
Checklist for HTM software integration
Integration information

	Integrated tool or bug fix:
	Depth-based Block Partitioning

	Document number:
	G0106

	Integration branch:
	HTM-9.3-dev1-RWTH

	Revision before integration:
	815

	Revision including complete integration:
	821

	Previous integrator:
	NTT

	Next integrator:
	-

Checklist
	
	
	Integrator
	X-checker

	
	
Company:
	RWTH
	     

	
	
Responsible person:
	F. Jäger
	     

	
	Requirement
Integration complies:
	True
	False
	True
	False

	#
	Guard Macros
	
	
	
	

	

1

	All changes are enclosed by guard macros.
	[image: image1.wmf]
	[image: image2.wmf]
	[image: image3.wmf]
	[image: image4.wmf]

	

2

	All guard macros include the document number.
	[image: image5.wmf]
	[image: image6.wmf]
	[image: image7.wmf]
	[image: image8.wmf]

	

3

	No existing guard macros have been reused for new integration.
	[image: image9.wmf]
	[image: image10.wmf]
	[image: image11.wmf]
	[image: image12.wmf]

	

4

	No existing guard macros have been removed.
	[image: image13.wmf]
	[image: image14.wmf]
	[image: image15.wmf]
	[image: image16.wmf]

	
	Integrated code
	
	
	
	

	

5

	Only code needed for the adoption/fix has been integrated.
(E.g. features for testing that have not explicitly been adopted are not allowed.)
	[image: image17.wmf]
	[image: image18.wmf]
	[image: image19.wmf]
	[image: image20.wmf]

	

6

	No outcommented or unused code has been integrated.
	[image: image21.wmf]
	[image: image22.wmf]
	[image: image23.wmf]
	[image: image24.wmf]

	

7

	All new code has been integrated where it logically belongs.

(E.g. reconstruction should not be performed in parsing process)
	[image: image25.wmf]
	[image: image26.wmf]
	[image: image27.wmf]
	[image: image28.wmf]

	

8

	When removing a tool all code that is not used anymore has been disabled by a guard macros.

(E.g. only setting a parameter to 0 to disable the tool and not disabling remaining code is not sufficient. Obsolete code will later be removed by software coordinators.)
	[image: image29.wmf]
	[image: image30.wmf]
	[image: image31.wmf]
	[image: image32.wmf]

	

9

	Code duplication has been avoided. (2.8)

(E.g. Copy/paste of a function with minimal changes, or using same code multiple times)
	[image: image33.wmf]
	[image: image34.wmf]
	[image: image35.wmf]
	[image: image36.wmf]

	

10

	New tools are switchable by encoder cfg / bitstream flag.

(Applies only to new tools, not applicable for modifications that are subset of existing switchable tools)
	[image: image37.wmf]
	[image: image38.wmf]
	[image: image39.wmf]
	[image: image40.wmf]

	

10

	Value of new encoder parameters is printed to the console.
(In TAppEncCfg::xPrintParameter()).
	[image: image41.wmf]
	[image: image42.wmf]
	[image: image43.wmf]
	[image: image44.wmf]

	

11

	Adoptions that are not used in CTC are disabled by default.
(Disabling should be done according to decision. Usually by encoder cfg when adopted to draft or encoder control only and by macros for software only adoptions affecting the decoder.)
	[image: image45.wmf]
	[image: image46.wmf]
	[image: image47.wmf]
	[image: image48.wmf]

	
	Requirement
Software complies:
	True
	False
	True
	False

	
	Coding Style
	
	
	
	

	

12

	All new member variables are private. All new member functions are private when not used from outside the class. (2.5)
	[image: image49.wmf]
	[image: image50.wmf]
	[image: image51.wmf]
	[image: image52.wmf]

	

13

	Basic types in TypeDef.h have been used. (2.6.1)

(E.g. "Int" instead of "int")
	[image: image53.wmf]
	[image: image54.wmf]
	[image: image55.wmf]
	[image: image56.wmf]

	

14

	Unsigned types have been avoided. (2.6.2)
	[image: image57.wmf]
	[image: image58.wmf]
	[image: image59.wmf]
	[image: image60.wmf]

	

15

	All new classes, methods, functions, variables have descriptive and meaningful names, describing their functionality and purpose (3.1.1)
	[image: image61.wmf]
	[image: image62.wmf]
	[image: image63.wmf]
	[image: image64.wmf]

	

16

	All new type names (classes, structs, enums, unions, typedefs) are named using nouns and have an initial upper-case letter.) (3.1.2)
	[image: image65.wmf]
	[image: image66.wmf]
	[image: image67.wmf]
	[image: image68.wmf]

	

17

	Methods and functions have been named using verbs describing the activity and have initial lower case letter. (3.1.3)
	[image: image69.wmf]
	[image: image70.wmf]
	[image: image71.wmf]
	[image: image72.wmf]

	

18

	All new variables have an initial lower-case letter. (3.1.4)
	[image: image73.wmf]
	[image: image74.wmf]
	[image: image75.wmf]
	[image: image76.wmf]

	

19

	No type prefixes have been used in variable names (3.1.5).

(E.g. Int iMaxWidth is not allowed).
	[image: image77.wmf]
	[image: image78.wmf]
	[image: image79.wmf]
	[image: image80.wmf]

	

20

	All new introduced variables use camel case notation (3.1.6)

(e.g. Int maxWidth and NOT Int max_width)
	[image: image81.wmf]
	[image: image82.wmf]
	[image: image83.wmf]
	[image: image84.wmf]

	

21

	All member variables start with "m_" and private or protected member functions start with "x" e.g Int m_maxNum or Int xGetMaxNum() (3.1.8)
	[image: image85.wmf]
	[image: image86.wmf]
	[image: image87.wmf]
	[image: image88.wmf]

	

22

	Code following conditionals is always enclosed by braces, even if it is a single statement. (4.2.1)
	[image: image89.wmf]
	[image: image90.wmf]
	[image: image91.wmf]
	[image: image92.wmf]

	

23

	The opening brace is placed on a new line on the same indentation level as the defining keyword (e.g. void, if, for, while, etc.). The included code block starts at the following line and is indented. The closing brace is placed on the same indentation level as the opening brace. (4.2.2)
	[image: image93.wmf]
	[image: image94.wmf]
	[image: image95.wmf]
	[image: image96.wmf]

	

24

	Variables are declared as near as possible to the lexical scope of their first usage. (8.1.2)
(e.g. not by default at the beginning of a function like c-style.)
	[image: image97.wmf]
	[image: image98.wmf]
	[image: image99.wmf]
	[image: image100.wmf]

	

25

	No macros are used where functions are appropriate. (2.3.1)
	[image: image101.wmf]
	[image: image102.wmf]
	[image: image103.wmf]
	[image: image104.wmf]

	

26

	Global variables have only been used with a good reason. (8.1.3)
	[image: image105.wmf]
	[image: image106.wmf]
	[image: image107.wmf]
	[image: image108.wmf]

	
	Match of code and specification text
	
	
	
	

	

27

	Algorithms added to decoder/common part are identical or very similar to spec text.

(E.g. true when variable names, functions and process and structure of if-clauses/ for loops are similar, false when algorithms are different, even when they provide identical results)
	[image: image109.wmf]
	[image: image110.wmf]
	[image: image111.wmf]
	[image: image112.wmf]

	

28

	Algorithms added to decoder/common part are equivalent to spec text.

(E.g. when algorithms are different, but produce identical results.)
	[image: image113.wmf]
	[image: image114.wmf]
	[image: image115.wmf]
	[image: image116.wmf]

	
	Requirement
Software complies:
	True
	False
	True
	False

	
	SVN commit +Cfg-Files + Simulation results
	
	
	
	

	

29

	Each logical change has been committed separately.
(e.g. only one bug fix or one adoption at a time)
	[image: image117.wmf]
	[image: image118.wmf]
	[image: image119.wmf]
	[image: image120.wmf]

	

30

	Comment of commit includes document number or trac ticket number and proper description.
	[image: image121.wmf]
	[image: image122.wmf]
	[image: image123.wmf]
	[image: image124.wmf]

	

31

	Simulation results have been committed together with the code to the repository.
	[image: image125.wmf]
	[image: image126.wmf]
	[image: image127.wmf]
	[image: image128.wmf]

	

32

	All new cfg-parameters have been included to all relevant cfg-files using CTC default values.
(Relevant files are usually all baseCfg_2view.cfg, baseCfg_3view.cfg, baseCfg_2V+depth.cfg, baseCfg_3V+depth.cfg and fullCfg.cfg files in MV- and 3D- HEVC cfg folders.)
	[image: image129.wmf]
	[image: image130.wmf]
	[image: image131.wmf]
	[image: image132.wmf]

	
	Software testing
	
	
	
	

	

33

	The software compiles under windows without warnings.
	[image: image133.wmf]
	[image: image134.wmf]
	[image: image135.wmf]
	[image: image136.wmf]

	

34

	The software compiles under linux without warnings.
	[image: image137.wmf]
	[image: image138.wmf]
	[image: image139.wmf]
	[image: image140.wmf]

	

35

	No encoder/decoder mismatches occur.
	[image: image141.wmf]
	[image: image142.wmf]
	[image: image143.wmf]
	[image: image144.wmf]

	

36

	Coding results correspond to expected results.
	[image: image145.wmf]
	[image: image146.wmf]
	[image: image147.wmf]
	[image: image148.wmf]

	

37

	The software has been checked for memory leaks and uninitialized variables. (e.g. by using valgrind)
	[image: image149.wmf]
	[image: image150.wmf]
	[image: image151.wmf]
	[image: image152.wmf]

	

38

	Integrated code works also for IPB configuration.
	[image: image153.wmf]
	[image: image154.wmf]
	[image: image155.wmf]
	[image: image156.wmf]

	

39

	Integrated code works also for coding without depth maps.
	[image: image157.wmf]
	[image: image158.wmf]
	[image: image159.wmf]
	[image: image160.wmf]

	

40

	Integrated code works also for two view configuration.
	[image: image161.wmf]
	[image: image162.wmf]
	[image: image163.wmf]
	[image: image164.wmf]

Additional to the checklist other rules and recommendations in the coding style guide JCTVC-H1001 should be regarded.

Comments
Please add a comment here when a requirement is not fulfilled or if there are other remarks. e.g.

"Line 343 in TComPic.cpp does not comply to requirement #20" or "Integration does not comply to requirement #06 in many places" or "Requirement #14 has not been regarded by because of following good reasons".
Comments from integrator:
For the requirement #38-40, we have not finish the simulation under non-CTC conditions yet although it seems that the changes have no problem even on other coding configurations than CTC. We'll report the results as soon as possible.
Regarding the requirement #27, the integrated algorithm has some differences although the results are identical. Since integrating the same algorithm will requires a lot of changes on the current implementation, it will take much days. Due to the short term until the next meeting, we'd like to provides the current implantation at this 1st round of integration and the implementation identical to the specification later, e.g. x.2 or later version.

Comments from cross checker:
(add comment here)
How to handle this form
Integrators should:

1. Check software vs. requirements in list and style guide JCTVC-H1001.

2. Rename form template to: "integratorsCompanyName_proposalNumber.doc"

3. Fill in integrator column in the checklist and the comments section.
4. Commit form to integration branch in checklist directory.
5. Send form to S/W coordinators and cross-checkers.
Cross-checkers should:

1. Cross check!

2. Rename the form received form the integrator to: "integratorsCompanyName_proposalNumber_cxCompanyName.doc"

3. Fill in X-checker column in the checklist and the comments section.

4. Send list to S/W coordinators and the integrator.

