Text changes related to inter RDPCM (JCTVC-N0074)

Abstract

In the following are reported the text changes required by inter RDPCM for both lossless and lossy coding. Corrected text is provided with respect to JCTVC-N1005_v3 and using the MS Word track changes feature.
1 Changes to residual coding syntax and semantics
7.3.8.11

Residual coding syntax
	residual_coding(x0, y0, log2TrafoSize, cIdx) {
	Descriptor

	
if(transform_skip_enabled_flag && !cu_transquant_bypass_flag &&

(log2TrafoSize <= Log2MaxTransformSkipSize))
	

	

transform_skip_flag[x0][y0][cIdx]
	ae(v)

	
if(CuPredMode[x0][y0] = = MODE_INTER &&

residual_dpcm_inter_enabled_flag &&

(transform_skip_flag[x0][y0][cIdx] | | cu_transquant_bypass_flag)) {
	

	

inter_rdpcm_flag[x0][y0][cIdx]
	ae(v)

	

if(inter_rdpcm_flag[x0][y0][cIdx])
	

	

inter_rpdcm_dir_flag[x0][y0][cIdx]
	ae(v)

	
}
	

	
...
	ae(v)

	}
	

2 Changes to decoding process for coding units coded in inter prediction mode
8.5.4.2
Decoding process for luma residual blocks
Inputs to this process are:

–
a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top‑left luma sample of the current picture,

–
a luma location (xB0, yB0) specifying the top-left sample of the current luma block relative to the top‑left sample of the current luma coding block,

–
a variable log2TrafoSize specifying the size of the current luma block,

–
a variable trafoDepth specifying the hierarchy depth of the current luma block relative to the luma coding block,

–
a variable nCbS specifying the size of the current luma coding block,

–
an (nCbS)x(nCbS) array resSamples of luma residual samples.

Output of this process is a modified version of the (nCbS)x(nCbS) array of luma residual samples.

Depending on the value of split_transform_flag[xCb + xB0][yCb + yB0][trafoDepth], the following applies:

–
If split_transform_flag[xCb + xB0][yCb + yB0][trafoDepth] is equal to 1, the following ordered steps apply:

1. The variables xB1 and yB1 are derived as follows:
–
The variable xB1 is set equal to xB0 + (1 << (log2TrafoSize − 1)).

–
The variable yB1 is set equal to yB0 + (1 << (log2TrafoSize − 1)).

2. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB0, yB0), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

3. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB1, yB0), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

4. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB0, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

5. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB1, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

–
Otherwise (split_transform_flag[xCb + xB0][yCb + yB0][trafoDepth] is equal to 0), the following ordered steps apply:

1. The variable nTbS is set equal to 1 << log2TrafoSize.

2. The scaling and transformation process as specified in subclause 8.6.2 is invoked with the luma location (xCb + xB0, yCb + yB0), the variable trafoDepth, the variable cIdx set equal to 0, and the transform size trafoSize set equal to nTbS as inputs, and the output is an (nTbS)x(nTbS) array transformBlock.
3. When residual_dpcm_inter_enabled_flag is equal to 1 and inter_rdpcm_flag[xCb + xB0][yCb + yB0][0]
 is equal to 1, the directional residual modification process for blocks using a transform bypass as specified in subclause 8.6.5 is invoked with the variable mDir set equal to inter_rdpcm_dir_flag[xCb + xB0][yCb + yB0][0], the variable nTbS, the variable cIdx set equal to 0, and the (nTbS)x(nTbS) array r set equal to the array transformBlock as inputs, and the output is a modified (nTbS)x(nTbS) array transformBlock.
4. The (nCbS)x(nCbS) residual sample array of the current coding block resSamples is modified as follows:
resSamples[xB0 + i, yB0 + j] = transformBlock[i, j], with i = 0..nTbS − 1, j = 0..nTbS − 1
(8‑256)
8.5.4.3
Decoding process for chroma residual blocks

This process is only invoked when ChromaArrayType is not equal to 0.

Inputs to this process are:

–
a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top‑left luma sample of the current picture,

–
a luma location (xB0, yB0) specifying the top-left luma sample of the current chroma block relative to the top‑left sample of the current luma coding block,

–
a variable log2TrafoSize specifying the size of the current chroma block in luma samples,

–
a variable trafoDepth specifying the hierarchy depth of the current chroma block relative to the chroma coding block,

–
a variable cIdx specifying the chroma component of the current block,

–
the variables nCbSw and nCbSh specifying the width and height respectively of the current chroma coding block,

–
an (nCbSw)x(nCbSh) array resSamples of chroma residual samples.

Output of this process is a modified version of the (nCbSw)x(nCbSh) array of chroma residual samples.

The variable splitChromaFlag is derived as follows:

–
If split_transform_flag[xCb + xB0][yCb + yB0][trafoDepth] is equal to 1 and log2TrafoSize is greater than 3, splitChromaFlag is set equal to 1.

–
Otherwise (split_transform_flag[xCb + xB0][yCb + yB0][trafoDepth] is equal to 0 or log2TrafoSize is equal to 3), splitChromaFlag is set equal to 0.

Depending on the value of splitChromaFlag, the following applies:

–
If splitChromaFlag is equal to 1, the following ordered steps apply:

1. The variables xB1 and yB1 are derived as follows:
–
The variable xB1 is set equal to xB0 + (1 << (log2TrafoSize − 1)).

–
The variable yB1 is set equal to yB0 + (1 << (log2TrafoSize − 1)).

2. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB0, yB0), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh, and the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) array resSamples.

3. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB1, yB0), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh, and the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) array resSamples.

4. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB0, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh, and the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) array resSamples.

5. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xCb, yCb), the luma location (xB1, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh, and the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) array resSamples.

–
Otherwise (splitChromaFlag is equal to 0), for the variable blkIdx proceeding over the values 0..(ChromaArrayType = = 2 ? 1 : 0), the following ordered steps apply:

1. The variable nTbS is set equal to (1 << log2TrafoSize) / SubWidthC.
2. The variable yBN is set equal to yB0 + blkIdx * nTbS * SubHeightC.
3. The scaling and transformation process as specified in subclause 8.6.2 is invoked with the luma location (xCb + xB0, yCb + yBN), the variable trafoDepth, the variable cIdx, and the transform size trafoSize set equal to nTbS as inputs, and the output is an (nTbS)x(nTbS) array transformBlock.

4. When residual_dpcm_inter_enabled_flag is equal to 1 and inter_rdpcm_flag[xCb + xBN][yCb + yBN][cIdx]
, the directional residual modification process for blocks using a transform bypass as specified in subclause 8.6.5 is invoked with the variable mDir set equal to inter_rdpcm_dir_flag[xCb + xBN][yCb + yBN][cIdx], the variable nTbS, the variable cIdx, and the (nTbS)x(nTbS) array r set equal to the array transformBlock as inputs, and the output is a modified (nTbS)x(nTbS) array transformBlock.

5. The (nCbS)x(nCbS) residual sample array of the current coding block resSamples is modified as follows, for i = 0..nTbS − 1, j = 0..nTbS − 1:
resSamples[(xCb + xB0) / SubWidthC + i, (yCb + yBN) / SubHeightC + j] = transformBlock[i, j]
(8‑257)
3 Changes to scaling, transformation and array construction process prior to deblocking filter process
8.6.2
Scaling and transformation process
Inputs to this process are:

–
a luma location (xTbY, yTbY) specifying the top-left sample of the current luma transform block relative to the top‑left luma sample of the current picture,
–
a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding block,
–
a variable cIdx specifying the colour component of the current block,
–
a variable nTbS specifying the size of the current transform block.

Output of this process is the (nTbS)x(nTbS) array of residual samples r with elements r[x][y].

The quantization parameter qP is derived as follows:
–
If cIdx is equal to 0,

qP = Qp′Y

(8‑267)
–
Otherwise, if cIdx is equal to 1,

qP = Qp′Cb

(8‑268)
–
Otherwise (cIdx is equal to 2),
qP = Qp′Cr

(8‑269)
–
The variable bdShift is derived as follows:
bdShift = (cIdx = = 0) ? 20 − BitDepthY : 20 − BitDepthC
(8‑270)
The (nTbS)x(nTbS) array of residual samples r is derived as follows:

· If cu_transquant_bypass_flag is equal to 1, the (nTbS)x(nTbS) array of residual samples r is derived as follows:

–
If transform_skip_rotation_enabled_flag is equal to 1 and nTbS is equal to 4, the residual sample array values r[x][y] with x = 0..nTbS − 1, y = 0..nTbS − 1 are derived as follows:

r[x][y] = (TransCoeffLevel[nTbS − x −1][nTbS − y − 1] << tsShift)
(8‑271)
–
Otherwise, the (nTbS)x(nTbS) array r is set equal to the (nTbS)x(nTbS) array of transform coefficients TransCoeffLevel[xTbY][yTbY][cIdx].

· Otherwise, the following ordered steps apply:

1. The scaling process for transform coefficients as specified in subclause 8.6.3 is invoked with the transform block location (xTbY, yTbY), the size of the transform block nTbS, the colour component variable cIdx, and the quantization parameter qP as inputs, and the output is an (nTbS)x(nTbS) array of scaled transform coefficients d.
2. The (nTbS)x(nTbS) array of residual samples r is derived as follows:
· If transform_skip_flag[xTbY][yTbY][cIdx] is equal to 1, the residual sample array values r[x][y] with x = 0..nTbS − 1, y = 0..nTbS − 1 are derived as follows:

–
The variable tsShift is derived as follows:

tsShift = extended_precision_processing_flag ? Max(7, bdShift) : 7
(8‑272)
–
If transform_skip_rotation_enabled_flag is equal to 1 and nTbS is equal to 4,
–
If inter_rdpcm_flag[xTbY][yTbY][cIdx] is equal to 1,

r[x][y] = d[nTbS − x −1][nTbS − y − 1]
(8‑273)
–
Otherwise,

r[x][y] = (d[nTbS − x −1][nTbS − y − 1] << tsShift)
(8‑274)
–
Otherwise,
–
If inter_rdpcm_flag[xTbY][yTbY][cIdx] is equal to 1,

r[x][y] = d[x][y]

(8‑276)
–
Otherwise,
r[x][y] = (d[x][y] << tsShift)
(8‑277)
· Otherwise (transform_skip_flag[xTbY][yTbY][cIdx] is equal to 0), the transformation process for scaled transform coefficients as specified in subclause 8.6.4 is invoked with the transform block location (xTbY, yTbY), the size of the transform block nTbS, the colour component variable cIdx, and the (nTbS)x(nTbS) array of scaled transform coefficients d as inputs, and the output is an (nTbS)x(nTbS) array of residual samples r.
3. The residual sample values r[x][y] with x = 0..nTbS − 1, y = 0..nTbS − 1 are modified as follows:
r[x][y] = (r[x][y] + (1 << (bdShift − 1))) >> bdShift
(8‑278)
4 Changes to residual modification process for blocks using a transform bypass
Inputs to this process are:

–
a variable mDir specifying the residual modification direction,

–
a variable nTbS specifying the transform block size,
–
a variable cIdx specifying the colour component of the current block,
–
an (nTbS)x(nTbS) array of residual samples r with elements r[x][y].

Output of this process is the modified (nTbS)x(nTbS) array of residual samples .

Depending upon the value of mDir, the (nTbS)x(nTbS) array of samples r is modified as follows:
–
If mDir is equal to 0 (horizontal direction), the array values r[x][y], for x = 1..nTbS − 1, y = 0..nTbS − 1, are modified as follows:

r[x][y] += r[x − 1][y]
(8‑297)
–
Otherwise (vertical direction), the array values r[x][y], for x = 0..nTbS − 1, y = 1..nTbS − 1, are modified as follows:

r[x][y] += r[x][y − 1]
(8‑298)
If cu_transquant_bypass_flag is equal to zero, the (nTbS)x(nTbS) array of samples r is modified as follows:

–
The variables bdShift and tsShift are derived as follows:

bdShift = (cIdx = = 0) ? 20 − BitDepthY : 20 − BitDepthC

tsShift = extended_precision_processing_flag ? Max(7, bdShift) : 7

–
The array values r[x][y], for x = 0..nTbS − 1, y = 1..nTbS − 1, are modified as follows:

r[x][y] = (r[x][y] << tsShift)
�I think inter_rdpcm_flag is sufficient to condition the execution of this step.

In fact for lossless coding (cu_transquant_bypass_flag = 1 and transform_skip_flag = 0 for each TU) inter_rdpcm_flag is parsed and if equal to 1 the RDPCM process is invoked.

For lossy coding (cu_transquant_bypass_flag = 0 and transform_skip_flag parsed accordingly to TU size) inter_rdpcm_flag is parsed if transform_skip_flag is equal to 1. The value parsed for inter_rdpcm_flag will determine the invocation of the RDPCM process. If transform_skip_flag is equal to zero in lossy coding, inter_rdpcm_flag is not parsed but its value is inferred to be zero according to the provided semantics.

�See my comments above

Page: 1
Date Saved: 2013-08-23

