
1

General information on configuring the presence of SEIs:

– There are four lists associated with each SEI configuration, which can be set in a corresponding SEI cfg-file to specify

pictures for which the SEI is send. The lists are:

– ApplicableLayerIds

– ApplicablePocs

– ApplicableTids

– ApplicableVclNaluTypes

– When a list is empty, it is handled as if it would include all possible values.

– There can be multiple cfg-files for the same SEI payload type, with different configurations.

– SEI cfg-files can be specified in the encoder cfg-file with the parameter SeiCfgFileName_N.

– Examples for SEI cfg-files are given in /cfg/SEIs.

– An SEI is inserted to the bitstream as specified in the following:

– Let SeiX an SEI configuration with lists ApplicableLayerIdsX, ApplicablePocsX, ApplicableTidsX, and

ApplicableVclNaluTypesX.

– An SEI with configuration SeiX is inserted as leading SEI of picA, when picture picA has nuh_layer_id equal to

nuhLayerIdA, TemporalId equal to TIdA, PicOrderCntVal equal to pocA, and nal_unit_type equal to naluUnitTypeA

such that all of the following conditions are true:

– nuhLayerIdA is an element of ApplicableLayerIdsX.

– pocA is an element of ApplicablePocsX.

– TIdA is an element of ApplicableTidsX.

– naluUnitTypeA is an element of ApplicableVclNaluTypesX.

Required changes to enable new SEIs in the code:

There is already some automatically generated inactive code for the new SEIs in HTM. Following steps are necessary to enable it

for an SEI with name SEIName:

Sei.h

– Change scope of NH_MV_SEI_TBD such that it no longer includes class SEIName.

– When you don't intend to setup/modify the SEI automatically by the encoder, but want to use an SEI cfg-file only, remove

setupFromSlice in class SEIName.

Sei.cpp

– SEIName::setupFromSlice

– If you intend to setup/modify the SEI automatically by the encoder, modify the SEIName members in this function

using data from slice and change scope of NH_MV_SEI_TBD such that it no longer includes

SEIName::setupFromSlice.

– Otherwise, (you don't intend to setup/modify the SEI automatically by the encoder), remove

SEIName::setupFromSlice.

– SEIName::setupFromCfgFile

– Change scope of NH_MV_SEI_TBD such that it no longer includes SEIName::setupFromCfgFile.

– Set default values for defAppLayerIds, defAppPocs, defAppTids, defAppVclNaluTypes in a

way that the SEI is send with pictures that would be typically.

– When a setup or modification of the SEI by the encoder is not indented, set defModifyByEncoder to false.

– For member variables that are arrays change ADDNUM and to the maximum expected size of the respect array.

– E.g. you have a 3D-Array m_foo[x][y][z] of maximum size (MAX_X * MAX_Y * MAX_Z), you

should have (Foo_%d_%d, m_foo, IntAry1d (MAX_Z,0) ,MAX_X, MAX_Y, Foo)

– For cfg-file parsing, this will expand to Foo_x_y, with x and y in the range of 0 to MAX_X and MAX_Y,

respectively. For configuration each parameter Foo_x_y can have multiple space-separated entries (one

for each z).

2

– If default values for member variables don't comply with the spec, change them. Otherwise keep the zero

initialization.

– SEIName::checkCfg

– Add checks on constraints on presence of the SEI as in the spec.

– Add checks on values of syntax elements as in the spec.

– Remove unused lines.

– SEI::getNewSEIMessage

– Change scope of NH_MV_SEI_TBD such that it no longer includes case SEI::SEI_NAME : return new

SEIName;

SEIwriter.h

– Change scope of NH_MV_SEI_TBD such that it no longer includes xWriteSEIName.

SEIwriter.cpp

– SEIWriter::xWriteSEIName

– Change scope of NH_MV_SEI_TBD such that it no longer includes SEIWriter::xWriteSEIName

– Modify code of SEIWriter::xWriteSEIName such that writing is possible, this may include:

– Fixing syntax.

– Implantation of getSyntaxElementNameLen functions providing the length of syntax elements.

– In some cases data from a scalable nesting SEI associated with the SEI might be required. For this a pointer

m_scalNestSeiContThisSei is provided in class SEI. When the SEI is not nested the pointer

is equal to NULL. (This is currently the only possible value, but might change in future.)

– SEIWriter::xWriteSEIpayloadData

– Change scope of NH_MV_SEI_TBD such that it no longer includes the case SEI::SEI_NAME: and related

lines.

SEIread.h

– Change scope of NH_MV_SEI_TBD such that it no longer includes xParseSEIname.

SEIread.cpp

– SEIReader::xParseSEIName

– Change scope of NH_MV_SEI_TBD such that it no longer includes SEIReader::xParseSEIName

– Modify code of SEIReader::xParseSEI(const SEIName& sei) such that parsing is possible, this may

include:

– Fixing syntax

– Resizing of arrays.

– Reusing the getSyntaxElementNameLen functions providing the length of syntax elements.

– SEIReader::xReadSEImessage

– Change scope of NH_MV_SEI_TBD such that it no longer includes the case SEI::SEI_NAME: and related

lines.

/cfg/SEI/seiname.cfg

– Add the correct PayloadType value.

– Set some typical values for ApplicableLayerIds, ApplicablePocs, ApplicableTids,

ApplicableVclNaluTypes

– Set some exemplary values for the payload data.

– If the configuration can be set by the encoder, set ModfiyByEncoder equal to 1. Otherwise, set ModifyByEncoder

equal to 0.

– If necessary, expand parameters for arrays (e.g. add Foo_0_1, Foo_0_2 ...).

