/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2013, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncGOP.cpp \brief GOP encoder class */ #include #include #include #include "TEncTop.h" #include "TEncGOP.h" #include "TEncAnalyze.h" #include "libmd5/MD5.h" #include "TLibCommon/SEI.h" #include "TLibCommon/NAL.h" #include "NALwrite.h" #include #include using namespace std; //! \ingroup TLibEncoder //! \{ // ==================================================================================================================== // Constructor / destructor / initialization / destroy // ==================================================================================================================== Int getLSB(Int poc, Int maxLSB) { if (poc >= 0) { return poc % maxLSB; } else { return (maxLSB - ((-poc) % maxLSB)) % maxLSB; } } TEncGOP::TEncGOP() { m_iLastIDR = 0; m_iGopSize = 0; m_iNumPicCoded = 0; //Niko m_bFirst = true; m_pcCfg = NULL; m_pcSliceEncoder = NULL; m_pcListPic = NULL; m_pcEntropyCoder = NULL; m_pcCavlcCoder = NULL; m_pcSbacCoder = NULL; m_pcBinCABAC = NULL; m_bSeqFirst = true; m_bRefreshPending = 0; m_pocCRA = 0; m_numLongTermRefPicSPS = 0; ::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps)); ::memset(m_ltRefPicUsedByCurrPicFlag, 0, sizeof(m_ltRefPicUsedByCurrPicFlag)); m_cpbRemovalDelay = 0; m_lastBPSEI = 0; xResetNonNestedSEIPresentFlags(); xResetNestedSEIPresentFlags(); #if H_MV m_layerId = 0; m_viewId = 0; m_pocLastCoded = -1; #if H_3D m_viewIndex = 0; m_isDepth = false; #endif #endif return; } TEncGOP::~TEncGOP() { } /** Create list to contain pointers to LCU start addresses of slice. */ Void TEncGOP::create() { m_bLongtermTestPictureHasBeenCoded = 0; m_bLongtermTestPictureHasBeenCoded2 = 0; } Void TEncGOP::destroy() { } Void TEncGOP::init ( TEncTop* pcTEncTop ) { m_pcEncTop = pcTEncTop; m_pcCfg = pcTEncTop; m_pcSliceEncoder = pcTEncTop->getSliceEncoder(); m_pcListPic = pcTEncTop->getListPic(); m_pcEntropyCoder = pcTEncTop->getEntropyCoder(); m_pcCavlcCoder = pcTEncTop->getCavlcCoder(); m_pcSbacCoder = pcTEncTop->getSbacCoder(); m_pcBinCABAC = pcTEncTop->getBinCABAC(); m_pcLoopFilter = pcTEncTop->getLoopFilter(); m_pcBitCounter = pcTEncTop->getBitCounter(); //--Adaptive Loop filter m_pcSAO = pcTEncTop->getSAO(); m_pcRateCtrl = pcTEncTop->getRateCtrl(); m_lastBPSEI = 0; m_totalCoded = 0; #if H_MV m_ivPicLists = pcTEncTop->getIvPicLists(); m_layerId = pcTEncTop->getLayerId(); m_viewId = pcTEncTop->getViewId(); #if H_3D m_viewIndex = pcTEncTop->getViewIndex(); m_isDepth = pcTEncTop->getIsDepth(); #endif #endif } SEIActiveParameterSets* TEncGOP::xCreateSEIActiveParameterSets (TComSPS *sps) { SEIActiveParameterSets *seiActiveParameterSets = new SEIActiveParameterSets(); seiActiveParameterSets->activeVPSId = m_pcCfg->getVPS()->getVPSId(); seiActiveParameterSets->m_fullRandomAccessFlag = false; seiActiveParameterSets->m_noParamSetUpdateFlag = false; seiActiveParameterSets->numSpsIdsMinus1 = 0; seiActiveParameterSets->activeSeqParamSetId.resize(seiActiveParameterSets->numSpsIdsMinus1 + 1); seiActiveParameterSets->activeSeqParamSetId[0] = sps->getSPSId(); return seiActiveParameterSets; } SEIFramePacking* TEncGOP::xCreateSEIFramePacking() { SEIFramePacking *seiFramePacking = new SEIFramePacking(); seiFramePacking->m_arrangementId = m_pcCfg->getFramePackingArrangementSEIId(); seiFramePacking->m_arrangementCancelFlag = 0; seiFramePacking->m_arrangementType = m_pcCfg->getFramePackingArrangementSEIType(); assert((seiFramePacking->m_arrangementType > 2) && (seiFramePacking->m_arrangementType < 6) ); seiFramePacking->m_quincunxSamplingFlag = m_pcCfg->getFramePackingArrangementSEIQuincunx(); seiFramePacking->m_contentInterpretationType = m_pcCfg->getFramePackingArrangementSEIInterpretation(); seiFramePacking->m_spatialFlippingFlag = 0; seiFramePacking->m_frame0FlippedFlag = 0; seiFramePacking->m_fieldViewsFlag = (seiFramePacking->m_arrangementType == 2); seiFramePacking->m_currentFrameIsFrame0Flag = ((seiFramePacking->m_arrangementType == 5) && m_iNumPicCoded&1); seiFramePacking->m_frame0SelfContainedFlag = 0; seiFramePacking->m_frame1SelfContainedFlag = 0; seiFramePacking->m_frame0GridPositionX = 0; seiFramePacking->m_frame0GridPositionY = 0; seiFramePacking->m_frame1GridPositionX = 0; seiFramePacking->m_frame1GridPositionY = 0; seiFramePacking->m_arrangementReservedByte = 0; seiFramePacking->m_arrangementPersistenceFlag = true; seiFramePacking->m_upsampledAspectRatio = 0; return seiFramePacking; } SEIDisplayOrientation* TEncGOP::xCreateSEIDisplayOrientation() { SEIDisplayOrientation *seiDisplayOrientation = new SEIDisplayOrientation(); seiDisplayOrientation->cancelFlag = false; seiDisplayOrientation->horFlip = false; seiDisplayOrientation->verFlip = false; seiDisplayOrientation->anticlockwiseRotation = m_pcCfg->getDisplayOrientationSEIAngle(); return seiDisplayOrientation; } SEIToneMappingInfo* TEncGOP::xCreateSEIToneMappingInfo() { SEIToneMappingInfo *seiToneMappingInfo = new SEIToneMappingInfo(); seiToneMappingInfo->m_toneMapId = m_pcCfg->getTMISEIToneMapId(); seiToneMappingInfo->m_toneMapCancelFlag = m_pcCfg->getTMISEIToneMapCancelFlag(); seiToneMappingInfo->m_toneMapPersistenceFlag = m_pcCfg->getTMISEIToneMapPersistenceFlag(); seiToneMappingInfo->m_codedDataBitDepth = m_pcCfg->getTMISEICodedDataBitDepth(); assert(seiToneMappingInfo->m_codedDataBitDepth >= 8 && seiToneMappingInfo->m_codedDataBitDepth <= 14); seiToneMappingInfo->m_targetBitDepth = m_pcCfg->getTMISEITargetBitDepth(); assert( seiToneMappingInfo->m_targetBitDepth >= 1 && seiToneMappingInfo->m_targetBitDepth <= 17 ); seiToneMappingInfo->m_modelId = m_pcCfg->getTMISEIModelID(); assert(seiToneMappingInfo->m_modelId >=0 &&seiToneMappingInfo->m_modelId<=4); switch( seiToneMappingInfo->m_modelId) { case 0: { seiToneMappingInfo->m_minValue = m_pcCfg->getTMISEIMinValue(); seiToneMappingInfo->m_maxValue = m_pcCfg->getTMISEIMaxValue(); break; } case 1: { seiToneMappingInfo->m_sigmoidMidpoint = m_pcCfg->getTMISEISigmoidMidpoint(); seiToneMappingInfo->m_sigmoidWidth = m_pcCfg->getTMISEISigmoidWidth(); break; } case 2: { UInt num = 1u<<(seiToneMappingInfo->m_targetBitDepth); seiToneMappingInfo->m_startOfCodedInterval.resize(num); Int* ptmp = m_pcCfg->getTMISEIStartOfCodedInterva(); if(ptmp) { for(int i=0; im_startOfCodedInterval[i] = ptmp[i]; } } break; } case 3: { seiToneMappingInfo->m_numPivots = m_pcCfg->getTMISEINumPivots(); seiToneMappingInfo->m_codedPivotValue.resize(seiToneMappingInfo->m_numPivots); seiToneMappingInfo->m_targetPivotValue.resize(seiToneMappingInfo->m_numPivots); Int* ptmpcoded = m_pcCfg->getTMISEICodedPivotValue(); Int* ptmptarget = m_pcCfg->getTMISEITargetPivotValue(); if(ptmpcoded&&ptmptarget) { for(int i=0; i<(seiToneMappingInfo->m_numPivots);i++) { seiToneMappingInfo->m_codedPivotValue[i]=ptmpcoded[i]; seiToneMappingInfo->m_targetPivotValue[i]=ptmptarget[i]; } } break; } case 4: { seiToneMappingInfo->m_cameraIsoSpeedIdc = m_pcCfg->getTMISEICameraIsoSpeedIdc(); seiToneMappingInfo->m_cameraIsoSpeedValue = m_pcCfg->getTMISEICameraIsoSpeedValue(); assert( seiToneMappingInfo->m_cameraIsoSpeedValue !=0 ); seiToneMappingInfo->m_exposureCompensationValueSignFlag = m_pcCfg->getTMISEIExposureCompensationValueSignFlag(); seiToneMappingInfo->m_exposureCompensationValueNumerator = m_pcCfg->getTMISEIExposureCompensationValueNumerator(); seiToneMappingInfo->m_exposureCompensationValueDenomIdc = m_pcCfg->getTMISEIExposureCompensationValueDenomIdc(); seiToneMappingInfo->m_refScreenLuminanceWhite = m_pcCfg->getTMISEIRefScreenLuminanceWhite(); seiToneMappingInfo->m_extendedRangeWhiteLevel = m_pcCfg->getTMISEIExtendedRangeWhiteLevel(); assert( seiToneMappingInfo->m_extendedRangeWhiteLevel >= 100 ); seiToneMappingInfo->m_nominalBlackLevelLumaCodeValue = m_pcCfg->getTMISEINominalBlackLevelLumaCodeValue(); seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue = m_pcCfg->getTMISEINominalWhiteLevelLumaCodeValue(); assert( seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue > seiToneMappingInfo->m_nominalBlackLevelLumaCodeValue ); seiToneMappingInfo->m_extendedWhiteLevelLumaCodeValue = m_pcCfg->getTMISEIExtendedWhiteLevelLumaCodeValue(); assert( seiToneMappingInfo->m_extendedWhiteLevelLumaCodeValue >= seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue ); break; } default: { assert(!"Undefined SEIToneMapModelId"); break; } } return seiToneMappingInfo; } Void TEncGOP::xCreateLeadingSEIMessages (/*SEIMessages seiMessages,*/ AccessUnit &accessUnit, TComSPS *sps) { OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI); if(m_pcCfg->getActiveParameterSetsSEIEnabled()) { SEIActiveParameterSets *sei = xCreateSEIActiveParameterSets (sps); //nalu = NALUnit(NAL_UNIT_SEI); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); delete sei; m_activeParameterSetSEIPresentInAU = true; } if(m_pcCfg->getFramePackingArrangementSEIEnabled()) { SEIFramePacking *sei = xCreateSEIFramePacking (); nalu = NALUnit(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); delete sei; } if (m_pcCfg->getDisplayOrientationSEIAngle()) { SEIDisplayOrientation *sei = xCreateSEIDisplayOrientation(); nalu = NALUnit(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); delete sei; } if(m_pcCfg->getToneMappingInfoSEIEnabled()) { SEIToneMappingInfo *sei = xCreateSEIToneMappingInfo (); nalu = NALUnit(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); delete sei; } } // ==================================================================================================================== // Public member functions // ==================================================================================================================== #if H_MV Void TEncGOP::initGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut, std::list& accessUnitsInGOP) { xInitGOP( iPOCLast, iNumPicRcvd, rcListPic, rcListPicYuvRecOut ); m_iNumPicCoded = 0; } #endif #if H_MV Void TEncGOP::compressPicInGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut, std::list& accessUnitsInGOP, Int iGOPid) #else Void TEncGOP::compressGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut, std::list& accessUnitsInGOP) #endif { TComPic* pcPic; TComPicYuv* pcPicYuvRecOut; TComSlice* pcSlice; TComOutputBitstream *pcBitstreamRedirect; pcBitstreamRedirect = new TComOutputBitstream; AccessUnit::iterator itLocationToPushSliceHeaderNALU; // used to store location where NALU containing slice header is to be inserted UInt uiOneBitstreamPerSliceLength = 0; TEncSbac* pcSbacCoders = NULL; TComOutputBitstream* pcSubstreamsOut = NULL; #if !H_MV xInitGOP( iPOCLast, iNumPicRcvd, rcListPic, rcListPicYuvRecOut ); m_iNumPicCoded = 0; #endif SEIPictureTiming pictureTimingSEI; Bool writeSOP = m_pcCfg->getSOPDescriptionSEIEnabled(); // Initialize Scalable Nesting SEI with single layer values SEIScalableNesting scalableNestingSEI; scalableNestingSEI.m_bitStreamSubsetFlag = 1; // If the nested SEI messages are picture buffereing SEI mesages, picure timing SEI messages or sub-picture timing SEI messages, bitstream_subset_flag shall be equal to 1 scalableNestingSEI.m_nestingOpFlag = 0; scalableNestingSEI.m_nestingNumOpsMinus1 = 0; //nesting_num_ops_minus1 scalableNestingSEI.m_allLayersFlag = 0; scalableNestingSEI.m_nestingNoOpMaxTemporalIdPlus1 = 6 + 1; //nesting_no_op_max_temporal_id_plus1 scalableNestingSEI.m_nestingNumLayersMinus1 = 1 - 1; //nesting_num_layers_minus1 scalableNestingSEI.m_nestingLayerId[0] = 0; scalableNestingSEI.m_callerOwnsSEIs = true; Int picSptDpbOutputDuDelay = 0; UInt *accumBitsDU = NULL; UInt *accumNalsDU = NULL; SEIDecodingUnitInfo decodingUnitInfoSEI; #if !H_MV for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ ) #endif { UInt uiColDir = 1; //-- For time output for each slice long iBeforeTime = clock(); //select uiColDir Int iCloseLeft=1, iCloseRight=-1; for(Int i = 0; igetGOPEntry(iGOPid).m_numRefPics; i++) { Int iRef = m_pcCfg->getGOPEntry(iGOPid).m_referencePics[i]; if(iRef>0&&(iRefiCloseLeft||iCloseLeft==1)) { iCloseLeft=iRef; } } if(iCloseRight>-1) { iCloseRight=iCloseRight+m_pcCfg->getGOPEntry(iGOPid).m_POC-1; } if(iCloseLeft<1) { iCloseLeft=iCloseLeft+m_pcCfg->getGOPEntry(iGOPid).m_POC-1; while(iCloseLeft<0) { iCloseLeft+=m_iGopSize; } } Int iLeftQP=0, iRightQP=0; for(Int i=0; igetGOPEntry(i).m_POC==(iCloseLeft%m_iGopSize)+1) { iLeftQP= m_pcCfg->getGOPEntry(i).m_QPOffset; } if (m_pcCfg->getGOPEntry(i).m_POC==(iCloseRight%m_iGopSize)+1) { iRightQP=m_pcCfg->getGOPEntry(i).m_QPOffset; } } if(iCloseRight>-1&&iRightQPgetGOPEntry(iGOPid).m_POC; Int iTimeOffset = m_pcCfg->getGOPEntry(iGOPid).m_POC; if(iPOCLast == 0) { pocCurr=0; iTimeOffset = 1; } if(pocCurr>=m_pcCfg->getFramesToBeEncoded()) { #if H_MV delete pcBitstreamRedirect; return; #else continue; #endif } if( getNalUnitType(pocCurr, m_iLastIDR) == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType(pocCurr, m_iLastIDR) == NAL_UNIT_CODED_SLICE_IDR_N_LP ) { m_iLastIDR = pocCurr; } // start a new access unit: create an entry in the list of output access units accessUnitsInGOP.push_back(AccessUnit()); AccessUnit& accessUnit = accessUnitsInGOP.back(); xGetBuffer( rcListPic, rcListPicYuvRecOut, iNumPicRcvd, iTimeOffset, pcPic, pcPicYuvRecOut, pocCurr ); // Slice data initialization pcPic->clearSliceBuffer(); assert(pcPic->getNumAllocatedSlice() == 1); m_pcSliceEncoder->setSliceIdx(0); pcPic->setCurrSliceIdx(0); #if H_3D m_pcSliceEncoder->initEncSlice ( pcPic, iPOCLast, pocCurr, iNumPicRcvd, iGOPid, pcSlice, m_pcEncTop->getVPS(), m_pcEncTop->getSPS(), m_pcEncTop->getPPS(), getLayerId() ); #else m_pcSliceEncoder->initEncSlice ( pcPic, iPOCLast, pocCurr, iNumPicRcvd, iGOPid, pcSlice, m_pcEncTop->getSPS(), m_pcEncTop->getPPS() ); #endif pcSlice->setLastIDR(m_iLastIDR); pcSlice->setSliceIdx(0); #if H_MV pcSlice->setRefPicSetInterLayer ( &m_refPicSetInterLayer ); pcPic ->setLayerId ( getLayerId() ); pcPic ->setViewId ( getViewId() ); #if !H_3D pcSlice->setLayerId ( getLayerId() ); pcSlice->setViewId ( getViewId() ); pcSlice->setVPS ( m_pcEncTop->getVPS() ); #else pcPic ->setViewIndex ( getViewIndex() ); pcPic ->setIsDepth( getIsDepth() ); pcSlice->setCamparaSlice( pcPic->getCodedScale(), pcPic->getCodedOffset() ); #endif #endif //set default slice level flag to the same as SPS level flag pcSlice->setLFCrossSliceBoundaryFlag( pcSlice->getPPS()->getLoopFilterAcrossSlicesEnabledFlag() ); pcSlice->setScalingList ( m_pcEncTop->getScalingList() ); pcSlice->getScalingList()->setUseTransformSkip(m_pcEncTop->getPPS()->getUseTransformSkip()); if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_OFF) { m_pcEncTop->getTrQuant()->setFlatScalingList(); m_pcEncTop->getTrQuant()->setUseScalingList(false); m_pcEncTop->getSPS()->setScalingListPresentFlag(false); m_pcEncTop->getPPS()->setScalingListPresentFlag(false); } else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_DEFAULT) { pcSlice->setDefaultScalingList (); m_pcEncTop->getSPS()->setScalingListPresentFlag(false); m_pcEncTop->getPPS()->setScalingListPresentFlag(false); m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList()); m_pcEncTop->getTrQuant()->setUseScalingList(true); } else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_FILE_READ) { if(pcSlice->getScalingList()->xParseScalingList(m_pcCfg->getScalingListFile())) { pcSlice->setDefaultScalingList (); } pcSlice->getScalingList()->checkDcOfMatrix(); m_pcEncTop->getSPS()->setScalingListPresentFlag(pcSlice->checkDefaultScalingList()); m_pcEncTop->getPPS()->setScalingListPresentFlag(false); m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList()); m_pcEncTop->getTrQuant()->setUseScalingList(true); } else { printf("error : ScalingList == %d no support\n",m_pcEncTop->getUseScalingListId()); assert(0); } #if H_MV // Set the nal unit type pcSlice->setNalUnitType(getNalUnitType(pocCurr, m_iLastIDR)); if( pcSlice->getSliceType() == B_SLICE ) { if( m_pcCfg->getGOPEntry( ( pcSlice->getRapPicFlag() && getLayerId() > 0 ) ? MAX_GOP : iGOPid ).m_sliceType == 'P' ) { pcSlice->setSliceType( P_SLICE ); } } #else if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='P') { pcSlice->setSliceType(P_SLICE); } // Set the nal unit type pcSlice->setNalUnitType(getNalUnitType(pocCurr, m_iLastIDR)); #endif if(pcSlice->getTemporalLayerNonReferenceFlag()) { if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_TRAIL_R) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TRAIL_N); } if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_RADL_R) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_RADL_N); } if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_RASL_R) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_RASL_N); } } // Do decoding refresh marking if any pcSlice->decodingRefreshMarking(m_pocCRA, m_bRefreshPending, rcListPic); m_pcEncTop->selectReferencePictureSet(pcSlice, pocCurr, iGOPid); pcSlice->getRPS()->setNumberOfLongtermPictures(0); #if FIX1071 if ((pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false) != 0) || (pcSlice->isIRAP())) { pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS(), pcSlice->isIRAP()); } #else if(pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false) != 0) { pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS()); } #endif pcSlice->applyReferencePictureSet(rcListPic, pcSlice->getRPS()); if(pcSlice->getTLayer() > 0) { if(pcSlice->isTemporalLayerSwitchingPoint(rcListPic) || pcSlice->getSPS()->getTemporalIdNestingFlag()) { if(pcSlice->getTemporalLayerNonReferenceFlag()) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TSA_N); } else { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TLA_R); } } else if(pcSlice->isStepwiseTemporalLayerSwitchingPointCandidate(rcListPic)) { Bool isSTSA=true; for(Int ii=iGOPid+1;(iigetGOPSize() && isSTSA==true);ii++) { Int lTid= m_pcCfg->getGOPEntry(ii).m_temporalId; if(lTid==pcSlice->getTLayer()) { TComReferencePictureSet* nRPS = pcSlice->getSPS()->getRPSList()->getReferencePictureSet(ii); for(Int jj=0;jjgetNumberOfPictures();jj++) { if(nRPS->getUsed(jj)) { Int tPoc=m_pcCfg->getGOPEntry(ii).m_POC+nRPS->getDeltaPOC(jj); Int kk=0; for(kk=0;kkgetGOPSize();kk++) { if(m_pcCfg->getGOPEntry(kk).m_POC==tPoc) break; } Int tTid=m_pcCfg->getGOPEntry(kk).m_temporalId; if(tTid >= pcSlice->getTLayer()) { isSTSA=false; break; } } } } } if(isSTSA==true) { if(pcSlice->getTemporalLayerNonReferenceFlag()) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_N); } else { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_R); } } } } arrangeLongtermPicturesInRPS(pcSlice, rcListPic); TComRefPicListModification* refPicListModification = pcSlice->getRefPicListModification(); refPicListModification->setRefPicListModificationFlagL0(0); refPicListModification->setRefPicListModificationFlagL1(0); #if H_MV if ( pcSlice->getPPS()->getNumExtraSliceHeaderBits() > 0 ) { pcSlice->setDiscardableFlag ( false ); } TComVPS* vps = pcSlice->getVPS(); Int layerIdInVps = vps ->getLayerIdInVps( getLayerId()); Int numDirectRefLayers = vps ->getNumDirectRefLayers( layerIdInVps ); GOPEntry gopEntry = m_pcCfg->getGOPEntry( (pcSlice->getRapPicFlag() && getLayerId() > 0) ? MAX_GOP : iGOPid ); if ( getLayerId() > 0 && numDirectRefLayers > 0 ) { pcSlice->setInterLayerPredEnabledFlag ( gopEntry.m_numActiveRefLayerPics > 0 ); if ( pcSlice->getInterLayerPredEnabledFlag() && numDirectRefLayers > 1 ) { if ( !vps->getMaxOneActiveRefLayerFlag() ) { pcSlice->setNumInterLayerRefPicsMinus1( gopEntry.m_numActiveRefLayerPics - 1 ); } for (Int i = 0; i < gopEntry.m_numActiveRefLayerPics; i++ ) { pcSlice->setInterLayerPredLayerIdc( i, gopEntry.m_interLayerPredLayerIdc[ i ] ); } } } assert( pcSlice->getNumActiveRefLayerPics() == gopEntry.m_numActiveRefLayerPics ); if ( vps->getNumSamplePredRefLayers( layerIdInVps ) > 0 && pcSlice->getNumActiveRefLayerPics() > 0) { pcSlice->setInterLayerSamplePredOnlyFlag( gopEntry.m_numRefPics == 0 ); } pcSlice->createAndApplyIvReferencePictureSet( m_ivPicLists, m_refPicSetInterLayer ); pcSlice->setNumRefIdx(REF_PIC_LIST_0,min(gopEntry.m_numRefPicsActive,( pcSlice->getRPS()->getNumberOfPictures() + (Int) m_refPicSetInterLayer.size() ) ) ); pcSlice->setNumRefIdx(REF_PIC_LIST_1,min(gopEntry.m_numRefPicsActive,( pcSlice->getRPS()->getNumberOfPictures() + (Int) m_refPicSetInterLayer.size() ) ) ); xSetRefPicListModificationsMv( pcSlice, iGOPid ); pcSlice->setActiveMotionPredRefLayers( ); if ( getLayerId() > 0 && pcSlice->getNumActiveMotionPredRefLayers() > 0 && pcSlice->getEnableTMVPFlag() && ( pcSlice->getSliceType() == B_SLICE || pcSlice->getSliceType() == P_SLICE )) { pcSlice->setAltCollocatedIndicationFlag( gopEntry.m_collocatedRefLayerIdx >= 0 ); if ( pcSlice->getNumActiveRefLayerPics() && pcSlice->getNumActiveMotionPredRefLayers() > 0 ) { pcSlice->setCollocatedRefLayerIdx( gopEntry.m_collocatedRefLayerIdx ); } } #else pcSlice->setNumRefIdx(REF_PIC_LIST_0,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures())); pcSlice->setNumRefIdx(REF_PIC_LIST_1,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures())); #endif #if ADAPTIVE_QP_SELECTION pcSlice->setTrQuant( m_pcEncTop->getTrQuant() ); #endif // Set reference list #if H_MV pcSlice->setRefPicList( rcListPic, m_refPicSetInterLayer ); #if H_3D_ARP pcSlice->setARPStepNum(); if(pcSlice->getARPStepNum() > 1) { for(Int iLayerId = 0; iLayerId < getLayerId(); iLayerId ++ ) { Int iViewIdx = pcSlice->getVPS()->getViewIndex(iLayerId); Bool bIsDepth = ( pcSlice->getVPS()->getDepthId ( iLayerId ) == 1 ); if( iViewIdxsetBaseViewRefPicList( m_ivPicLists->getPicList( iLayerId ), iViewIdx ); } } } #endif #else pcSlice->setRefPicList ( rcListPic ); #endif #if H_3D pcSlice->setIvPicLists( m_ivPicLists ); #if H_3D_IV_MERGE assert( !m_pcEncTop->getIsDepth() || ( pcSlice->getTexturePic() != 0 ) ); #endif #endif // Slice info. refinement #if H_MV if ( pcSlice->getSliceType() == B_SLICE ) { if( m_pcCfg->getGOPEntry( ( pcSlice->getRapPicFlag() == true && getLayerId() > 0 ) ? MAX_GOP : iGOPid ).m_sliceType == 'P' ) { pcSlice->setSliceType( P_SLICE ); } } #else if ( (pcSlice->getSliceType() == B_SLICE) && (pcSlice->getNumRefIdx(REF_PIC_LIST_1) == 0) ) { pcSlice->setSliceType ( P_SLICE ); } #endif if (pcSlice->getSliceType() == B_SLICE) { pcSlice->setColFromL0Flag(1-uiColDir); Bool bLowDelay = true; Int iCurrPOC = pcSlice->getPOC(); Int iRefIdx = 0; for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_0) && bLowDelay; iRefIdx++) { if ( pcSlice->getRefPic(REF_PIC_LIST_0, iRefIdx)->getPOC() > iCurrPOC ) { bLowDelay = false; } } for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_1) && bLowDelay; iRefIdx++) { if ( pcSlice->getRefPic(REF_PIC_LIST_1, iRefIdx)->getPOC() > iCurrPOC ) { bLowDelay = false; } } pcSlice->setCheckLDC(bLowDelay); } else { pcSlice->setCheckLDC(true); } uiColDir = 1-uiColDir; //------------------------------------------------------------- pcSlice->setRefPOCList(); pcSlice->setList1IdxToList0Idx(); #if H_3D_TMVP if(pcSlice->getLayerId()) pcSlice->generateAlterRefforTMVP(); #endif if (m_pcEncTop->getTMVPModeId() == 2) { if (iGOPid == 0) // first picture in SOP (i.e. forward B) { pcSlice->setEnableTMVPFlag(0); } else { // Note: pcSlice->getColFromL0Flag() is assumed to be always 0 and getcolRefIdx() is always 0. pcSlice->setEnableTMVPFlag(1); } pcSlice->getSPS()->setTMVPFlagsPresent(1); } else if (m_pcEncTop->getTMVPModeId() == 1) { pcSlice->getSPS()->setTMVPFlagsPresent(1); pcSlice->setEnableTMVPFlag(1); } else { pcSlice->getSPS()->setTMVPFlagsPresent(0); pcSlice->setEnableTMVPFlag(0); } #if H_MV if( pcSlice->getIdrPicFlag() ) { pcSlice->setEnableTMVPFlag(0); } #endif #if H_3D_VSO // Should be moved to TEncTop !!! Bool bUseVSO = m_pcEncTop->getUseVSO(); TComRdCost* pcRdCost = m_pcEncTop->getRdCost(); pcRdCost->setUseVSO( bUseVSO ); // SAIT_VSO_EST_A0033 pcRdCost->setUseEstimatedVSD( m_pcEncTop->getUseEstimatedVSD() ); if ( bUseVSO ) { Int iVSOMode = m_pcEncTop->getVSOMode(); pcRdCost->setVSOMode( iVSOMode ); pcRdCost->setAllowNegDist( m_pcEncTop->getAllowNegDist() ); // SAIT_VSO_EST_A0033 pcRdCost->setVideoRecPicYuv( m_pcEncTop->getIvPicLists()->getPicYuv( pcSlice->getViewIndex(), false , pcSlice->getPOC(), true ) ); pcRdCost->setDepthPicYuv ( m_pcEncTop->getIvPicLists()->getPicYuv( pcSlice->getViewIndex(), true , pcSlice->getPOC(), false ) ); // LGE_WVSO_A0119 Bool bUseWVSO = m_pcEncTop->getUseWVSO(); pcRdCost->setUseWVSO( bUseWVSO ); } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// Compress a slice // Slice compression if (m_pcCfg->getUseASR()) { m_pcSliceEncoder->setSearchRange(pcSlice); } Bool bGPBcheck=false; if ( pcSlice->getSliceType() == B_SLICE) { if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) ) { bGPBcheck=true; Int i; for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ ) { if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) ) { bGPBcheck=false; break; } } } } if(bGPBcheck) { pcSlice->setMvdL1ZeroFlag(true); } else { pcSlice->setMvdL1ZeroFlag(false); } pcPic->getSlice(pcSlice->getSliceIdx())->setMvdL1ZeroFlag(pcSlice->getMvdL1ZeroFlag()); #if RATE_CONTROL_LAMBDA_DOMAIN Double lambda = 0.0; Int actualHeadBits = 0; Int actualTotalBits = 0; Int estimatedBits = 0; Int tmpBitsBeforeWriting = 0; if ( m_pcCfg->getUseRateCtrl() ) { Int frameLevel = m_pcRateCtrl->getRCSeq()->getGOPID2Level( iGOPid ); if ( pcPic->getSlice(0)->getSliceType() == I_SLICE ) { frameLevel = 0; } m_pcRateCtrl->initRCPic( frameLevel ); estimatedBits = m_pcRateCtrl->getRCPic()->getTargetBits(); Int sliceQP = m_pcCfg->getInitialQP(); if ( ( pcSlice->getPOC() == 0 && m_pcCfg->getInitialQP() > 0 ) || ( frameLevel == 0 && m_pcCfg->getForceIntraQP() ) ) // QP is specified { Int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 ); Double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(Double)NumberBFrames ); Double dQPFactor = 0.57*dLambda_scale; Int SHIFT_QP = 12; Int bitdepth_luma_qp_scale = 0; Double qp_temp = (Double) sliceQP + bitdepth_luma_qp_scale - SHIFT_QP; lambda = dQPFactor*pow( 2.0, qp_temp/3.0 ); } else if ( frameLevel == 0 ) // intra case, but use the model { #if RATE_CONTROL_INTRA m_pcSliceEncoder->calCostSliceI(pcPic); #endif if ( m_pcCfg->getIntraPeriod() != 1 ) // do not refine allocated bits for all intra case { Int bits = m_pcRateCtrl->getRCSeq()->getLeftAverageBits(); #if RATE_CONTROL_INTRA bits = m_pcRateCtrl->getRCPic()->getRefineBitsForIntra( bits ); #else bits = m_pcRateCtrl->getRCSeq()->getRefineBitsForIntra( bits ); #endif if ( bits < 200 ) { bits = 200; } m_pcRateCtrl->getRCPic()->setTargetBits( bits ); } list listPreviousPicture = m_pcRateCtrl->getPicList(); #if RATE_CONTROL_INTRA m_pcRateCtrl->getRCPic()->getLCUInitTargetBits(); lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, pcSlice->getSliceType()); #else lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture ); #endif sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture ); } else // normal case { list listPreviousPicture = m_pcRateCtrl->getPicList(); #if RATE_CONTROL_INTRA lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, pcSlice->getSliceType()); #else lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture ); #endif sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture ); } sliceQP = Clip3( -pcSlice->getSPS()->getQpBDOffsetY(), MAX_QP, sliceQP ); m_pcRateCtrl->getRCPic()->setPicEstQP( sliceQP ); m_pcSliceEncoder->resetQP( pcPic, sliceQP, lambda ); } #endif UInt uiNumSlices = 1; UInt uiInternalAddress = pcPic->getNumPartInCU()-4; UInt uiExternalAddress = pcPic->getPicSym()->getNumberOfCUsInFrame()-1; UInt uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); UInt uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while(uiPosX>=uiWidth||uiPosY>=uiHeight) { uiInternalAddress--; uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } uiInternalAddress++; if(uiInternalAddress==pcPic->getNumPartInCU()) { uiInternalAddress = 0; uiExternalAddress++; } UInt uiRealEndAddress = uiExternalAddress*pcPic->getNumPartInCU()+uiInternalAddress; UInt uiCummulativeTileWidth; UInt uiCummulativeTileHeight; Int p, j; UInt uiEncCUAddr; //set NumColumnsMinus1 and NumRowsMinus1 pcPic->getPicSym()->setNumColumnsMinus1( pcSlice->getPPS()->getNumColumnsMinus1() ); pcPic->getPicSym()->setNumRowsMinus1( pcSlice->getPPS()->getNumRowsMinus1() ); //create the TComTileArray pcPic->getPicSym()->xCreateTComTileArray(); if( pcSlice->getPPS()->getUniformSpacingFlag() == 1 ) { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )-> setTileWidth( (p+1)*pcPic->getPicSym()->getFrameWidthInCU()/(pcPic->getPicSym()->getNumColumnsMinus1()+1) - (p*pcPic->getPicSym()->getFrameWidthInCU())/(pcPic->getPicSym()->getNumColumnsMinus1()+1) ); } } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )-> setTileHeight( (p+1)*pcPic->getPicSym()->getFrameHeightInCU()/(pcPic->getPicSym()->getNumRowsMinus1()+1) - (p*pcPic->getPicSym()->getFrameHeightInCU())/(pcPic->getPicSym()->getNumRowsMinus1()+1) ); } } } else { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { uiCummulativeTileWidth = 0; for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1(); p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )->setTileWidth( pcSlice->getPPS()->getColumnWidth(p) ); uiCummulativeTileWidth += pcSlice->getPPS()->getColumnWidth(p); } pcPic->getPicSym()->getTComTile(j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p)->setTileWidth( pcPic->getPicSym()->getFrameWidthInCU()-uiCummulativeTileWidth ); } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { uiCummulativeTileHeight = 0; for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1(); p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )->setTileHeight( pcSlice->getPPS()->getRowHeight(p) ); uiCummulativeTileHeight += pcSlice->getPPS()->getRowHeight(p); } pcPic->getPicSym()->getTComTile(p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j)->setTileHeight( pcPic->getPicSym()->getFrameHeightInCU()-uiCummulativeTileHeight ); } } //intialize each tile of the current picture pcPic->getPicSym()->xInitTiles(); // Allocate some coders, now we know how many tiles there are. Int iNumSubstreams = pcSlice->getPPS()->getNumSubstreams(); //generate the Coding Order Map and Inverse Coding Order Map for(p=0, uiEncCUAddr=0; pgetPicSym()->getNumberOfCUsInFrame(); p++, uiEncCUAddr = pcPic->getPicSym()->xCalculateNxtCUAddr(uiEncCUAddr)) { pcPic->getPicSym()->setCUOrderMap(p, uiEncCUAddr); pcPic->getPicSym()->setInverseCUOrderMap(uiEncCUAddr, p); } pcPic->getPicSym()->setCUOrderMap(pcPic->getPicSym()->getNumberOfCUsInFrame(), pcPic->getPicSym()->getNumberOfCUsInFrame()); pcPic->getPicSym()->setInverseCUOrderMap(pcPic->getPicSym()->getNumberOfCUsInFrame(), pcPic->getPicSym()->getNumberOfCUsInFrame()); // Allocate some coders, now we know how many tiles there are. m_pcEncTop->createWPPCoders(iNumSubstreams); pcSbacCoders = m_pcEncTop->getSbacCoders(); pcSubstreamsOut = new TComOutputBitstream[iNumSubstreams]; UInt startCUAddrSliceIdx = 0; // used to index "m_uiStoredStartCUAddrForEncodingSlice" containing locations of slice boundaries UInt startCUAddrSlice = 0; // used to keep track of current slice's starting CU addr. pcSlice->setSliceCurStartCUAddr( startCUAddrSlice ); // Setting "start CU addr" for current slice m_storedStartCUAddrForEncodingSlice.clear(); UInt startCUAddrSliceSegmentIdx = 0; // used to index "m_uiStoredStartCUAddrForEntropyEncodingSlice" containing locations of slice boundaries UInt startCUAddrSliceSegment = 0; // used to keep track of current Dependent slice's starting CU addr. pcSlice->setSliceSegmentCurStartCUAddr( startCUAddrSliceSegment ); // Setting "start CU addr" for current Dependent slice m_storedStartCUAddrForEncodingSliceSegment.clear(); UInt nextCUAddr = 0; m_storedStartCUAddrForEncodingSlice.push_back (nextCUAddr); startCUAddrSliceIdx++; m_storedStartCUAddrForEncodingSliceSegment.push_back(nextCUAddr); startCUAddrSliceSegmentIdx++; #if H_3D_NBDV if(pcSlice->getViewIndex() && !pcSlice->getIsDepth()) //Notes from QC: this condition shall be changed once the configuration is completed, e.g. in pcSlice->getSPS()->getMultiviewMvPredMode() || ARP in prev. HTM. Remove this comment once it is done. { Int iColPoc = pcSlice->getRefPOC(RefPicList(1-pcSlice->getColFromL0Flag()), pcSlice->getColRefIdx()); pcPic->setNumDdvCandPics(pcPic->getDisCandRefPictures(iColPoc)); } #if H_3D pcSlice->setDepthToDisparityLUTs(); #endif #endif #if MTK_NBDV_TN_FIX_E0172 if(pcSlice->getViewIndex() && !pcSlice->getIsDepth() && !pcSlice->isIntra()) //Notes from QC: this condition shall be changed once the configuration is completed, e.g. in pcSlice->getSPS()->getMultiviewMvPredMode() || ARP in prev. HTM. Remove this comment once it is done. { pcPic->checkTemporalIVRef(); } #endif #if MTK_TEXTURE_MRGCAND_BUGFIX_E0182 if(pcSlice->getIsDepth()) { pcPic->checkTextureRef(); } #endif while(nextCUAddrsetNextSlice ( false ); pcSlice->setNextSliceSegment( false ); assert(pcPic->getNumAllocatedSlice() == startCUAddrSliceIdx); m_pcSliceEncoder->precompressSlice( pcPic ); m_pcSliceEncoder->compressSlice ( pcPic ); Bool bNoBinBitConstraintViolated = (!pcSlice->isNextSlice() && !pcSlice->isNextSliceSegment()); if (pcSlice->isNextSlice() || (bNoBinBitConstraintViolated && m_pcCfg->getSliceMode()==FIXED_NUMBER_OF_LCU)) { startCUAddrSlice = pcSlice->getSliceCurEndCUAddr(); // Reconstruction slice m_storedStartCUAddrForEncodingSlice.push_back(startCUAddrSlice); startCUAddrSliceIdx++; // Dependent slice if (startCUAddrSliceSegmentIdx>0 && m_storedStartCUAddrForEncodingSliceSegment[startCUAddrSliceSegmentIdx-1] != startCUAddrSlice) { m_storedStartCUAddrForEncodingSliceSegment.push_back(startCUAddrSlice); startCUAddrSliceSegmentIdx++; } if (startCUAddrSlice < uiRealEndAddress) { pcPic->allocateNewSlice(); pcPic->setCurrSliceIdx ( startCUAddrSliceIdx-1 ); m_pcSliceEncoder->setSliceIdx ( startCUAddrSliceIdx-1 ); pcSlice = pcPic->getSlice ( startCUAddrSliceIdx-1 ); pcSlice->copySliceInfo ( pcPic->getSlice(0) ); pcSlice->setSliceIdx ( startCUAddrSliceIdx-1 ); pcSlice->setSliceCurStartCUAddr ( startCUAddrSlice ); pcSlice->setSliceSegmentCurStartCUAddr ( startCUAddrSlice ); pcSlice->setSliceBits(0); uiNumSlices ++; } } else if (pcSlice->isNextSliceSegment() || (bNoBinBitConstraintViolated && m_pcCfg->getSliceSegmentMode()==FIXED_NUMBER_OF_LCU)) { startCUAddrSliceSegment = pcSlice->getSliceSegmentCurEndCUAddr(); m_storedStartCUAddrForEncodingSliceSegment.push_back(startCUAddrSliceSegment); startCUAddrSliceSegmentIdx++; pcSlice->setSliceSegmentCurStartCUAddr( startCUAddrSliceSegment ); } else { startCUAddrSlice = pcSlice->getSliceCurEndCUAddr(); startCUAddrSliceSegment = pcSlice->getSliceSegmentCurEndCUAddr(); } nextCUAddr = (startCUAddrSlice > startCUAddrSliceSegment) ? startCUAddrSlice : startCUAddrSliceSegment; } m_storedStartCUAddrForEncodingSlice.push_back( pcSlice->getSliceCurEndCUAddr()); startCUAddrSliceIdx++; m_storedStartCUAddrForEncodingSliceSegment.push_back(pcSlice->getSliceCurEndCUAddr()); startCUAddrSliceSegmentIdx++; pcSlice = pcPic->getSlice(0); // SAO parameter estimation using non-deblocked pixels for LCU bottom and right boundary areas if( m_pcCfg->getSaoLcuBasedOptimization() && m_pcCfg->getSaoLcuBoundary() ) { m_pcSAO->resetStats(); m_pcSAO->calcSaoStatsCu_BeforeDblk( pcPic ); } //-- Loop filter Bool bLFCrossTileBoundary = pcSlice->getPPS()->getLoopFilterAcrossTilesEnabledFlag(); m_pcLoopFilter->setCfg(bLFCrossTileBoundary); if ( m_pcCfg->getDeblockingFilterMetric() ) { dblMetric(pcPic, uiNumSlices); } m_pcLoopFilter->loopFilterPic( pcPic ); pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseSAO()) { std::vector LFCrossSliceBoundaryFlag; for(Int s=0; s< uiNumSlices; s++) { LFCrossSliceBoundaryFlag.push_back( ((uiNumSlices==1)?true:pcPic->getSlice(s)->getLFCrossSliceBoundaryFlag()) ); } m_storedStartCUAddrForEncodingSlice.resize(uiNumSlices+1); pcPic->createNonDBFilterInfo(m_storedStartCUAddrForEncodingSlice, 0, &LFCrossSliceBoundaryFlag ,pcPic->getPicSym()->getNumTiles() ,bLFCrossTileBoundary); } pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseSAO()) { m_pcSAO->createPicSaoInfo(pcPic); } /////////////////////////////////////////////////////////////////////////////////////////////////// File writing // Set entropy coder m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); /* write various header sets. */ if ( m_bSeqFirst ) { OutputNALUnit nalu(NAL_UNIT_VPS); #if H_MV if( getLayerId() == 0 ) { #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodeVPS(m_pcEncTop->getVPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); #if RATE_CONTROL_LAMBDA_DOMAIN actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8; #endif #if H_MV } nalu = NALUnit(NAL_UNIT_SPS, 0, getLayerId()); #else nalu = NALUnit(NAL_UNIT_SPS); #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); if (m_bSeqFirst) { pcSlice->getSPS()->setNumLongTermRefPicSPS(m_numLongTermRefPicSPS); for (Int k = 0; k < m_numLongTermRefPicSPS; k++) { pcSlice->getSPS()->setLtRefPicPocLsbSps(k, m_ltRefPicPocLsbSps[k]); pcSlice->getSPS()->setUsedByCurrPicLtSPSFlag(k, m_ltRefPicUsedByCurrPicFlag[k]); } } if( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) { UInt maxCU = m_pcCfg->getSliceArgument() >> ( pcSlice->getSPS()->getMaxCUDepth() << 1); UInt numDU = ( m_pcCfg->getSliceMode() == 1 ) ? ( pcPic->getNumCUsInFrame() / maxCU ) : ( 0 ); if( pcPic->getNumCUsInFrame() % maxCU != 0 || numDU == 0 ) { numDU ++; } pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->setNumDU( numDU ); pcSlice->getSPS()->setHrdParameters( m_pcCfg->getFrameRate(), numDU, m_pcCfg->getTargetBitrate(), ( m_pcCfg->getIntraPeriod() > 0 ) ); } if( m_pcCfg->getBufferingPeriodSEIEnabled() || m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) { pcSlice->getSPS()->getVuiParameters()->setHrdParametersPresentFlag( true ); } #if !H_3D m_pcEntropyCoder->encodeSPS(pcSlice->getSPS()); #else m_pcEntropyCoder->encodeSPS(pcSlice->getSPS(), pcSlice->getViewIndex(), pcSlice->getIsDepth() ); #endif writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); #if RATE_CONTROL_LAMBDA_DOMAIN actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8; #endif #if H_MV nalu = NALUnit(NAL_UNIT_PPS, 0, getLayerId()); #else nalu = NALUnit(NAL_UNIT_PPS); #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodePPS(pcSlice->getPPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); #if RATE_CONTROL_LAMBDA_DOMAIN actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8; #endif xCreateLeadingSEIMessages(accessUnit, pcSlice->getSPS()); m_bSeqFirst = false; } if (writeSOP) // write SOP description SEI (if enabled) at the beginning of GOP { Int SOPcurrPOC = pocCurr; OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); SEISOPDescription SOPDescriptionSEI; SOPDescriptionSEI.m_sopSeqParameterSetId = pcSlice->getSPS()->getSPSId(); UInt i = 0; UInt prevEntryId = iGOPid; for (j = iGOPid; j < m_iGopSize; j++) { Int deltaPOC = m_pcCfg->getGOPEntry(j).m_POC - m_pcCfg->getGOPEntry(prevEntryId).m_POC; if ((SOPcurrPOC + deltaPOC) < m_pcCfg->getFramesToBeEncoded()) { SOPcurrPOC += deltaPOC; SOPDescriptionSEI.m_sopDescVclNaluType[i] = getNalUnitType(SOPcurrPOC, m_iLastIDR); SOPDescriptionSEI.m_sopDescTemporalId[i] = m_pcCfg->getGOPEntry(j).m_temporalId; SOPDescriptionSEI.m_sopDescStRpsIdx[i] = m_pcEncTop->getReferencePictureSetIdxForSOP(pcSlice, SOPcurrPOC, j); SOPDescriptionSEI.m_sopDescPocDelta[i] = deltaPOC; prevEntryId = j; i++; } } SOPDescriptionSEI.m_numPicsInSopMinus1 = i - 1; m_seiWriter.writeSEImessage( nalu.m_Bitstream, SOPDescriptionSEI, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); writeSOP = false; } if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) ) { if( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getSubPicCpbParamsPresentFlag() ) { UInt numDU = pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNumDU(); pictureTimingSEI.m_numDecodingUnitsMinus1 = ( numDU - 1 ); pictureTimingSEI.m_duCommonCpbRemovalDelayFlag = false; if( pictureTimingSEI.m_numNalusInDuMinus1 == NULL ) { pictureTimingSEI.m_numNalusInDuMinus1 = new UInt[ numDU ]; } if( pictureTimingSEI.m_duCpbRemovalDelayMinus1 == NULL ) { pictureTimingSEI.m_duCpbRemovalDelayMinus1 = new UInt[ numDU ]; } if( accumBitsDU == NULL ) { accumBitsDU = new UInt[ numDU ]; } if( accumNalsDU == NULL ) { accumNalsDU = new UInt[ numDU ]; } } pictureTimingSEI.m_auCpbRemovalDelay = std::max(1, m_totalCoded - m_lastBPSEI); // Syntax element signalled as minus, hence the . pictureTimingSEI.m_picDpbOutputDelay = pcSlice->getSPS()->getNumReorderPics(0) + pcSlice->getPOC() - m_totalCoded; Int factor = pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getTickDivisorMinus2() + 2; pictureTimingSEI.m_picDpbOutputDuDelay = factor * pictureTimingSEI.m_picDpbOutputDelay; if( m_pcCfg->getDecodingUnitInfoSEIEnabled() ) { picSptDpbOutputDuDelay = factor * pictureTimingSEI.m_picDpbOutputDelay; } } if( ( m_pcCfg->getBufferingPeriodSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) ) { OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); SEIBufferingPeriod sei_buffering_period; UInt uiInitialCpbRemovalDelay = (90000/2); // 0.5 sec sei_buffering_period.m_initialCpbRemovalDelay [0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialCpbRemovalDelayOffset[0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialCpbRemovalDelay [0][1] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialCpbRemovalDelayOffset[0][1] = uiInitialCpbRemovalDelay; Double dTmp = (Double)pcSlice->getSPS()->getVuiParameters()->getTimingInfo()->getNumUnitsInTick() / (Double)pcSlice->getSPS()->getVuiParameters()->getTimingInfo()->getTimeScale(); UInt uiTmp = (UInt)( dTmp * 90000.0 ); uiInitialCpbRemovalDelay -= uiTmp; uiInitialCpbRemovalDelay -= uiTmp / ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getTickDivisorMinus2() + 2 ); sei_buffering_period.m_initialAltCpbRemovalDelay [0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][0] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialAltCpbRemovalDelay [0][1] = uiInitialCpbRemovalDelay; sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][1] = uiInitialCpbRemovalDelay; sei_buffering_period.m_rapCpbParamsPresentFlag = 0; //for the concatenation, it can be set to one during splicing. sei_buffering_period.m_concatenationFlag = 0; //since the temporal layer HRD is not ready, we assumed it is fixed sei_buffering_period.m_auCpbRemovalDelayDelta = 1; sei_buffering_period.m_cpbDelayOffset = 0; sei_buffering_period.m_dpbDelayOffset = 0; m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_buffering_period, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); { UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit); UInt offsetPosition = m_activeParameterSetSEIPresentInAU; // Insert BP SEI after APS SEI AccessUnit::iterator it; for(j = 0, it = accessUnit.begin(); j < seiPositionInAu + offsetPosition; j++) { it++; } accessUnit.insert(it, new NALUnitEBSP(nalu)); m_bufferingPeriodSEIPresentInAU = true; } if (m_pcCfg->getScalableNestingSEIEnabled()) { OutputNALUnit naluTmp(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&naluTmp.m_Bitstream); scalableNestingSEI.m_nestedSEIs.clear(); scalableNestingSEI.m_nestedSEIs.push_back(&sei_buffering_period); m_seiWriter.writeSEImessage( naluTmp.m_Bitstream, scalableNestingSEI, pcSlice->getSPS()); writeRBSPTrailingBits(naluTmp.m_Bitstream); UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit); UInt offsetPosition = m_activeParameterSetSEIPresentInAU + m_bufferingPeriodSEIPresentInAU + m_pictureTimingSEIPresentInAU; // Insert BP SEI after non-nested APS, BP and PT SEIs AccessUnit::iterator it; for(j = 0, it = accessUnit.begin(); j < seiPositionInAu + offsetPosition; j++) { it++; } accessUnit.insert(it, new NALUnitEBSP(naluTmp)); m_nestedBufferingPeriodSEIPresentInAU = true; } m_lastBPSEI = m_totalCoded; m_cpbRemovalDelay = 0; } m_cpbRemovalDelay ++; if( ( m_pcEncTop->getRecoveryPointSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) ) { if( m_pcEncTop->getGradualDecodingRefreshInfoEnabled() && !pcSlice->getRapPicFlag() ) { // Gradual decoding refresh SEI OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); SEIGradualDecodingRefreshInfo seiGradualDecodingRefreshInfo; seiGradualDecodingRefreshInfo.m_gdrForegroundFlag = true; // Indicating all "foreground" m_seiWriter.writeSEImessage( nalu.m_Bitstream, seiGradualDecodingRefreshInfo, pcSlice->getSPS() ); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); } // Recovery point SEI OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); SEIRecoveryPoint sei_recovery_point; sei_recovery_point.m_recoveryPocCnt = 0; sei_recovery_point.m_exactMatchingFlag = ( pcSlice->getPOC() == 0 ) ? (true) : (false); sei_recovery_point.m_brokenLinkFlag = false; m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_recovery_point, pcSlice->getSPS() ); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); } /* use the main bitstream buffer for storing the marshalled picture */ m_pcEntropyCoder->setBitstream(NULL); startCUAddrSliceIdx = 0; startCUAddrSlice = 0; startCUAddrSliceSegmentIdx = 0; startCUAddrSliceSegment = 0; nextCUAddr = 0; pcSlice = pcPic->getSlice(startCUAddrSliceIdx); Int processingState = (pcSlice->getSPS()->getUseSAO())?(EXECUTE_INLOOPFILTER):(ENCODE_SLICE); Bool skippedSlice=false; while (nextCUAddr < uiRealEndAddress) // Iterate over all slices { switch(processingState) { case ENCODE_SLICE: { pcSlice->setNextSlice ( false ); pcSlice->setNextSliceSegment( false ); if (nextCUAddr == m_storedStartCUAddrForEncodingSlice[startCUAddrSliceIdx]) { pcSlice = pcPic->getSlice(startCUAddrSliceIdx); if(startCUAddrSliceIdx > 0 && pcSlice->getSliceType()!= I_SLICE) { pcSlice->checkColRefIdx(startCUAddrSliceIdx, pcPic); } pcPic->setCurrSliceIdx(startCUAddrSliceIdx); m_pcSliceEncoder->setSliceIdx(startCUAddrSliceIdx); assert(startCUAddrSliceIdx == pcSlice->getSliceIdx()); // Reconstruction slice pcSlice->setSliceCurStartCUAddr( nextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setSliceCurEndCUAddr ( m_storedStartCUAddrForEncodingSlice[startCUAddrSliceIdx+1 ] ); // Dependent slice pcSlice->setSliceSegmentCurStartCUAddr( nextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setSliceSegmentCurEndCUAddr ( m_storedStartCUAddrForEncodingSliceSegment[startCUAddrSliceSegmentIdx+1 ] ); pcSlice->setNextSlice ( true ); startCUAddrSliceIdx++; startCUAddrSliceSegmentIdx++; } else if (nextCUAddr == m_storedStartCUAddrForEncodingSliceSegment[startCUAddrSliceSegmentIdx]) { // Dependent slice pcSlice->setSliceSegmentCurStartCUAddr( nextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setSliceSegmentCurEndCUAddr ( m_storedStartCUAddrForEncodingSliceSegment[startCUAddrSliceSegmentIdx+1 ] ); pcSlice->setNextSliceSegment( true ); startCUAddrSliceSegmentIdx++; } pcSlice->setRPS(pcPic->getSlice(0)->getRPS()); pcSlice->setRPSidx(pcPic->getSlice(0)->getRPSidx()); UInt uiDummyStartCUAddr; UInt uiDummyBoundingCUAddr; m_pcSliceEncoder->xDetermineStartAndBoundingCUAddr(uiDummyStartCUAddr,uiDummyBoundingCUAddr,pcPic,true); uiInternalAddress = pcPic->getPicSym()->getPicSCUAddr(pcSlice->getSliceSegmentCurEndCUAddr()-1) % pcPic->getNumPartInCU(); uiExternalAddress = pcPic->getPicSym()->getPicSCUAddr(pcSlice->getSliceSegmentCurEndCUAddr()-1) / pcPic->getNumPartInCU(); uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while(uiPosX>=uiWidth||uiPosY>=uiHeight) { uiInternalAddress--; uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } uiInternalAddress++; if(uiInternalAddress==pcPic->getNumPartInCU()) { uiInternalAddress = 0; uiExternalAddress = pcPic->getPicSym()->getCUOrderMap(pcPic->getPicSym()->getInverseCUOrderMap(uiExternalAddress)+1); } UInt endAddress = pcPic->getPicSym()->getPicSCUEncOrder(uiExternalAddress*pcPic->getNumPartInCU()+uiInternalAddress); if(endAddress<=pcSlice->getSliceSegmentCurStartCUAddr()) { UInt boundingAddrSlice, boundingAddrSliceSegment; boundingAddrSlice = m_storedStartCUAddrForEncodingSlice[startCUAddrSliceIdx]; boundingAddrSliceSegment = m_storedStartCUAddrForEncodingSliceSegment[startCUAddrSliceSegmentIdx]; nextCUAddr = min(boundingAddrSlice, boundingAddrSliceSegment); if(pcSlice->isNextSlice()) { skippedSlice=true; } continue; } if(skippedSlice) { pcSlice->setNextSlice ( true ); pcSlice->setNextSliceSegment( false ); } skippedSlice=false; pcSlice->allocSubstreamSizes( iNumSubstreams ); for ( UInt ui = 0 ; ui < iNumSubstreams; ui++ ) { pcSubstreamsOut[ui].clear(); } m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); /* start slice NALunit */ #if H_MV OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->getTLayer(), getLayerId() ); #else OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->getTLayer() ); #endif Bool sliceSegment = (!pcSlice->isNextSlice()); if (!sliceSegment) { uiOneBitstreamPerSliceLength = 0; // start of a new slice } m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); #if RATE_CONTROL_LAMBDA_DOMAIN tmpBitsBeforeWriting = m_pcEntropyCoder->getNumberOfWrittenBits(); #endif m_pcEntropyCoder->encodeSliceHeader(pcSlice); #if RATE_CONTROL_LAMBDA_DOMAIN actualHeadBits += ( m_pcEntropyCoder->getNumberOfWrittenBits() - tmpBitsBeforeWriting ); #endif // is it needed? { if (!sliceSegment) { pcBitstreamRedirect->writeAlignOne(); } else { // We've not completed our slice header info yet, do the alignment later. } m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); for ( UInt ui = 0 ; ui < pcSlice->getPPS()->getNumSubstreams() ; ui++ ) { m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->resetEntropy (); } } if(pcSlice->isNextSlice()) { // set entropy coder for writing m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); { for ( UInt ui = 0 ; ui < pcSlice->getPPS()->getNumSubstreams() ; ui++ ) { m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->resetEntropy (); } pcSbacCoders[0].load(m_pcSbacCoder); m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[0], pcSlice ); //ALF is written in substream #0 with CABAC coder #0 (see ALF param encoding below) } m_pcEntropyCoder->resetEntropy (); // File writing if (!sliceSegment) { m_pcEntropyCoder->setBitstream(pcBitstreamRedirect); } else { m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); } // for now, override the TILES_DECODER setting in order to write substreams. m_pcEntropyCoder->setBitstream ( &pcSubstreamsOut[0] ); } pcSlice->setFinalized(true); m_pcSbacCoder->load( &pcSbacCoders[0] ); pcSlice->setTileOffstForMultES( uiOneBitstreamPerSliceLength ); pcSlice->setTileLocationCount ( 0 ); m_pcSliceEncoder->encodeSlice(pcPic, pcSubstreamsOut); { // Construct the final bitstream by flushing and concatenating substreams. // The final bitstream is either nalu.m_Bitstream or pcBitstreamRedirect; UInt* puiSubstreamSizes = pcSlice->getSubstreamSizes(); UInt uiTotalCodedSize = 0; // for padding calcs. UInt uiNumSubstreamsPerTile = iNumSubstreams; if (iNumSubstreams > 1) { uiNumSubstreamsPerTile /= pcPic->getPicSym()->getNumTiles(); } for ( UInt ui = 0 ; ui < iNumSubstreams; ui++ ) { // Flush all substreams -- this includes empty ones. // Terminating bit and flush. m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->setBitstream ( &pcSubstreamsOut[ui] ); m_pcEntropyCoder->encodeTerminatingBit( 1 ); m_pcEntropyCoder->encodeSliceFinish(); pcSubstreamsOut[ui].writeByteAlignment(); // Byte-alignment in slice_data() at end of sub-stream // Byte alignment is necessary between tiles when tiles are independent. uiTotalCodedSize += pcSubstreamsOut[ui].getNumberOfWrittenBits(); Bool bNextSubstreamInNewTile = ((ui+1) < iNumSubstreams)&& ((ui+1)%uiNumSubstreamsPerTile == 0); if (bNextSubstreamInNewTile) { pcSlice->setTileLocation(ui/uiNumSubstreamsPerTile, pcSlice->getTileOffstForMultES()+(uiTotalCodedSize>>3)); } if (ui+1 < pcSlice->getPPS()->getNumSubstreams()) { puiSubstreamSizes[ui] = pcSubstreamsOut[ui].getNumberOfWrittenBits() + (pcSubstreamsOut[ui].countStartCodeEmulations()<<3); } } // Complete the slice header info. m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodeTilesWPPEntryPoint( pcSlice ); // Substreams... TComOutputBitstream *pcOut = pcBitstreamRedirect; Int offs = 0; Int nss = pcSlice->getPPS()->getNumSubstreams(); if (pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag()) { // 1st line present for WPP. offs = pcSlice->getSliceSegmentCurStartCUAddr()/pcSlice->getPic()->getNumPartInCU()/pcSlice->getPic()->getFrameWidthInCU(); nss = pcSlice->getNumEntryPointOffsets()+1; } for ( UInt ui = 0 ; ui < nss; ui++ ) { pcOut->addSubstream(&pcSubstreamsOut[ui+offs]); } } UInt boundingAddrSlice, boundingAddrSliceSegment; boundingAddrSlice = m_storedStartCUAddrForEncodingSlice[startCUAddrSliceIdx]; boundingAddrSliceSegment = m_storedStartCUAddrForEncodingSliceSegment[startCUAddrSliceSegmentIdx]; nextCUAddr = min(boundingAddrSlice, boundingAddrSliceSegment); // If current NALU is the first NALU of slice (containing slice header) and more NALUs exist (due to multiple dependent slices) then buffer it. // If current NALU is the last NALU of slice and a NALU was buffered, then (a) Write current NALU (b) Update an write buffered NALU at approproate location in NALU list. Bool bNALUAlignedWrittenToList = false; // used to ensure current NALU is not written more than once to the NALU list. xAttachSliceDataToNalUnit(nalu, pcBitstreamRedirect); accessUnit.push_back(new NALUnitEBSP(nalu)); #if RATE_CONTROL_LAMBDA_DOMAIN actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8; #endif bNALUAlignedWrittenToList = true; uiOneBitstreamPerSliceLength += nalu.m_Bitstream.getNumberOfWrittenBits(); // length of bitstream after byte-alignment if (!bNALUAlignedWrittenToList) { { nalu.m_Bitstream.writeAlignZero(); } accessUnit.push_back(new NALUnitEBSP(nalu)); uiOneBitstreamPerSliceLength += nalu.m_Bitstream.getNumberOfWrittenBits() + 24; // length of bitstream after byte-alignment + 3 byte startcode 0x000001 } if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) && ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getSubPicCpbParamsPresentFlag() ) ) { UInt numNalus = 0; UInt numRBSPBytes = 0; for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++) { UInt numRBSPBytes_nal = UInt((*it)->m_nalUnitData.str().size()); if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI) { numRBSPBytes += numRBSPBytes_nal; numNalus ++; } } accumBitsDU[ pcSlice->getSliceIdx() ] = ( numRBSPBytes << 3 ); accumNalsDU[ pcSlice->getSliceIdx() ] = numNalus; // SEI not counted for bit count; hence shouldn't be counted for # of NALUs - only for consistency } processingState = ENCODE_SLICE; } break; case EXECUTE_INLOOPFILTER: { // set entropy coder for RD m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); if ( pcSlice->getSPS()->getUseSAO() ) { m_pcEntropyCoder->resetEntropy(); m_pcEntropyCoder->setBitstream( m_pcBitCounter ); m_pcSAO->startSaoEnc(pcPic, m_pcEntropyCoder, m_pcEncTop->getRDSbacCoder(), m_pcEncTop->getRDGoOnSbacCoder()); SAOParam& cSaoParam = *pcSlice->getPic()->getPicSym()->getSaoParam(); #if SAO_CHROMA_LAMBDA #if SAO_ENCODING_CHOICE m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma(), pcPic->getSlice(0)->getDepth()); #else m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma()); #endif #else m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambda()); #endif m_pcSAO->endSaoEnc(); m_pcSAO->PCMLFDisableProcess(pcPic); } #if SAO_RDO m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); #endif processingState = ENCODE_SLICE; for(Int s=0; s< uiNumSlices; s++) { if (pcSlice->getSPS()->getUseSAO()) { pcPic->getSlice(s)->setSaoEnabledFlag((pcSlice->getPic()->getPicSym()->getSaoParam()->bSaoFlag[0]==1)?true:false); } } } break; default: { printf("Not a supported encoding state\n"); assert(0); exit(-1); } } } // end iteration over slices if(pcSlice->getSPS()->getUseSAO()) { if(pcSlice->getSPS()->getUseSAO()) { m_pcSAO->destroyPicSaoInfo(); } pcPic->destroyNonDBFilterInfo(); } #if MTK_SONY_PROGRESSIVE_MV_COMPRESSION_E0170 pcPic->compressMotion(2); #endif #if !H_3D pcPic->compressMotion(); #endif #if H_MV m_pocLastCoded = pcPic->getPOC(); #endif //-- For time output for each slice Double dEncTime = (Double)(clock()-iBeforeTime) / CLOCKS_PER_SEC; const Char* digestStr = NULL; if (m_pcCfg->getDecodedPictureHashSEIEnabled()) { /* calculate MD5sum for entire reconstructed picture */ SEIDecodedPictureHash sei_recon_picture_digest; if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1) { sei_recon_picture_digest.method = SEIDecodedPictureHash::MD5; calcMD5(*pcPic->getPicYuvRec(), sei_recon_picture_digest.digest); digestStr = digestToString(sei_recon_picture_digest.digest, 16); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2) { sei_recon_picture_digest.method = SEIDecodedPictureHash::CRC; calcCRC(*pcPic->getPicYuvRec(), sei_recon_picture_digest.digest); digestStr = digestToString(sei_recon_picture_digest.digest, 2); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3) { sei_recon_picture_digest.method = SEIDecodedPictureHash::CHECKSUM; calcChecksum(*pcPic->getPicYuvRec(), sei_recon_picture_digest.digest); digestStr = digestToString(sei_recon_picture_digest.digest, 4); } OutputNALUnit nalu(NAL_UNIT_SUFFIX_SEI, pcSlice->getTLayer()); /* write the SEI messages */ m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_recon_picture_digest, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.insert(accessUnit.end(), new NALUnitEBSP(nalu)); } if (m_pcCfg->getTemporalLevel0IndexSEIEnabled()) { SEITemporalLevel0Index sei_temporal_level0_index; if (pcSlice->getRapPicFlag()) { m_tl0Idx = 0; m_rapIdx = (m_rapIdx + 1) & 0xFF; } else { m_tl0Idx = (m_tl0Idx + (pcSlice->getTLayer() ? 0 : 1)) & 0xFF; } sei_temporal_level0_index.tl0Idx = m_tl0Idx; sei_temporal_level0_index.rapIdx = m_rapIdx; OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI); /* write the SEI messages */ m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_temporal_level0_index, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); /* insert the SEI message NALUnit before any Slice NALUnits */ AccessUnit::iterator it = find_if(accessUnit.begin(), accessUnit.end(), mem_fun(&NALUnit::isSlice)); accessUnit.insert(it, new NALUnitEBSP(nalu)); } xCalculateAddPSNR( pcPic, pcPic->getPicYuvRec(), accessUnit, dEncTime ); if (digestStr) { if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1) { printf(" [MD5:%s]", digestStr); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2) { printf(" [CRC:%s]", digestStr); } else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3) { printf(" [Checksum:%s]", digestStr); } } #if RATE_CONTROL_LAMBDA_DOMAIN if ( m_pcCfg->getUseRateCtrl() ) { #if !M0036_RC_IMPROVEMENT Double effectivePercentage = m_pcRateCtrl->getRCPic()->getEffectivePercentage(); #endif Double avgQP = m_pcRateCtrl->getRCPic()->calAverageQP(); Double avgLambda = m_pcRateCtrl->getRCPic()->calAverageLambda(); if ( avgLambda < 0.0 ) { avgLambda = lambda; } #if M0036_RC_IMPROVEMENT #if RATE_CONTROL_INTRA m_pcRateCtrl->getRCPic()->updateAfterPicture( actualHeadBits, actualTotalBits, avgQP, avgLambda, pcSlice->getSliceType()); #else m_pcRateCtrl->getRCPic()->updateAfterPicture( actualHeadBits, actualTotalBits, avgQP, avgLambda ); #endif #else m_pcRateCtrl->getRCPic()->updateAfterPicture( actualHeadBits, actualTotalBits, avgQP, avgLambda, effectivePercentage ); #endif m_pcRateCtrl->getRCPic()->addToPictureLsit( m_pcRateCtrl->getPicList() ); m_pcRateCtrl->getRCSeq()->updateAfterPic( actualTotalBits ); if ( pcSlice->getSliceType() != I_SLICE ) { m_pcRateCtrl->getRCGOP()->updateAfterPicture( actualTotalBits ); } else // for intra picture, the estimated bits are used to update the current status in the GOP { m_pcRateCtrl->getRCGOP()->updateAfterPicture( estimatedBits ); } } #else if(m_pcCfg->getUseRateCtrl()) { UInt frameBits = m_vRVM_RP[m_vRVM_RP.size()-1]; m_pcRateCtrl->updataRCFrameStatus((Int)frameBits, pcSlice->getSliceType()); } #endif if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) && ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) && ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() ) || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) ) { TComVUI *vui = pcSlice->getSPS()->getVuiParameters(); TComHRD *hrd = vui->getHrdParameters(); if( hrd->getSubPicCpbParamsPresentFlag() ) { Int i; UInt64 ui64Tmp; UInt uiPrev = 0; UInt numDU = ( pictureTimingSEI.m_numDecodingUnitsMinus1 + 1 ); UInt *pCRD = &pictureTimingSEI.m_duCpbRemovalDelayMinus1[0]; UInt maxDiff = ( hrd->getTickDivisorMinus2() + 2 ) - 1; for( i = 0; i < numDU; i ++ ) { pictureTimingSEI.m_numNalusInDuMinus1[ i ] = ( i == 0 ) ? ( accumNalsDU[ i ] - 1 ) : ( accumNalsDU[ i ] - accumNalsDU[ i - 1] - 1 ); } if( numDU == 1 ) { pCRD[ 0 ] = 0; /* don't care */ } else { pCRD[ numDU - 1 ] = 0;/* by definition */ UInt tmp = 0; UInt accum = 0; for( i = ( numDU - 2 ); i >= 0; i -- ) { ui64Tmp = ( ( ( accumBitsDU[ numDU - 1 ] - accumBitsDU[ i ] ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) ); if( (UInt)ui64Tmp > maxDiff ) { tmp ++; } } uiPrev = 0; UInt flag = 0; for( i = ( numDU - 2 ); i >= 0; i -- ) { flag = 0; ui64Tmp = ( ( ( accumBitsDU[ numDU - 1 ] - accumBitsDU[ i ] ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) ); if( (UInt)ui64Tmp > maxDiff ) { if(uiPrev >= maxDiff - tmp) { ui64Tmp = uiPrev + 1; flag = 1; } else ui64Tmp = maxDiff - tmp + 1; } pCRD[ i ] = (UInt)ui64Tmp - uiPrev - 1; if( (Int)pCRD[ i ] < 0 ) { pCRD[ i ] = 0; } else if (tmp > 0 && flag == 1) { tmp --; } accum += pCRD[ i ] + 1; uiPrev = accum; } } } if( m_pcCfg->getPictureTimingSEIEnabled() ) { { OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer()); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_seiWriter.writeSEImessage(nalu.m_Bitstream, pictureTimingSEI, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit); UInt offsetPosition = m_activeParameterSetSEIPresentInAU + m_bufferingPeriodSEIPresentInAU; // Insert PT SEI after APS and BP SEI AccessUnit::iterator it; for(j = 0, it = accessUnit.begin(); j < seiPositionInAu + offsetPosition; j++) { it++; } accessUnit.insert(it, new NALUnitEBSP(nalu)); m_pictureTimingSEIPresentInAU = true; } if ( m_pcCfg->getScalableNestingSEIEnabled() ) // put picture timing SEI into scalable nesting SEI { OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer()); m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); scalableNestingSEI.m_nestedSEIs.clear(); scalableNestingSEI.m_nestedSEIs.push_back(&pictureTimingSEI); m_seiWriter.writeSEImessage(nalu.m_Bitstream, scalableNestingSEI, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit); UInt offsetPosition = m_activeParameterSetSEIPresentInAU + m_bufferingPeriodSEIPresentInAU + m_pictureTimingSEIPresentInAU + m_nestedBufferingPeriodSEIPresentInAU; // Insert PT SEI after APS and BP SEI AccessUnit::iterator it; for(j = 0, it = accessUnit.begin(); j < seiPositionInAu + offsetPosition; j++) { it++; } accessUnit.insert(it, new NALUnitEBSP(nalu)); m_nestedPictureTimingSEIPresentInAU = true; } } if( m_pcCfg->getDecodingUnitInfoSEIEnabled() && hrd->getSubPicCpbParamsPresentFlag() ) { m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); for( Int i = 0; i < ( pictureTimingSEI.m_numDecodingUnitsMinus1 + 1 ); i ++ ) { OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer()); SEIDecodingUnitInfo tempSEI; tempSEI.m_decodingUnitIdx = i; tempSEI.m_duSptCpbRemovalDelay = pictureTimingSEI.m_duCpbRemovalDelayMinus1[i] + 1; tempSEI.m_dpbOutputDuDelayPresentFlag = false; tempSEI.m_picSptDpbOutputDuDelay = picSptDpbOutputDuDelay; AccessUnit::iterator it; // Insert the first one in the right location, before the first slice if(i == 0) { // Insert before the first slice. m_seiWriter.writeSEImessage(nalu.m_Bitstream, tempSEI, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit); UInt offsetPosition = m_activeParameterSetSEIPresentInAU + m_bufferingPeriodSEIPresentInAU + m_pictureTimingSEIPresentInAU; // Insert DU info SEI after APS, BP and PT SEI for(j = 0, it = accessUnit.begin(); j < seiPositionInAu + offsetPosition; j++) { it++; } accessUnit.insert(it, new NALUnitEBSP(nalu)); } else { Int ctr; // For the second decoding unit onwards we know how many NALUs are present for (ctr = 0, it = accessUnit.begin(); it != accessUnit.end(); it++) { if(ctr == accumNalsDU[ i - 1 ]) { // Insert before the first slice. m_seiWriter.writeSEImessage(nalu.m_Bitstream, tempSEI, pcSlice->getSPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.insert(it, new NALUnitEBSP(nalu)); break; } if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI) { ctr++; } } } } } } xResetNonNestedSEIPresentFlags(); xResetNestedSEIPresentFlags(); pcPic->getPicYuvRec()->copyToPic(pcPicYuvRecOut); pcPic->setReconMark ( true ); #if H_MV TComSlice::markIvRefPicsAsShortTerm( m_refPicSetInterLayer ); std::vector temp; TComSlice::markCurrPic( pcPic ); TComSlice::markIvRefPicsAsUnused ( m_ivPicLists, temp, pcPic->getSlice(0)->getVPS(), m_layerId, pcPic->getPOC() ); #endif m_bFirst = false; m_iNumPicCoded++; m_totalCoded ++; /* logging: insert a newline at end of picture period */ printf("\n"); fflush(stdout); delete[] pcSubstreamsOut; } #if !RATE_CONTROL_LAMBDA_DOMAIN if(m_pcCfg->getUseRateCtrl()) { m_pcRateCtrl->updateRCGOPStatus(); } #endif delete pcBitstreamRedirect; if( accumBitsDU != NULL) delete accumBitsDU; if( accumNalsDU != NULL) delete accumNalsDU; #if !H_MV assert ( m_iNumPicCoded == iNumPicRcvd ); #endif } #if !H_MV Void TEncGOP::printOutSummary(UInt uiNumAllPicCoded) { assert (uiNumAllPicCoded == m_gcAnalyzeAll.getNumPic()); //--CFG_KDY m_gcAnalyzeAll.setFrmRate( m_pcCfg->getFrameRate() ); m_gcAnalyzeI.setFrmRate( m_pcCfg->getFrameRate() ); m_gcAnalyzeP.setFrmRate( m_pcCfg->getFrameRate() ); m_gcAnalyzeB.setFrmRate( m_pcCfg->getFrameRate() ); //-- all printf( "\n\nSUMMARY --------------------------------------------------------\n" ); m_gcAnalyzeAll.printOut('a'); printf( "\n\nI Slices--------------------------------------------------------\n" ); m_gcAnalyzeI.printOut('i'); printf( "\n\nP Slices--------------------------------------------------------\n" ); m_gcAnalyzeP.printOut('p'); printf( "\n\nB Slices--------------------------------------------------------\n" ); m_gcAnalyzeB.printOut('b'); #if _SUMMARY_OUT_ m_gcAnalyzeAll.printSummaryOut(); #endif #if _SUMMARY_PIC_ m_gcAnalyzeI.printSummary('I'); m_gcAnalyzeP.printSummary('P'); m_gcAnalyzeB.printSummary('B'); #endif printf("\nRVM: %.3lf\n" , xCalculateRVM()); } #endif #if H_3D_VSO Void TEncGOP::preLoopFilterPicAll( TComPic* pcPic, Dist64& ruiDist, UInt64& ruiBits ) #else Void TEncGOP::preLoopFilterPicAll( TComPic* pcPic, UInt64& ruiDist, UInt64& ruiBits ) #endif { TComSlice* pcSlice = pcPic->getSlice(pcPic->getCurrSliceIdx()); Bool bCalcDist = false; m_pcLoopFilter->setCfg(m_pcCfg->getLFCrossTileBoundaryFlag()); m_pcLoopFilter->loopFilterPic( pcPic ); m_pcEntropyCoder->setEntropyCoder ( m_pcEncTop->getRDGoOnSbacCoder(), pcSlice ); m_pcEntropyCoder->resetEntropy (); m_pcEntropyCoder->setBitstream ( m_pcBitCounter ); pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseSAO()) { std::vector LFCrossSliceBoundaryFlag(1, true); std::vector sliceStartAddress; sliceStartAddress.push_back(0); sliceStartAddress.push_back(pcPic->getNumCUsInFrame()* pcPic->getNumPartInCU()); pcPic->createNonDBFilterInfo(sliceStartAddress, 0, &LFCrossSliceBoundaryFlag); } if( pcSlice->getSPS()->getUseSAO()) { pcPic->destroyNonDBFilterInfo(); } m_pcEntropyCoder->resetEntropy (); ruiBits += m_pcEntropyCoder->getNumberOfWrittenBits(); if (!bCalcDist) ruiDist = xFindDistortionFrame(pcPic->getPicYuvOrg(), pcPic->getPicYuvRec()); } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== Void TEncGOP::xInitGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut ) { assert( iNumPicRcvd > 0 ); // Exception for the first frame if ( iPOCLast == 0 ) { m_iGopSize = 1; } else m_iGopSize = m_pcCfg->getGOPSize(); assert (m_iGopSize > 0); return; } Void TEncGOP::xGetBuffer( TComList& rcListPic, TComList& rcListPicYuvRecOut, Int iNumPicRcvd, Int iTimeOffset, TComPic*& rpcPic, TComPicYuv*& rpcPicYuvRecOut, Int pocCurr ) { Int i; // Rec. output TComList::iterator iterPicYuvRec = rcListPicYuvRecOut.end(); for ( i = 0; i < iNumPicRcvd - iTimeOffset + 1; i++ ) { iterPicYuvRec--; } rpcPicYuvRecOut = *(iterPicYuvRec); // Current pic. TComList::iterator iterPic = rcListPic.begin(); while (iterPic != rcListPic.end()) { rpcPic = *(iterPic); rpcPic->setCurrSliceIdx(0); if (rpcPic->getPOC() == pocCurr) { break; } iterPic++; } assert (rpcPic->getPOC() == pocCurr); return; } #if H_3D_VSO Dist64 TEncGOP::xFindDistortionFrame (TComPicYuv* pcPic0, TComPicYuv* pcPic1) #else UInt64 TEncGOP::xFindDistortionFrame (TComPicYuv* pcPic0, TComPicYuv* pcPic1) #endif { Int x, y; Pel* pSrc0 = pcPic0 ->getLumaAddr(); Pel* pSrc1 = pcPic1 ->getLumaAddr(); UInt uiShift = 2 * DISTORTION_PRECISION_ADJUSTMENT(g_bitDepthY-8); Int iTemp; Int iStride = pcPic0->getStride(); Int iWidth = pcPic0->getWidth(); Int iHeight = pcPic0->getHeight(); #if H_3D_VSO Dist64 uiTotalDiff = 0; #else UInt64 uiTotalDiff = 0; #endif for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; } pSrc0 += iStride; pSrc1 += iStride; } uiShift = 2 * DISTORTION_PRECISION_ADJUSTMENT(g_bitDepthC-8); iHeight >>= 1; iWidth >>= 1; iStride >>= 1; pSrc0 = pcPic0->getCbAddr(); pSrc1 = pcPic1->getCbAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; } pSrc0 += iStride; pSrc1 += iStride; } pSrc0 = pcPic0->getCrAddr(); pSrc1 = pcPic1->getCrAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; } pSrc0 += iStride; pSrc1 += iStride; } return uiTotalDiff; } #if VERBOSE_RATE static const Char* nalUnitTypeToString(NalUnitType type) { switch (type) { case NAL_UNIT_CODED_SLICE_TRAIL_R: return "TRAIL_R"; case NAL_UNIT_CODED_SLICE_TRAIL_N: return "TRAIL_N"; case NAL_UNIT_CODED_SLICE_TLA_R: return "TLA_R"; case NAL_UNIT_CODED_SLICE_TSA_N: return "TSA_N"; case NAL_UNIT_CODED_SLICE_STSA_R: return "STSA_R"; case NAL_UNIT_CODED_SLICE_STSA_N: return "STSA_N"; case NAL_UNIT_CODED_SLICE_BLA_W_LP: return "BLA_W_LP"; case NAL_UNIT_CODED_SLICE_BLA_W_RADL: return "BLA_W_RADL"; case NAL_UNIT_CODED_SLICE_BLA_N_LP: return "BLA_N_LP"; case NAL_UNIT_CODED_SLICE_IDR_W_RADL: return "IDR_W_RADL"; case NAL_UNIT_CODED_SLICE_IDR_N_LP: return "IDR_N_LP"; case NAL_UNIT_CODED_SLICE_CRA: return "CRA"; case NAL_UNIT_CODED_SLICE_RADL_R: return "RADL_R"; case NAL_UNIT_CODED_SLICE_RASL_R: return "RASL_R"; case NAL_UNIT_VPS: return "VPS"; case NAL_UNIT_SPS: return "SPS"; case NAL_UNIT_PPS: return "PPS"; case NAL_UNIT_ACCESS_UNIT_DELIMITER: return "AUD"; case NAL_UNIT_EOS: return "EOS"; case NAL_UNIT_EOB: return "EOB"; case NAL_UNIT_FILLER_DATA: return "FILLER"; case NAL_UNIT_PREFIX_SEI: return "SEI"; case NAL_UNIT_SUFFIX_SEI: return "SEI"; default: return "UNK"; } } #endif Void TEncGOP::xCalculateAddPSNR( TComPic* pcPic, TComPicYuv* pcPicD, const AccessUnit& accessUnit, Double dEncTime ) { Int x, y; UInt64 uiSSDY = 0; UInt64 uiSSDU = 0; UInt64 uiSSDV = 0; Double dYPSNR = 0.0; Double dUPSNR = 0.0; Double dVPSNR = 0.0; //===== calculate PSNR ===== Pel* pOrg = pcPic ->getPicYuvOrg()->getLumaAddr(); Pel* pRec = pcPicD->getLumaAddr(); Int iStride = pcPicD->getStride(); Int iWidth; Int iHeight; iWidth = pcPicD->getWidth () - m_pcEncTop->getPad(0); iHeight = pcPicD->getHeight() - m_pcEncTop->getPad(1); Int iSize = iWidth*iHeight; for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDY += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } #if H_3D_VSO #if H_3D_VSO_SYNTH_DIST_OUT if ( m_pcRdCost->getUseRenModel() ) { unsigned int maxval = 255 * (1<<(g_uiBitDepth + g_uiBitIncrement -8)); Double fRefValueY = (double) maxval * maxval * iSize; Double fRefValueC = fRefValueY / 4.0; TRenModel* pcRenModel = m_pcEncTop->getEncTop()->getRenModel(); Int64 iDistVSOY, iDistVSOU, iDistVSOV; pcRenModel->getTotalSSE( iDistVSOY, iDistVSOU, iDistVSOV ); dYPSNR = ( iDistVSOY ? 10.0 * log10( fRefValueY / (Double) iDistVSOY ) : 99.99 ); dUPSNR = ( iDistVSOU ? 10.0 * log10( fRefValueC / (Double) iDistVSOU ) : 99.99 ); dVPSNR = ( iDistVSOV ? 10.0 * log10( fRefValueC / (Double) iDistVSOV ) : 99.99 ); } else { #endif #endif iHeight >>= 1; iWidth >>= 1; iStride >>= 1; pOrg = pcPic ->getPicYuvOrg()->getCbAddr(); pRec = pcPicD->getCbAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDU += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } pOrg = pcPic ->getPicYuvOrg()->getCrAddr(); pRec = pcPicD->getCrAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDV += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } Int maxvalY = 255 << (g_bitDepthY-8); Int maxvalC = 255 << (g_bitDepthC-8); Double fRefValueY = (Double) maxvalY * maxvalY * iSize; Double fRefValueC = (Double) maxvalC * maxvalC * iSize / 4.0; dYPSNR = ( uiSSDY ? 10.0 * log10( fRefValueY / (Double)uiSSDY ) : 99.99 ); dUPSNR = ( uiSSDU ? 10.0 * log10( fRefValueC / (Double)uiSSDU ) : 99.99 ); dVPSNR = ( uiSSDV ? 10.0 * log10( fRefValueC / (Double)uiSSDV ) : 99.99 ); #if H_3D_VSO #if H_3D_VSO_SYNTH_DIST_OUT } #endif #endif /* calculate the size of the access unit, excluding: * - any AnnexB contributions (start_code_prefix, zero_byte, etc.,) * - SEI NAL units */ UInt numRBSPBytes = 0; for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++) { UInt numRBSPBytes_nal = UInt((*it)->m_nalUnitData.str().size()); #if VERBOSE_RATE printf("*** %6s numBytesInNALunit: %u\n", nalUnitTypeToString((*it)->m_nalUnitType), numRBSPBytes_nal); #endif if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI) { numRBSPBytes += numRBSPBytes_nal; } } UInt uibits = numRBSPBytes * 8; m_vRVM_RP.push_back( uibits ); //===== add PSNR ===== #if H_MV m_pcEncTop->getAnalyzeAll()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #else m_gcAnalyzeAll.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #endif TComSlice* pcSlice = pcPic->getSlice(0); if (pcSlice->isIntra()) { #if H_MV m_pcEncTop->getAnalyzeI()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #else m_gcAnalyzeI.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #endif } if (pcSlice->isInterP()) { #if H_MV m_pcEncTop->getAnalyzeP()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #else m_gcAnalyzeP.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #endif } if (pcSlice->isInterB()) { #if H_MV m_pcEncTop->getAnalyzeB()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #else m_gcAnalyzeB.addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); #endif } Char c = (pcSlice->isIntra() ? 'I' : pcSlice->isInterP() ? 'P' : 'B'); if (!pcSlice->isReferenced()) c += 32; #if ADAPTIVE_QP_SELECTION #if H_MV printf("Layer %3d POC %4d TId: %1d ( %c-SLICE, nQP %d QP %d ) %10d bits", pcSlice->getLayerId(), pcSlice->getPOC(), pcSlice->getTLayer(), c, pcSlice->getSliceQpBase(), pcSlice->getSliceQp(), uibits ); #else printf("POC %4d TId: %1d ( %c-SLICE, nQP %d QP %d ) %10d bits", pcSlice->getPOC(), pcSlice->getTLayer(), c, pcSlice->getSliceQpBase(), pcSlice->getSliceQp(), uibits ); #endif #else #if H_MV printf("Layer %3d POC %4d TId: %1d ( %c-SLICE, QP %d ) %10d bits", pcSlice->getLayerId(), pcSlice->getPOC()-pcSlice->getLastIDR(), pcSlice->getTLayer(), c, pcSlice->getSliceQp(), uibits ); #else printf("POC %4d TId: %1d ( %c-SLICE, QP %d ) %10d bits", pcSlice->getPOC()-pcSlice->getLastIDR(), pcSlice->getTLayer(), c, pcSlice->getSliceQp(), uibits ); #endif #endif printf(" [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", dYPSNR, dUPSNR, dVPSNR ); printf(" [ET %5.0f ]", dEncTime ); for (Int iRefList = 0; iRefList < 2; iRefList++) { printf(" [L%d ", iRefList); for (Int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx(RefPicList(iRefList)); iRefIndex++) { #if H_MV if( pcSlice->getLayerId() != pcSlice->getRefLayerId( RefPicList(iRefList), iRefIndex ) ) { printf( "V%d ", pcSlice->getRefLayerId( RefPicList(iRefList), iRefIndex ) ); } else { #endif printf ("%d ", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex)-pcSlice->getLastIDR()); #if H_MV } #endif } printf("]"); } } /** Function for deciding the nal_unit_type. * \param pocCurr POC of the current picture * \returns the nal unit type of the picture * This function checks the configuration and returns the appropriate nal_unit_type for the picture. */ NalUnitType TEncGOP::getNalUnitType(Int pocCurr, Int lastIDR) { if (pocCurr == 0) { return NAL_UNIT_CODED_SLICE_IDR_W_RADL; } if (pocCurr % m_pcCfg->getIntraPeriod() == 0) { if (m_pcCfg->getDecodingRefreshType() == 1) { return NAL_UNIT_CODED_SLICE_CRA; } else if (m_pcCfg->getDecodingRefreshType() == 2) { return NAL_UNIT_CODED_SLICE_IDR_W_RADL; } } if(m_pocCRA>0) { if(pocCurr0) { if (pocCurr < lastIDR) { return NAL_UNIT_CODED_SLICE_RADL_R; } } return NAL_UNIT_CODED_SLICE_TRAIL_R; } Double TEncGOP::xCalculateRVM() { Double dRVM = 0; if( m_pcCfg->getGOPSize() == 1 && m_pcCfg->getIntraPeriod() != 1 && m_pcCfg->getFramesToBeEncoded() > RVM_VCEGAM10_M * 2 ) { // calculate RVM only for lowdelay configurations std::vector vRL , vB; size_t N = m_vRVM_RP.size(); vRL.resize( N ); vB.resize( N ); Int i; Double dRavg = 0 , dBavg = 0; vB[RVM_VCEGAM10_M] = 0; for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ ) { vRL[i] = 0; for( Int j = i - RVM_VCEGAM10_M ; j <= i + RVM_VCEGAM10_M - 1 ; j++ ) vRL[i] += m_vRVM_RP[j]; vRL[i] /= ( 2 * RVM_VCEGAM10_M ); vB[i] = vB[i-1] + m_vRVM_RP[i] - vRL[i]; dRavg += m_vRVM_RP[i]; dBavg += vB[i]; } dRavg /= ( N - 2 * RVM_VCEGAM10_M ); dBavg /= ( N - 2 * RVM_VCEGAM10_M ); Double dSigamB = 0; for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ ) { Double tmp = vB[i] - dBavg; dSigamB += tmp * tmp; } dSigamB = sqrt( dSigamB / ( N - 2 * RVM_VCEGAM10_M ) ); Double f = sqrt( 12.0 * ( RVM_VCEGAM10_M - 1 ) / ( RVM_VCEGAM10_M + 1 ) ); dRVM = dSigamB / dRavg * f; } return( dRVM ); } /** Attaches the input bitstream to the stream in the output NAL unit Updates rNalu to contain concatenated bitstream. rpcBitstreamRedirect is cleared at the end of this function call. * \param codedSliceData contains the coded slice data (bitstream) to be concatenated to rNalu * \param rNalu target NAL unit */ Void TEncGOP::xAttachSliceDataToNalUnit (OutputNALUnit& rNalu, TComOutputBitstream*& codedSliceData) { // Byte-align rNalu.m_Bitstream.writeByteAlignment(); // Slice header byte-alignment // Perform bitstream concatenation if (codedSliceData->getNumberOfWrittenBits() > 0) { rNalu.m_Bitstream.addSubstream(codedSliceData); } m_pcEntropyCoder->setBitstream(&rNalu.m_Bitstream); codedSliceData->clear(); } // Function will arrange the long-term pictures in the decreasing order of poc_lsb_lt, // and among the pictures with the same lsb, it arranges them in increasing delta_poc_msb_cycle_lt value Void TEncGOP::arrangeLongtermPicturesInRPS(TComSlice *pcSlice, TComList& rcListPic) { TComReferencePictureSet *rps = pcSlice->getRPS(); if(!rps->getNumberOfLongtermPictures()) { return; } // Arrange long-term reference pictures in the correct order of LSB and MSB, // and assign values for pocLSBLT and MSB present flag Int longtermPicsPoc[MAX_NUM_REF_PICS], longtermPicsLSB[MAX_NUM_REF_PICS], indices[MAX_NUM_REF_PICS]; Int longtermPicsMSB[MAX_NUM_REF_PICS]; Bool mSBPresentFlag[MAX_NUM_REF_PICS]; ::memset(longtermPicsPoc, 0, sizeof(longtermPicsPoc)); // Store POC values of LTRP ::memset(longtermPicsLSB, 0, sizeof(longtermPicsLSB)); // Store POC LSB values of LTRP ::memset(longtermPicsMSB, 0, sizeof(longtermPicsMSB)); // Store POC LSB values of LTRP ::memset(indices , 0, sizeof(indices)); // Indices to aid in tracking sorted LTRPs ::memset(mSBPresentFlag , 0, sizeof(mSBPresentFlag)); // Indicate if MSB needs to be present // Get the long-term reference pictures Int offset = rps->getNumberOfNegativePictures() + rps->getNumberOfPositivePictures(); Int i, ctr = 0; Int maxPicOrderCntLSB = 1 << pcSlice->getSPS()->getBitsForPOC(); for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++) { longtermPicsPoc[ctr] = rps->getPOC(i); // LTRP POC longtermPicsLSB[ctr] = getLSB(longtermPicsPoc[ctr], maxPicOrderCntLSB); // LTRP POC LSB indices[ctr] = i; longtermPicsMSB[ctr] = longtermPicsPoc[ctr] - longtermPicsLSB[ctr]; } Int numLongPics = rps->getNumberOfLongtermPictures(); assert(ctr == numLongPics); // Arrange pictures in decreasing order of MSB; for(i = 0; i < numLongPics; i++) { for(Int j = 0; j < numLongPics - 1; j++) { if(longtermPicsMSB[j] < longtermPicsMSB[j+1]) { std::swap(longtermPicsPoc[j], longtermPicsPoc[j+1]); std::swap(longtermPicsLSB[j], longtermPicsLSB[j+1]); std::swap(longtermPicsMSB[j], longtermPicsMSB[j+1]); std::swap(indices[j] , indices[j+1] ); } } } for(i = 0; i < numLongPics; i++) { // Check if MSB present flag should be enabled. // Check if the buffer contains any pictures that have the same LSB. TComList::iterator iterPic = rcListPic.begin(); TComPic* pcPic; while ( iterPic != rcListPic.end() ) { pcPic = *iterPic; if( (getLSB(pcPic->getPOC(), maxPicOrderCntLSB) == longtermPicsLSB[i]) && // Same LSB (pcPic->getSlice(0)->isReferenced()) && // Reference picture (pcPic->getPOC() != longtermPicsPoc[i]) ) // Not the LTRP itself { mSBPresentFlag[i] = true; break; } iterPic++; } } // tempArray for usedByCurr flag Bool tempArray[MAX_NUM_REF_PICS]; ::memset(tempArray, 0, sizeof(tempArray)); for(i = 0; i < numLongPics; i++) { tempArray[i] = rps->getUsed(indices[i]); } // Now write the final values; ctr = 0; Int currMSB = 0, currLSB = 0; // currPicPoc = currMSB + currLSB currLSB = getLSB(pcSlice->getPOC(), maxPicOrderCntLSB); currMSB = pcSlice->getPOC() - currLSB; for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++) { rps->setPOC (i, longtermPicsPoc[ctr]); rps->setDeltaPOC (i, - pcSlice->getPOC() + longtermPicsPoc[ctr]); rps->setUsed (i, tempArray[ctr]); rps->setPocLSBLT (i, longtermPicsLSB[ctr]); rps->setDeltaPocMSBCycleLT (i, (currMSB - (longtermPicsPoc[ctr] - longtermPicsLSB[ctr])) / maxPicOrderCntLSB); rps->setDeltaPocMSBPresentFlag(i, mSBPresentFlag[ctr]); assert(rps->getDeltaPocMSBCycleLT(i) >= 0); // Non-negative value } for(i = rps->getNumberOfPictures() - 1, ctr = 1; i >= offset; i--, ctr++) { for(Int j = rps->getNumberOfPictures() - 1 - ctr; j >= offset; j--) { // Here at the encoder we know that we have set the full POC value for the LTRPs, hence we // don't have to check the MSB present flag values for this constraint. assert( rps->getPOC(i) != rps->getPOC(j) ); // If assert fails, LTRP entry repeated in RPS!!! } } } /** Function for finding the position to insert the first of APS and non-nested BP, PT, DU info SEI messages. * \param accessUnit Access Unit of the current picture * This function finds the position to insert the first of APS and non-nested BP, PT, DU info SEI messages. */ Int TEncGOP::xGetFirstSeiLocation(AccessUnit &accessUnit) { // Find the location of the first SEI message AccessUnit::iterator it; Int seiStartPos = 0; for(it = accessUnit.begin(); it != accessUnit.end(); it++, seiStartPos++) { if ((*it)->isSei() || (*it)->isVcl()) { break; } } // assert(it != accessUnit.end()); // Triggers with some legit configurations return seiStartPos; } Void TEncGOP::dblMetric( TComPic* pcPic, UInt uiNumSlices ) { TComPicYuv* pcPicYuvRec = pcPic->getPicYuvRec(); Pel* Rec = pcPicYuvRec->getLumaAddr( 0 ); Pel* tempRec = Rec; Int stride = pcPicYuvRec->getStride(); UInt log2maxTB = pcPic->getSlice(0)->getSPS()->getQuadtreeTULog2MaxSize(); UInt maxTBsize = (1<getWidth(); const UInt picHeight = pcPicYuvRec->getHeight(); const UInt noCol = (picWidth>>log2maxTB); const UInt noRows = (picHeight>>log2maxTB); assert(noCol > 1); assert(noRows > 1); UInt64 *colSAD = (UInt64*)malloc(noCol*sizeof(UInt64)); UInt64 *rowSAD = (UInt64*)malloc(noRows*sizeof(UInt64)); UInt colIdx = 0; UInt rowIdx = 0; Pel p0, p1, p2, q0, q1, q2; Int qp = pcPic->getSlice(0)->getSliceQp(); Int bitdepthScale = 1 << (g_bitDepthY-8); Int beta = TComLoopFilter::getBeta( qp ) * bitdepthScale; const Int thr2 = (beta>>2); const Int thr1 = 2*bitdepthScale; UInt a = 0; memset(colSAD, 0, noCol*sizeof(UInt64)); memset(rowSAD, 0, noRows*sizeof(UInt64)); if (maxTBsize > minBlockArtSize) { // Analyze vertical artifact edges for(Int c = maxTBsize; c < picWidth; c += maxTBsize) { for(Int r = 0; r < picHeight; r++) { p2 = Rec[c-3]; p1 = Rec[c-2]; p0 = Rec[c-1]; q0 = Rec[c]; q1 = Rec[c+1]; q2 = Rec[c+2]; a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1); if ( thr1 < a && a < thr2) { colSAD[colIdx] += abs(p0 - q0); } Rec += stride; } colIdx++; Rec = tempRec; } // Analyze horizontal artifact edges for(Int r = maxTBsize; r < picHeight; r += maxTBsize) { for(Int c = 0; c < picWidth; c++) { p2 = Rec[c + (r-3)*stride]; p1 = Rec[c + (r-2)*stride]; p0 = Rec[c + (r-1)*stride]; q0 = Rec[c + r*stride]; q1 = Rec[c + (r+1)*stride]; q2 = Rec[c + (r+2)*stride]; a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1); if (thr1 < a && a < thr2) { rowSAD[rowIdx] += abs(p0 - q0); } } rowIdx++; } } UInt64 colSADsum = 0; UInt64 rowSADsum = 0; for(Int c = 0; c < noCol-1; c++) { colSADsum += colSAD[c]; } for(Int r = 0; r < noRows-1; r++) { rowSADsum += rowSAD[r]; } colSADsum <<= 10; rowSADsum <<= 10; colSADsum /= (noCol-1); colSADsum /= picHeight; rowSADsum /= (noRows-1); rowSADsum /= picWidth; UInt64 avgSAD = ((colSADsum + rowSADsum)>>1); avgSAD >>= (g_bitDepthY-8); if ( avgSAD > 2048 ) { avgSAD >>= 9; Int offset = Clip3(2,6,(Int)avgSAD); for (Int i=0; igetSlice(i)->setDeblockingFilterOverrideFlag(true); pcPic->getSlice(i)->setDeblockingFilterDisable(false); pcPic->getSlice(i)->setDeblockingFilterBetaOffsetDiv2( offset ); pcPic->getSlice(i)->setDeblockingFilterTcOffsetDiv2( offset ); } } else { for (Int i=0; igetSlice(i)->setDeblockingFilterOverrideFlag(false); pcPic->getSlice(i)->setDeblockingFilterDisable( pcPic->getSlice(i)->getPPS()->getPicDisableDeblockingFilterFlag() ); pcPic->getSlice(i)->setDeblockingFilterBetaOffsetDiv2( pcPic->getSlice(i)->getPPS()->getDeblockingFilterBetaOffsetDiv2() ); pcPic->getSlice(i)->setDeblockingFilterTcOffsetDiv2( pcPic->getSlice(i)->getPPS()->getDeblockingFilterTcOffsetDiv2() ); } } free(colSAD); free(rowSAD); } #if H_MV Void TEncGOP::xSetRefPicListModificationsMv( TComSlice* pcSlice, UInt iGOPid ) { Int layer = pcSlice->getLayerIdInVps( ); if( pcSlice->getSliceType() == I_SLICE || !(pcSlice->getPPS()->getListsModificationPresentFlag()) || pcSlice->getNumActiveRefLayerPics() == 0 ) { return; } // analyze inter-view modifications GOPEntry ge = m_pcCfg->getGOPEntry( (pcSlice->getRapPicFlag() && ( layer > 0) ) ? MAX_GOP : iGOPid ); assert( ge.m_numActiveRefLayerPics == pcSlice->getNumActiveRefLayerPics() ); Int maxRefListSize = pcSlice->getNumRpsCurrTempList(); Int numTemporalRefs = maxRefListSize - pcSlice->getNumActiveRefLayerPics(); for (Int li = 0; li < 2; li ++) // Loop over lists L0 and L1 { // set inter-view modifications Int tempList[16]; for( Int k = 0; k < 16; k++ ) { tempList[ k ] = -1; } Bool isModified = false; if ( maxRefListSize > 1 ) { for( Int k = 0, orgIdx = numTemporalRefs; k < ge.m_numActiveRefLayerPics; k++, orgIdx++ ) { Int targetIdx = ge.m_interViewRefPosL[ li ][ k ]; isModified = ( targetIdx != orgIdx ) && ( targetIdx >= 0 ); if ( isModified ) { assert( tempList[ targetIdx ] == -1 ); // Assert when two inter layer reference pictures are sorted to the same position tempList[ targetIdx ] = orgIdx; } } } TComRefPicListModification* refPicListModification = pcSlice->getRefPicListModification(); refPicListModification->setRefPicListModificationFlagL( li, isModified ); if( isModified ) { Int temporalRefIdx = 0; for( Int i = 0; i < pcSlice->getNumRefIdx( ( li == 0 ) ? REF_PIC_LIST_0 : REF_PIC_LIST_1 ); i++ ) { if( tempList[i] >= 0 ) { refPicListModification->setRefPicSetIdxL( li, i, tempList[i] ); } else { refPicListModification->setRefPicSetIdxL( li, i, temporalRefIdx ); temporalRefIdx++; } } } } } #endif //! \}