/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2015, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TDecSlice.cpp \brief slice decoder class */ #include "TDecSlice.h" //! \ingroup TLibDecoder //! \{ ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// TDecSlice::TDecSlice() { } TDecSlice::~TDecSlice() { } Void TDecSlice::create() { } Void TDecSlice::destroy() { } Void TDecSlice::init(TDecEntropy* pcEntropyDecoder, TDecCu* pcCuDecoder) { m_pcEntropyDecoder = pcEntropyDecoder; m_pcCuDecoder = pcCuDecoder; } Void TDecSlice::decompressSlice(TComInputBitstream** ppcSubstreams, TComPic* pcPic, TDecSbac* pcSbacDecoder) { TComSlice* pcSlice = pcPic->getSlice(pcPic->getCurrSliceIdx()); const Int startCtuTsAddr = pcSlice->getSliceSegmentCurStartCtuTsAddr(); const Int startCtuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(startCtuTsAddr); const UInt numCtusInFrame = pcPic->getNumberOfCtusInFrame(); const UInt frameWidthInCtus = pcPic->getPicSym()->getFrameWidthInCtus(); const Bool depSliceSegmentsEnabled = pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag(); const Bool wavefrontsEnabled = pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag(); m_pcEntropyDecoder->setEntropyDecoder ( pcSbacDecoder ); m_pcEntropyDecoder->setBitstream ( ppcSubstreams[0] ); m_pcEntropyDecoder->resetEntropy (pcSlice); // decoder doesn't need prediction & residual frame buffer pcPic->setPicYuvPred( 0 ); pcPic->setPicYuvResi( 0 ); #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceEnable; #endif #if H_MV_ENC_DEC_TRAC #if ENC_DEC_TRACE incSymbolCounter(); #endif DTRACE_CABAC_VL( g_nSymbolCounter ); #else DTRACE_CABAC_VL( g_nSymbolCounter++ ); #endif DTRACE_CABAC_T( "\tPOC: " ); DTRACE_CABAC_V( pcPic->getPOC() ); #if H_MV_ENC_DEC_TRAC DTRACE_CABAC_T( " Layer: " ); DTRACE_CABAC_V( pcPic->getLayerId() ); #endif DTRACE_CABAC_T( "\n" ); #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceDisable; #endif // The first CTU of the slice is the first coded substream, but the global substream number, as calculated by getSubstreamForCtuAddr may be higher. // This calculates the common offset for all substreams in this slice. const UInt subStreamOffset=pcPic->getSubstreamForCtuAddr(startCtuRsAddr, true, pcSlice); if (depSliceSegmentsEnabled) { // modify initial contexts with previous slice segment if this is a dependent slice. const UInt startTileIdx=pcPic->getPicSym()->getTileIdxMap(startCtuRsAddr); const TComTile *pCurrentTile=pcPic->getPicSym()->getTComTile(startTileIdx); const UInt firstCtuRsAddrOfTile = pCurrentTile->getFirstCtuRsAddr(); if( pcSlice->getDependentSliceSegmentFlag() && startCtuRsAddr != firstCtuRsAddrOfTile) { if ( pCurrentTile->getTileWidthInCtus() >= 2 || !wavefrontsEnabled) { pcSbacDecoder->loadContexts(&m_lastSliceSegmentEndContextState); } } } #if NH_3D_DLT if( pcSlice->getPPS()->getDLT() != NULL ) { assert( pcSlice->getSPS()->getBitDepth( CHANNEL_TYPE_LUMA ) == pcSlice->getPPS()->getDLT()->getDepthViewBitDepth() ); } #endif // for every CTU in the slice segment... Bool isLastCtuOfSliceSegment = false; for( UInt ctuTsAddr = startCtuTsAddr; !isLastCtuOfSliceSegment && ctuTsAddr < numCtusInFrame; ctuTsAddr++) { const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(ctuTsAddr); const TComTile ¤tTile = *(pcPic->getPicSym()->getTComTile(pcPic->getPicSym()->getTileIdxMap(ctuRsAddr))); const UInt firstCtuRsAddrOfTile = currentTile.getFirstCtuRsAddr(); const UInt tileXPosInCtus = firstCtuRsAddrOfTile % frameWidthInCtus; const UInt tileYPosInCtus = firstCtuRsAddrOfTile / frameWidthInCtus; const UInt ctuXPosInCtus = ctuRsAddr % frameWidthInCtus; const UInt ctuYPosInCtus = ctuRsAddr / frameWidthInCtus; const UInt uiSubStrm=pcPic->getSubstreamForCtuAddr(ctuRsAddr, true, pcSlice)-subStreamOffset; TComDataCU* pCtu = pcPic->getCtu( ctuRsAddr ); pCtu->initCtu( pcPic, ctuRsAddr ); m_pcEntropyDecoder->setBitstream( ppcSubstreams[uiSubStrm] ); // set up CABAC contexts' state for this CTU if (ctuRsAddr == firstCtuRsAddrOfTile) { if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset { m_pcEntropyDecoder->resetEntropy(pcSlice); } } else if (ctuXPosInCtus == tileXPosInCtus && wavefrontsEnabled) { // Synchronize cabac probabilities with upper-right CTU if it's available and at the start of a line. if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset { m_pcEntropyDecoder->resetEntropy(pcSlice); } TComDataCU *pCtuUp = pCtu->getCtuAbove(); if ( pCtuUp && ((ctuRsAddr%frameWidthInCtus+1) < frameWidthInCtus) ) { TComDataCU *pCtuTR = pcPic->getCtu( ctuRsAddr - frameWidthInCtus + 1 ); if ( pCtu->CUIsFromSameSliceAndTile(pCtuTR) ) { // Top-right is available, so use it. pcSbacDecoder->loadContexts( &m_entropyCodingSyncContextState ); } } } #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceEnable; #endif if ( pcSlice->getSPS()->getUseSAO() ) { SAOBlkParam& saoblkParam = (pcPic->getPicSym()->getSAOBlkParam())[ctuRsAddr]; Bool bIsSAOSliceEnabled = false; Bool sliceEnabled[MAX_NUM_COMPONENT]; for(Int comp=0; comp < MAX_NUM_COMPONENT; comp++) { ComponentID compId=ComponentID(comp); sliceEnabled[compId] = pcSlice->getSaoEnabledFlag(toChannelType(compId)) && (comp < pcPic->getNumberValidComponents()); if (sliceEnabled[compId]) { bIsSAOSliceEnabled=true; } saoblkParam[compId].modeIdc = SAO_MODE_OFF; } if (bIsSAOSliceEnabled) { Bool leftMergeAvail = false; Bool aboveMergeAvail= false; //merge left condition Int rx = (ctuRsAddr % frameWidthInCtus); if(rx > 0) { leftMergeAvail = pcPic->getSAOMergeAvailability(ctuRsAddr, ctuRsAddr-1); } //merge up condition Int ry = (ctuRsAddr / frameWidthInCtus); if(ry > 0) { aboveMergeAvail = pcPic->getSAOMergeAvailability(ctuRsAddr, ctuRsAddr-frameWidthInCtus); } pcSbacDecoder->parseSAOBlkParam( saoblkParam, sliceEnabled, leftMergeAvail, aboveMergeAvail, pcSlice->getSPS()->getBitDepths()); } } m_pcCuDecoder->decodeCtu ( pCtu, isLastCtuOfSliceSegment ); m_pcCuDecoder->decompressCtu ( pCtu ); #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceDisable; #endif //Store probabilities of second CTU in line into buffer if ( ctuXPosInCtus == tileXPosInCtus+1 && wavefrontsEnabled) { m_entropyCodingSyncContextState.loadContexts( pcSbacDecoder ); } if (isLastCtuOfSliceSegment) { #if DECODER_CHECK_SUBSTREAM_AND_SLICE_TRAILING_BYTES pcSbacDecoder->parseRemainingBytes(false); #endif if(!pcSlice->getDependentSliceSegmentFlag()) { pcSlice->setSliceCurEndCtuTsAddr( ctuTsAddr+1 ); } pcSlice->setSliceSegmentCurEndCtuTsAddr( ctuTsAddr+1 ); } else if ( ctuXPosInCtus + 1 == tileXPosInCtus + currentTile.getTileWidthInCtus() && ( ctuYPosInCtus + 1 == tileYPosInCtus + currentTile.getTileHeightInCtus() || wavefrontsEnabled) ) { // The sub-stream/stream should be terminated after this CTU. // (end of slice-segment, end of tile, end of wavefront-CTU-row) UInt binVal; pcSbacDecoder->parseTerminatingBit( binVal ); assert( binVal ); #if DECODER_CHECK_SUBSTREAM_AND_SLICE_TRAILING_BYTES pcSbacDecoder->parseRemainingBytes(true); #endif } } assert(isLastCtuOfSliceSegment == true); if( depSliceSegmentsEnabled ) { m_lastSliceSegmentEndContextState.loadContexts( pcSbacDecoder );//ctx end of dep.slice } } //! \}