %1d TId: %1d ( %c-SLICE, QP %d ) %10d bits", pcSlice->getPOC()-pcSlice->getLastIDR(), pcSlice->getLayerId(), pcSlice->getTLayer(), c, pcSlice->getSliceQp(), uibits ); #endif #else #if ADAPTIVE_QP_SELECTION printf("POC %4d TId: %1d ( %c-SLICE, nQP %d QP %d ) %10d bits", pcSlice->getPOC(), pcSlice->getTLayer(), c, pcSlice->getSliceQpBase(), pcSlice->getSliceQp(), uibits ); #else printf("POC %4d TId: %1d ( %c-SLICE, QP %d ) %10d bits", pcSlice->getPOC()-pcSlice->getLastIDR(), pcSlice->getTLayer(), c, pcSlice->getSliceQp(), uibits ); #endif #endif printf(" [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", dYPSNR, dUPSNR, dVPSNR ); printf(" [ET %5.0f ]", dEncTime ); for (Int iRefList = 0; iRefList < 2; iRefList++) { printf(" [L%d ", iRefList); for (Int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx(RefPicList(iRefList)); iRefIndex++) { printf ("%d ", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex)-pcSlice->getLastIDR()); } printf("]"); } } /** Function for deciding the nal_unit_type. * \param uiPOCCurr POC of the current picture * \returns the nal_unit type of the picture * This function checks the configuration and returns the appropriate nal_unit_type for the picture. */ NalUnitType TEncGOP::getNalUnitType(UInt uiPOCCurr) { if (uiPOCCurr == 0) { return NAL_UNIT_CODED_SLICE_IDR; } if (uiPOCCurr % m_pcCfg->getIntraPeriod() == 0) { if (m_pcCfg->getDecodingRefreshType() == 1) { return NAL_UNIT_CODED_SLICE_CRA; } else if (m_pcCfg->getDecodingRefreshType() == 2) { return NAL_UNIT_CODED_SLICE_IDR; } } if(m_pocCRA>0) { if(uiPOCCurrgetGOPSize() == 1 && m_pcCfg->getIntraPeriod() != 1 && m_pcCfg->getFrameToBeEncoded() > RVM_VCEGAM10_M * 2 ) { // calculate RVM only for lowdelay configurations std::vector vRL , vB; size_t N = m_vRVM_RP.size(); vRL.resize( N ); vB.resize( N ); Int i; Double dRavg = 0 , dBavg = 0; vB[RVM_VCEGAM10_M] = 0; for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ ) { vRL[i] = 0; for( Int j = i - RVM_VCEGAM10_M ; j <= i + RVM_VCEGAM10_M - 1 ; j++ ) vRL[i] += m_vRVM_RP[j]; vRL[i] /= ( 2 * RVM_VCEGAM10_M ); vB[i] = vB[i-1] + m_vRVM_RP[i] - vRL[i]; dRavg += m_vRVM_RP[i]; dBavg += vB[i]; } dRavg /= ( N - 2 * RVM_VCEGAM10_M ); dBavg /= ( N - 2 * RVM_VCEGAM10_M ); double dSigamB = 0; for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ ) { Double tmp = vB[i] - dBavg; dSigamB += tmp * tmp; } dSigamB = sqrt( dSigamB / ( N - 2 * RVM_VCEGAM10_M ) ); double f = sqrt( 12.0 * ( RVM_VCEGAM10_M - 1 ) / ( RVM_VCEGAM10_M + 1 ) ); dRVM = dSigamB / dRavg * f; } return( dRVM ); } /** Determine the difference between consecutive tile sizes (in bytes) and writes it to bistream rNalu [slice header] * \param rpcBitstreamRedirect contains the bitstream to be concatenated to rNalu. rpcBitstreamRedirect contains slice payload. rpcSlice contains tile location information. * \returns Updates rNalu to contain concatenated bitstream. rpcBitstreamRedirect is cleared at the end of this function call. */ Void TEncGOP::xWriteTileLocationToSliceHeader (OutputNALUnit& rNalu, TComOutputBitstream*& rpcBitstreamRedirect, TComSlice*& rpcSlice) { // Byte-align #if BYTE_ALIGNMENT rNalu.m_Bitstream.writeByteAlignment(); // Slice header byte-alignment #else rNalu.m_Bitstream.writeAlignOne(); #endif // Perform bitstream concatenation if (rpcBitstreamRedirect->getNumberOfWrittenBits() > 0) { UInt uiBitCount = rpcBitstreamRedirect->getNumberOfWrittenBits(); if (rpcBitstreamRedirect->getByteStreamLength()>0) { UChar *pucStart = reinterpret_cast(rpcBitstreamRedirect->getByteStream()); UInt uiWriteByteCount = 0; while (uiWriteByteCount < (uiBitCount >> 3) ) { UInt uiBits = (*pucStart); rNalu.m_Bitstream.write(uiBits, 8); pucStart++; uiWriteByteCount++; } } UInt uiBitsHeld = (uiBitCount & 0x07); for (UInt uiIdx=0; uiIdx < uiBitsHeld; uiIdx++) { rNalu.m_Bitstream.write((rpcBitstreamRedirect->getHeldBits() & (1 << (7-uiIdx))) >> (7-uiIdx), 1); } } m_pcEntropyCoder->setBitstream(&rNalu.m_Bitstream); delete rpcBitstreamRedirect; rpcBitstreamRedirect = new TComOutputBitstream; } // Function will arrange the long-term pictures in the decreasing order of poc_lsb_lt, // and among the pictures with the same lsb, it arranges them in increasing delta_poc_msb_cycle_lt value Void TEncGOP::arrangeLongtermPicturesInRPS(TComSlice *pcSlice, TComList& rcListPic) { TComReferencePictureSet *rps = pcSlice->getRPS(); if(!rps->getNumberOfLongtermPictures()) { return; } // Arrange long-term reference pictures in the correct order of LSB and MSB, // and assign values for pocLSBLT and MSB present flag Int longtermPicsPoc[MAX_NUM_REF_PICS], longtermPicsLSB[MAX_NUM_REF_PICS], indices[MAX_NUM_REF_PICS]; Bool mSBPresentFlag[MAX_NUM_REF_PICS]; ::memset(longtermPicsPoc, 0, sizeof(longtermPicsPoc)); // Store POC values of LTRP ::memset(longtermPicsLSB, 0, sizeof(longtermPicsLSB)); // Store POC LSB values of LTRP ::memset(indices , 0, sizeof(indices)); // Indices to aid in tracking sorted LTRPs ::memset(mSBPresentFlag , 0, sizeof(mSBPresentFlag)); // Indicate if MSB needs to be present // Get the long-term reference pictures Int offset = rps->getNumberOfNegativePictures() + rps->getNumberOfPositivePictures(); Int i, ctr = 0; Int maxPicOrderCntLSB = 1 << pcSlice->getSPS()->getBitsForPOC(); for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++) { longtermPicsPoc[ctr] = rps->getPOC(i); // LTRP POC longtermPicsLSB[ctr] = getLSB(longtermPicsPoc[ctr], maxPicOrderCntLSB); // LTRP POC LSB indices[ctr] = i; } Int numLongPics = rps->getNumberOfLongtermPictures(); assert(ctr == numLongPics); // Arrange LTR pictures in decreasing order of LSB for(i = 0; i < numLongPics; i++) { for(Int j = 0; j < numLongPics - 1; j++) { if(longtermPicsLSB[j] < longtermPicsLSB[j+1]) { std::swap(longtermPicsPoc[j], longtermPicsPoc[j+1]); std::swap(longtermPicsLSB[j], longtermPicsLSB[j+1]); std::swap(indices[j] , indices[j+1] ); } } } // Now for those pictures that have the same LSB, arrange them // in increasing MSB cycle, or equivalently decreasing MSB for(i = 0; i < numLongPics;) // i incremented using j { Int j = i + 1; Int pocLSB = longtermPicsLSB[i]; for(; j < numLongPics; j++) { if(pocLSB != longtermPicsLSB[j]) { break; } } // Last index upto which lsb equals pocLSB is j - 1 // Now sort based on the MSB values Int sta, end; for(sta = i; sta < j; sta++) { for(end = i; end < j - 1; end++) { // longtermPicsMSB = longtermPicsPoc - longtermPicsLSB if(longtermPicsPoc[end] - longtermPicsLSB[end] < longtermPicsPoc[end+1] - longtermPicsLSB[end+1]) { std::swap(longtermPicsPoc[end], longtermPicsPoc[end+1]); std::swap(longtermPicsLSB[end], longtermPicsLSB[end+1]); std::swap(indices[end] , indices[end+1] ); } } } i = j; } for(i = 0; i < numLongPics; i++) { // Check if MSB present flag should be enabled. // Check if the buffer contains any pictures that have the same LSB. TComList::iterator iterPic = rcListPic.begin(); TComPic* pcPic; while ( iterPic != rcListPic.end() ) { pcPic = *iterPic; if( (getLSB(pcPic->getPOC(), maxPicOrderCntLSB) == longtermPicsLSB[i]) && // Same LSB #if REFERENCE_PICTURE_DEFN (pcPic->getSlice(0)->isReferenced()) && // Reference picture #else (pcPic->getSlice(0)->getNalRefFlag()) && // Reference picture #endif (pcPic->getPOC() != longtermPicsPoc[i]) ) // Not the LTRP itself { mSBPresentFlag[i] = true; break; } iterPic++; } } // tempArray for usedByCurr flag Bool tempArray[MAX_NUM_REF_PICS]; ::memset(tempArray, 0, sizeof(tempArray)); for(i = 0; i < numLongPics; i++) { tempArray[i] = rps->getUsed(indices[i]); } // Now write the final values; ctr = 0; Int currMSB = 0, currLSB = 0; // currPicPoc = currMSB + currLSB currLSB = getLSB(pcSlice->getPOC(), maxPicOrderCntLSB); currMSB = pcSlice->getPOC() - currLSB; for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++) { rps->setPOC (i, longtermPicsPoc[ctr]); rps->setDeltaPOC (i, - pcSlice->getPOC() + longtermPicsPoc[ctr]); rps->setUsed (i, tempArray[ctr]); rps->setPocLSBLT (i, longtermPicsLSB[ctr]); rps->setDeltaPocMSBCycleLT (i, (currMSB - (longtermPicsPoc[ctr] - longtermPicsLSB[ctr])) / maxPicOrderCntLSB); rps->setDeltaPocMSBPresentFlag(i, mSBPresentFlag[ctr]); assert(rps->getDeltaPocMSBCycleLT(i) >= 0); // Non-negative value } } //! \}