/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2013, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TComPrediction.cpp \brief prediction class */ #include #include "TComPrediction.h" //! \ingroup TLibCommon //! \{ // ==================================================================================================================== // Constructor / destructor / initialize // ==================================================================================================================== TComPrediction::TComPrediction() : m_pLumaRecBuffer(0) , m_iLumaRecStride(0) { m_piYuvExt = NULL; #if H_3D_VSP m_pDepthBlock = (Int*) malloc(MAX_NUM_SPU_W*MAX_NUM_SPU_W*sizeof(Int)); if (m_pDepthBlock == NULL) printf("ERROR: UKTGHU, No memory allocated.\n"); #endif } TComPrediction::~TComPrediction() { #if H_3D_VSP if (m_pDepthBlock != NULL) free(m_pDepthBlock); m_cYuvDepthOnVsp.destroy(); #endif delete[] m_piYuvExt; m_acYuvPred[0].destroy(); m_acYuvPred[1].destroy(); m_cYuvPredTemp.destroy(); #if H_3D_ARP m_acYuvPredBase[0].destroy(); m_acYuvPredBase[1].destroy(); #endif if( m_pLumaRecBuffer ) { delete [] m_pLumaRecBuffer; } Int i, j; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { m_filteredBlock[i][j].destroy(); } m_filteredBlockTmp[i].destroy(); } } Void TComPrediction::initTempBuff() { if( m_piYuvExt == NULL ) { Int extWidth = MAX_CU_SIZE + 16; Int extHeight = MAX_CU_SIZE + 1; Int i, j; for (i = 0; i < 4; i++) { m_filteredBlockTmp[i].create(extWidth, extHeight + 7); for (j = 0; j < 4; j++) { m_filteredBlock[i][j].create(extWidth, extHeight); } } m_iYuvExtHeight = ((MAX_CU_SIZE + 2) << 4); m_iYuvExtStride = ((MAX_CU_SIZE + 8) << 4); m_piYuvExt = new Int[ m_iYuvExtStride * m_iYuvExtHeight ]; // new structure m_acYuvPred[0] .create( MAX_CU_SIZE, MAX_CU_SIZE ); m_acYuvPred[1] .create( MAX_CU_SIZE, MAX_CU_SIZE ); m_cYuvPredTemp.create( MAX_CU_SIZE, MAX_CU_SIZE ); #if H_3D_ARP m_acYuvPredBase[0] .create( g_uiMaxCUWidth, g_uiMaxCUHeight ); m_acYuvPredBase[1] .create( g_uiMaxCUWidth, g_uiMaxCUHeight ); #endif #if H_3D_VSP m_cYuvDepthOnVsp.create( g_uiMaxCUWidth, g_uiMaxCUHeight ); #endif } if (m_iLumaRecStride != (MAX_CU_SIZE>>1) + 1) { m_iLumaRecStride = (MAX_CU_SIZE>>1) + 1; if (!m_pLumaRecBuffer) { m_pLumaRecBuffer = new Pel[ m_iLumaRecStride * m_iLumaRecStride ]; } } #if H_3D_IC m_uiaShift[0] = 0; for( Int i = 1; i < 64; i++ ) { m_uiaShift[i] = ( (1 << 15) + i/2 ) / i; } #endif } // ==================================================================================================================== // Public member functions // ==================================================================================================================== // Function for calculating DC value of the reference samples used in Intra prediction Pel TComPrediction::predIntraGetPredValDC( Int* pSrc, Int iSrcStride, UInt iWidth, UInt iHeight, Bool bAbove, Bool bLeft ) { assert(iWidth > 0 && iHeight > 0); Int iInd, iSum = 0; Pel pDcVal; if (bAbove) { for (iInd = 0;iInd < iWidth;iInd++) { iSum += pSrc[iInd-iSrcStride]; } } if (bLeft) { for (iInd = 0;iInd < iHeight;iInd++) { iSum += pSrc[iInd*iSrcStride-1]; } } if (bAbove && bLeft) { pDcVal = (iSum + iWidth) / (iWidth + iHeight); } else if (bAbove) { pDcVal = (iSum + iWidth/2) / iWidth; } else if (bLeft) { pDcVal = (iSum + iHeight/2) / iHeight; } else { pDcVal = pSrc[-1]; // Default DC value already calculated and placed in the prediction array if no neighbors are available } return pDcVal; } // Function for deriving the angular Intra predictions /** Function for deriving the simplified angular intra predictions. * \param pSrc pointer to reconstructed sample array * \param srcStride the stride of the reconstructed sample array * \param rpDst reference to pointer for the prediction sample array * \param dstStride the stride of the prediction sample array * \param width the width of the block * \param height the height of the block * \param dirMode the intra prediction mode index * \param blkAboveAvailable boolean indication if the block above is available * \param blkLeftAvailable boolean indication if the block to the left is available * * This function derives the prediction samples for the angular mode based on the prediction direction indicated by * the prediction mode index. The prediction direction is given by the displacement of the bottom row of the block and * the reference row above the block in the case of vertical prediction or displacement of the rightmost column * of the block and reference column left from the block in the case of the horizontal prediction. The displacement * is signalled at 1/32 pixel accuracy. When projection of the predicted pixel falls inbetween reference samples, * the predicted value for the pixel is linearly interpolated from the reference samples. All reference samples are taken * from the extended main reference. */ Void TComPrediction::xPredIntraAng(Int bitDepth, Int* pSrc, Int srcStride, Pel*& rpDst, Int dstStride, UInt width, UInt height, UInt dirMode, Bool blkAboveAvailable, Bool blkLeftAvailable, Bool bFilter ) { Int k,l; Int blkSize = width; Pel* pDst = rpDst; // Map the mode index to main prediction direction and angle assert( dirMode > 0 ); //no planar Bool modeDC = dirMode < 2; Bool modeHor = !modeDC && (dirMode < 18); Bool modeVer = !modeDC && !modeHor; Int intraPredAngle = modeVer ? (Int)dirMode - VER_IDX : modeHor ? -((Int)dirMode - HOR_IDX) : 0; Int absAng = abs(intraPredAngle); Int signAng = intraPredAngle < 0 ? -1 : 1; // Set bitshifts and scale the angle parameter to block size Int angTable[9] = {0, 2, 5, 9, 13, 17, 21, 26, 32}; Int invAngTable[9] = {0, 4096, 1638, 910, 630, 482, 390, 315, 256}; // (256 * 32) / Angle Int invAngle = invAngTable[absAng]; absAng = angTable[absAng]; intraPredAngle = signAng * absAng; // Do the DC prediction if (modeDC) { Pel dcval = predIntraGetPredValDC(pSrc, srcStride, width, height, blkAboveAvailable, blkLeftAvailable); for (k=0;kblkSize*intraPredAngle>>5; k--) { invAngleSum += invAngle; refMain[k] = refSide[invAngleSum>>8]; } } else { for (k=0;k<2*blkSize+1;k++) { refAbove[k] = pSrc[k-srcStride-1]; } for (k=0;k<2*blkSize+1;k++) { refLeft[k] = pSrc[(k-1)*srcStride-1]; } refMain = modeVer ? refAbove : refLeft; refSide = modeVer ? refLeft : refAbove; } if (intraPredAngle == 0) { for (k=0;k> 1) ); } } } else { Int deltaPos=0; Int deltaInt; Int deltaFract; Int refMainIndex; for (k=0;k> 5; deltaFract = deltaPos & (32 - 1); if (deltaFract) { // Do linear filtering for (l=0;l> 5 ); } } else { // Just copy the integer samples for (l=0;l= 0 ); // 4x 4 assert( g_aucConvertToBit[ iWidth ] <= 5 ); // 128x128 assert( iWidth == iHeight ); ptrSrc = pcTComPattern->getPredictorPtr( uiDirMode, g_aucConvertToBit[ iWidth ] + 2, m_piYuvExt ); // get starting pixel in block Int sw = 2 * iWidth + 1; // Create the prediction if ( uiDirMode == PLANAR_IDX ) { xPredIntraPlanar( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight ); } else { if ( (iWidth > 16) || (iHeight > 16) ) { xPredIntraAng(g_bitDepthY, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, false ); } else { xPredIntraAng(g_bitDepthY, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, true ); if( (uiDirMode == DC_IDX ) && bAbove && bLeft ) { xDCPredFiltering( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight); } } } } // Angular chroma Void TComPrediction::predIntraChromaAng( Int* piSrc, UInt uiDirMode, Pel* piPred, UInt uiStride, Int iWidth, Int iHeight, Bool bAbove, Bool bLeft ) { Pel *pDst = piPred; Int *ptrSrc = piSrc; // get starting pixel in block Int sw = 2 * iWidth + 1; if ( uiDirMode == PLANAR_IDX ) { xPredIntraPlanar( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight ); } else { // Create the prediction xPredIntraAng(g_bitDepthC, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, false ); } } #if H_3D_DIM Void TComPrediction::predIntraLumaDepth( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiIntraMode, Pel* piPred, UInt uiStride, Int iWidth, Int iHeight, Bool bFastEnc ) { assert( iWidth == iHeight ); assert( iWidth >= DIM_MIN_SIZE && iWidth <= DIM_MAX_SIZE ); assert( isDimMode( uiIntraMode ) ); UInt dimType = getDimType ( uiIntraMode ); Bool dimDeltaDC = isDimDeltaDC( uiIntraMode ); Bool isDmmMode = (dimType < DMM_NUM_TYPE); Bool isRbcMode = (dimType == RBC_IDX); Bool* biSegPattern = NULL; UInt patternStride = 0; // get partiton #if H_3D_DIM_DMM TComWedgelet* dmmSegmentation = NULL; if( isDmmMode ) { switch( dimType ) { case( DMM1_IDX ): { dmmSegmentation = &(g_dmmWedgeLists[ g_aucConvertToBit[iWidth] ][ pcCU->getDmmWedgeTabIdx( dimType, uiAbsPartIdx ) ]); } break; case( DMM3_IDX ): { UInt uiTabIdx = 0; if( bFastEnc ) { uiTabIdx = pcCU->getDmmWedgeTabIdx( dimType, uiAbsPartIdx ); } else { uiTabIdx = xPredWedgeFromTex( pcCU, uiAbsPartIdx, iWidth, iHeight, pcCU->getDmm3IntraTabIdx( uiAbsPartIdx ) ); pcCU->setDmmWedgeTabIdxSubParts( uiTabIdx, dimType, uiAbsPartIdx, (pcCU->getDepth(0) + (pcCU->getPartitionSize(0) == SIZE_2Nx2N ? 0 : 1)) ); } dmmSegmentation = &(g_dmmWedgeLists[ g_aucConvertToBit[iWidth] ][ uiTabIdx ]); } break; case( DMM4_IDX ): { dmmSegmentation = new TComWedgelet( iWidth, iHeight ); xPredContourFromTex( pcCU, uiAbsPartIdx, iWidth, iHeight, dmmSegmentation ); } break; default: assert(0); } assert( dmmSegmentation ); biSegPattern = dmmSegmentation->getPattern(); patternStride = dmmSegmentation->getStride (); } #endif #if H_3D_DIM_RBC if( isRbcMode ) { biSegPattern = pcCU->getEdgePartition( uiAbsPartIdx ); patternStride = iWidth; } #endif // get predicted partition values assert( biSegPattern ); Int* piMask = NULL; #if QC_DIM_DELTADC_UNIFY_F0132 || HHI_DIM_PREDSAMP_FIX_F0171 piMask = pcCU->getPattern()->getAdiOrgBuf( iWidth, iHeight, m_piYuvExt ); // no filtering #else if( isDmmMode ) piMask = pcCU->getPattern()->getAdiOrgBuf( iWidth, iHeight, m_piYuvExt ); // no filtering for DMM else piMask = pcCU->getPattern()->getPredictorPtr( 0, g_aucConvertToBit[ iWidth ] + 2, m_piYuvExt ); #endif assert( piMask ); Int maskStride = 2*iWidth + 1; Int* ptrSrc = piMask+maskStride+1; Pel predDC1 = 0; Pel predDC2 = 0; xPredBiSegDCs( ptrSrc, maskStride, biSegPattern, patternStride, predDC1, predDC2 ); // set segment values with deltaDC offsets Pel segDC1 = 0; Pel segDC2 = 0; if( dimDeltaDC ) { Pel deltaDC1 = pcCU->getDimDeltaDC( dimType, 0, uiAbsPartIdx ); Pel deltaDC2 = pcCU->getDimDeltaDC( dimType, 1, uiAbsPartIdx ); #if H_3D_DIM_DMM #if QC_DIM_DELTADC_UNIFY_F0132 if( isDmmMode || isRbcMode) #else if( isDmmMode ) #endif { #if H_3D_DIM_DLT segDC1 = pcCU->getSlice()->getVPS()->idx2DepthValue( pcCU->getSlice()->getLayerIdInVps(), pcCU->getSlice()->getVPS()->depthValue2idx( pcCU->getSlice()->getLayerIdInVps(), predDC1 ) + deltaDC1 ); segDC2 = pcCU->getSlice()->getVPS()->idx2DepthValue( pcCU->getSlice()->getLayerIdInVps(), pcCU->getSlice()->getVPS()->depthValue2idx( pcCU->getSlice()->getLayerIdInVps(), predDC2 ) + deltaDC2 ); #else segDC1 = ClipY( predDC1 + deltaDC1 ); segDC2 = ClipY( predDC2 + deltaDC2 ); #endif } #endif #if H_3D_DIM_RBC && !QC_DIM_DELTADC_UNIFY_F0132 if( isRbcMode ) { xDeltaDCQuantScaleUp( pcCU, deltaDC1 ); xDeltaDCQuantScaleUp( pcCU, deltaDC2 ); segDC1 = ClipY( predDC1 + deltaDC1 ); segDC2 = ClipY( predDC2 + deltaDC2 ); } #endif } else { segDC1 = predDC1; segDC2 = predDC2; } // set prediction signal Pel* pDst = piPred; xAssignBiSegDCs( pDst, uiStride, biSegPattern, patternStride, segDC1, segDC2 ); #if H_3D_DIM_DMM if( dimType == DMM4_IDX ) { dmmSegmentation->destroy(); delete dmmSegmentation; } #endif } #endif /** Function for checking identical motion. * \param TComDataCU* pcCU * \param UInt PartAddr */ Bool TComPrediction::xCheckIdenticalMotion ( TComDataCU* pcCU, UInt PartAddr ) { if( pcCU->getSlice()->isInterB() && !pcCU->getSlice()->getPPS()->getWPBiPred() ) { if( pcCU->getCUMvField(REF_PIC_LIST_0)->getRefIdx(PartAddr) >= 0 && pcCU->getCUMvField(REF_PIC_LIST_1)->getRefIdx(PartAddr) >= 0) { Int RefPOCL0 = pcCU->getSlice()->getRefPic(REF_PIC_LIST_0, pcCU->getCUMvField(REF_PIC_LIST_0)->getRefIdx(PartAddr))->getPOC(); Int RefPOCL1 = pcCU->getSlice()->getRefPic(REF_PIC_LIST_1, pcCU->getCUMvField(REF_PIC_LIST_1)->getRefIdx(PartAddr))->getPOC(); if(RefPOCL0 == RefPOCL1 && pcCU->getCUMvField(REF_PIC_LIST_0)->getMv(PartAddr) == pcCU->getCUMvField(REF_PIC_LIST_1)->getMv(PartAddr)) { return true; } } } return false; } Void TComPrediction::motionCompensation ( TComDataCU* pcCU, TComYuv* pcYuvPred, RefPicList eRefPicList, Int iPartIdx ) { Int iWidth; Int iHeight; UInt uiPartAddr; if ( iPartIdx >= 0 ) { pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iWidth, iHeight ); #if H_3D_VSP if ( pcCU->getVSPFlag(uiPartAddr) == 0) { #endif if ( eRefPicList != REF_PIC_LIST_X ) { if( pcCU->getSlice()->getPPS()->getUseWP()) { xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred, true ); } else { xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred ); } if ( pcCU->getSlice()->getPPS()->getUseWP() ) { xWeightedPredictionUni( pcCU, pcYuvPred, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred ); } } else { if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) ) { xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred ); } else { xPredInterBi (pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred ); } } #if H_3D_VSP } else { if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) ) { xPredInterUniVSP( pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred ); } else { xPredInterBiVSP ( pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred ); } } #endif return; } for ( iPartIdx = 0; iPartIdx < pcCU->getNumPartInter(); iPartIdx++ ) { pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iWidth, iHeight ); #if H_3D_VSP if ( pcCU->getVSPFlag(uiPartAddr) == 0 ) { #endif if ( eRefPicList != REF_PIC_LIST_X ) { if( pcCU->getSlice()->getPPS()->getUseWP()) { xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred, true ); } else { xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred ); } if ( pcCU->getSlice()->getPPS()->getUseWP() ) { xWeightedPredictionUni( pcCU, pcYuvPred, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred ); } } else { if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) ) { xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred ); } else { xPredInterBi (pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred ); } } #if H_3D_VSP } else { if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) ) { xPredInterUniVSP( pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred ); } else { xPredInterBiVSP ( pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred ); } } #endif } return; } Void TComPrediction::xPredInterUni ( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, RefPicList eRefPicList, TComYuv*& rpcYuvPred, Bool bi ) { Int iRefIdx = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr ); assert (iRefIdx >= 0); TComMv cMv = pcCU->getCUMvField( eRefPicList )->getMv( uiPartAddr ); pcCU->clipMv(cMv); #if H_3D_ARP if( pcCU->getARPW( uiPartAddr ) > 0 && pcCU->getPartitionSize(uiPartAddr)==SIZE_2Nx2N && pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPOC()!= pcCU->getSlice()->getPOC() ) { xPredInterUniARP( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, rpcYuvPred, bi ); } else { #endif #if H_3D_IC Bool bICFlag = pcCU->getICFlag( uiPartAddr ) && ( pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getViewIndex() != pcCU->getSlice()->getViewIndex() ); xPredInterLumaBlk ( pcCU, pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(), uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi #if H_3D_ARP , false #endif , bICFlag ); bICFlag = bICFlag && (iWidth > 8); xPredInterChromaBlk( pcCU, pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(), uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi #if H_3D_ARP , false #endif , bICFlag ); #else xPredInterLumaBlk ( pcCU, pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(), uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi ); xPredInterChromaBlk( pcCU, pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(), uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi ); #endif #if H_3D_ARP } #endif } #if H_3D_VSP Void TComPrediction::xPredInterUniVSP( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, RefPicList eRefPicList, TComYuv*& rpcYuvPred, Bool bi ) { // Get depth reference Int depthRefViewIdx = pcCU->getDvInfo(uiPartAddr).m_aVIdxCan; #if H_3D_FCO_VSP_DONBDV_E0163 TComPic* pRefPicBaseDepth = 0; Bool bIsCurrDepthCoded = false; pRefPicBaseDepth = pcCU->getSlice()->getIvPic( true, pcCU->getSlice()->getViewIndex() ); if ( pRefPicBaseDepth->getPicYuvRec() != NULL ) { bIsCurrDepthCoded = true; } else { pRefPicBaseDepth = pcCU->getSlice()->getIvPic (true, depthRefViewIdx ); } #else TComPic* pRefPicBaseDepth = pcCU->getSlice()->getIvPic (true, depthRefViewIdx ); #endif assert(pRefPicBaseDepth != NULL); TComPicYuv* pcBaseViewDepthPicYuv = pRefPicBaseDepth->getPicYuvRec(); assert(pcBaseViewDepthPicYuv != NULL); // Get texture reference Int iRefIdx = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr ); assert(iRefIdx >= 0); TComPic* pRefPicBaseTxt = pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx ); TComPicYuv* pcBaseViewTxtPicYuv = pRefPicBaseTxt->getPicYuvRec(); assert(pcBaseViewTxtPicYuv != NULL); // Initialize LUT according to the reference viewIdx Int txtRefViewIdx = pRefPicBaseTxt->getViewIndex(); Int* pShiftLUT = pcCU->getSlice()->getDepthToDisparityB( txtRefViewIdx ); assert( txtRefViewIdx < pcCU->getSlice()->getViewIndex() ); // Do compensation TComMv cDv = pcCU->getDvInfo(uiPartAddr).m_acNBDV; pcCU->clipMv(cDv); #if H_3D_FCO_VSP_DONBDV_E0163 if ( bIsCurrDepthCoded ) { cDv.setZero(); } #endif // fetch virtual depth map pcBaseViewDepthPicYuv->extendPicBorder(); xGetVirtualDepth( pcCU, pcBaseViewDepthPicYuv, &cDv, uiPartAddr, iWidth, iHeight, &m_cYuvDepthOnVsp ); // sub-PU based compensation xPredInterLumaBlkFromDM ( pcCU, pcBaseViewTxtPicYuv, &m_cYuvDepthOnVsp, pShiftLUT, &cDv, uiPartAddr, iWidth, iHeight, pcCU->getSlice()->getIsDepth(), rpcYuvPred, bi ); xPredInterChromaBlkFromDM ( pcCU, pcBaseViewTxtPicYuv, &m_cYuvDepthOnVsp, pShiftLUT, &cDv, uiPartAddr, iWidth, iHeight, pcCU->getSlice()->getIsDepth(), rpcYuvPred, bi ); } #endif #if H_3D_ARP Void TComPrediction::xPredInterUniARP( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, RefPicList eRefPicList, TComYuv*& rpcYuvPred, Bool bi, TComMvField * pNewMvFiled ) { Int iRefIdx = pNewMvFiled ? pNewMvFiled->getRefIdx() : pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr ); TComMv cMv = pNewMvFiled ? pNewMvFiled->getMv() : pcCU->getCUMvField( eRefPicList )->getMv( uiPartAddr ); Bool bTobeScaled = false; TComPic* pcPicYuvBaseCol = NULL; TComPic* pcPicYuvBaseRef = NULL; #if H_3D_NBDV DisInfo cDistparity; cDistparity.bDV = pcCU->getDvInfo(uiPartAddr).bDV; if( cDistparity.bDV ) { cDistparity.m_acNBDV = pcCU->getDvInfo(0).m_acNBDV; assert(pcCU->getDvInfo(uiPartAddr).bDV == pcCU->getDvInfo(0).bDV); cDistparity.m_aVIdxCan = pcCU->getDvInfo(uiPartAddr).m_aVIdxCan; } #else assert(0); // ARP can be applied only when a DV is available #endif UChar dW = cDistparity.bDV ? pcCU->getARPW ( uiPartAddr ) : 0; if( cDistparity.bDV ) { if( dW > 0 && pcCU->getSlice()->getRefPic( eRefPicList, 0 )->getPOC()!= pcCU->getSlice()->getPOC() ) { bTobeScaled = true; } pcPicYuvBaseCol = pcCU->getSlice()->getBaseViewRefPic( pcCU->getSlice()->getPOC(), cDistparity.m_aVIdxCan ); pcPicYuvBaseRef = pcCU->getSlice()->getBaseViewRefPic( pcCU->getSlice()->getRefPic( eRefPicList, 0 )->getPOC(), cDistparity.m_aVIdxCan ); if( ( !pcPicYuvBaseCol || pcPicYuvBaseCol->getPOC() != pcCU->getSlice()->getPOC() ) || ( !pcPicYuvBaseRef || pcPicYuvBaseRef->getPOC() != pcCU->getSlice()->getRefPic( eRefPicList, 0 )->getPOC() ) ) { dW = 0; bTobeScaled = false; } else { assert( pcPicYuvBaseCol->getPOC() == pcCU->getSlice()->getPOC() && pcPicYuvBaseRef->getPOC() == pcCU->getSlice()->getRefPic( eRefPicList, 0 )->getPOC() ); } if(bTobeScaled) { Int iCurrPOC = pcCU->getSlice()->getPOC(); Int iColRefPOC = pcCU->getSlice()->getRefPOC( eRefPicList, iRefIdx ); Int iCurrRefPOC = pcCU->getSlice()->getRefPOC( eRefPicList, 0); Int iScale = pcCU-> xGetDistScaleFactor(iCurrPOC, iCurrRefPOC, iCurrPOC, iColRefPOC); if ( iScale != 4096 ) { cMv = cMv.scaleMv( iScale ); } iRefIdx = 0; } } pcCU->clipMv(cMv); TComPicYuv* pcPicYuvRef = pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(); xPredInterLumaBlk ( pcCU, pcPicYuvRef, uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi, true ); xPredInterChromaBlk( pcCU, pcPicYuvRef, uiPartAddr, &cMv, iWidth, iHeight, rpcYuvPred, bi, true ); if( dW > 0 ) { TComYuv * pYuvB0 = &m_acYuvPredBase[0]; TComYuv * pYuvB1 = &m_acYuvPredBase[1]; TComMv cMVwithDisparity = cMv + cDistparity.m_acNBDV; pcCU->clipMv(cMVwithDisparity); assert ( cDistparity.bDV ); pcPicYuvRef = pcPicYuvBaseCol->getPicYuvRec(); xPredInterLumaBlk ( pcCU, pcPicYuvRef, uiPartAddr, &cDistparity.m_acNBDV, iWidth, iHeight, pYuvB0, bi, true ); xPredInterChromaBlk( pcCU, pcPicYuvRef, uiPartAddr, &cDistparity.m_acNBDV, iWidth, iHeight, pYuvB0, bi, true ); pcPicYuvRef = pcPicYuvBaseRef->getPicYuvRec(); xPredInterLumaBlk ( pcCU, pcPicYuvRef, uiPartAddr, &cMVwithDisparity, iWidth, iHeight, pYuvB1, bi, true ); xPredInterChromaBlk( pcCU, pcPicYuvRef, uiPartAddr, &cMVwithDisparity, iWidth, iHeight, pYuvB1, bi, true ); pYuvB0->subtractARP( pYuvB0 , pYuvB1 , uiPartAddr , iWidth , iHeight ); if( 2 == dW ) { pYuvB0->multiplyARP( uiPartAddr , iWidth , iHeight , dW ); } rpcYuvPred->addARP( rpcYuvPred , pYuvB0 , uiPartAddr , iWidth , iHeight , !bi ); } } #endif Void TComPrediction::xPredInterBi ( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, TComYuv*& rpcYuvPred ) { TComYuv* pcMbYuv; Int iRefIdx[2] = {-1, -1}; for ( Int iRefList = 0; iRefList < 2; iRefList++ ) { RefPicList eRefPicList = (iRefList ? REF_PIC_LIST_1 : REF_PIC_LIST_0); iRefIdx[iRefList] = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr ); if ( iRefIdx[iRefList] < 0 ) { continue; } assert( iRefIdx[iRefList] < pcCU->getSlice()->getNumRefIdx(eRefPicList) ); pcMbYuv = &m_acYuvPred[iRefList]; if( pcCU->getCUMvField( REF_PIC_LIST_0 )->getRefIdx( uiPartAddr ) >= 0 && pcCU->getCUMvField( REF_PIC_LIST_1 )->getRefIdx( uiPartAddr ) >= 0 ) { xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv, true ); } else { if ( ( pcCU->getSlice()->getPPS()->getUseWP() && pcCU->getSlice()->getSliceType() == P_SLICE ) || ( pcCU->getSlice()->getPPS()->getWPBiPred() && pcCU->getSlice()->getSliceType() == B_SLICE ) ) { xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv, true ); } else { xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv ); } } } if ( pcCU->getSlice()->getPPS()->getWPBiPred() && pcCU->getSlice()->getSliceType() == B_SLICE ) { xWeightedPredictionBi( pcCU, &m_acYuvPred[0], &m_acYuvPred[1], iRefIdx[0], iRefIdx[1], uiPartAddr, iWidth, iHeight, rpcYuvPred ); } else if ( pcCU->getSlice()->getPPS()->getUseWP() && pcCU->getSlice()->getSliceType() == P_SLICE ) { xWeightedPredictionUni( pcCU, &m_acYuvPred[0], uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, rpcYuvPred ); } else { xWeightedAverage( &m_acYuvPred[0], &m_acYuvPred[1], iRefIdx[0], iRefIdx[1], uiPartAddr, iWidth, iHeight, rpcYuvPred ); } } #if H_3D_VSP Void TComPrediction::xPredInterBiVSP( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, TComYuv*& rpcYuvPred ) { TComYuv* pcMbYuv; Int iRefIdx[2] = {-1, -1}; Bool bi = (pcCU->getCUMvField( REF_PIC_LIST_0 )->getRefIdx( uiPartAddr ) >= 0 && pcCU->getCUMvField( REF_PIC_LIST_1 )->getRefIdx( uiPartAddr ) >= 0); for ( Int iRefList = 0; iRefList < 2; iRefList++ ) { RefPicList eRefPicList = RefPicList(iRefList); iRefIdx[iRefList] = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr ); if ( iRefIdx[iRefList] < 0 ) { continue; } assert( iRefIdx[iRefList] < pcCU->getSlice()->getNumRefIdx(eRefPicList) ); pcMbYuv = &m_acYuvPred[iRefList]; xPredInterUniVSP ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv, bi ); } xWeightedAverage( &m_acYuvPred[0], &m_acYuvPred[1], iRefIdx[0], iRefIdx[1], uiPartAddr, iWidth, iHeight, rpcYuvPred ); } #endif /** * \brief Generate motion-compensated luma block * * \param cu Pointer to current CU * \param refPic Pointer to reference picture * \param partAddr Address of block within CU * \param mv Motion vector * \param width Width of block * \param height Height of block * \param dstPic Pointer to destination picture * \param bi Flag indicating whether bipred is used */ Void TComPrediction::xPredInterLumaBlk( TComDataCU *cu, TComPicYuv *refPic, UInt partAddr, TComMv *mv, Int width, Int height, TComYuv *&dstPic, Bool bi #if H_3D_ARP , Bool filterType #endif #if H_3D_IC , Bool bICFlag #endif ) { Int refStride = refPic->getStride(); Int refOffset = ( mv->getHor() >> 2 ) + ( mv->getVer() >> 2 ) * refStride; Pel *ref = refPic->getLumaAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ) + refOffset; Int dstStride = dstPic->getStride(); Pel *dst = dstPic->getLumaAddr( partAddr ); Int xFrac = mv->getHor() & 0x3; Int yFrac = mv->getVer() & 0x3; #if H_3D_IC if( cu->getSlice()->getIsDepth() ) { refOffset = mv->getHor() + mv->getVer() * refStride; ref = refPic->getLumaAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ) + refOffset; xFrac = 0; yFrac = 0; } #endif if ( yFrac == 0 ) { #if H_3D_IC m_if.filterHorLuma( ref, refStride, dst, dstStride, width, height, xFrac, !bi || bICFlag #else m_if.filterHorLuma( ref, refStride, dst, dstStride, width, height, xFrac, !bi #endif #if H_3D_ARP , filterType #endif ); } else if ( xFrac == 0 ) { #if H_3D_IC m_if.filterVerLuma( ref, refStride, dst, dstStride, width, height, yFrac, true, !bi || bICFlag #else m_if.filterVerLuma( ref, refStride, dst, dstStride, width, height, yFrac, true, !bi #endif #if H_3D_ARP , filterType #endif ); } else { Int tmpStride = m_filteredBlockTmp[0].getStride(); Short *tmp = m_filteredBlockTmp[0].getLumaAddr(); Int filterSize = NTAPS_LUMA; Int halfFilterSize = ( filterSize >> 1 ); m_if.filterHorLuma(ref - (halfFilterSize-1)*refStride, refStride, tmp, tmpStride, width, height+filterSize-1, xFrac, false #if H_3D_ARP , filterType #endif ); #if H_3D_IC m_if.filterVerLuma(tmp + (halfFilterSize-1)*tmpStride, tmpStride, dst, dstStride, width, height, yFrac, false, !bi || bICFlag #else m_if.filterVerLuma(tmp + (halfFilterSize-1)*tmpStride, tmpStride, dst, dstStride, width, height, yFrac, false, !bi #endif #if H_3D_ARP , filterType #endif ); } #if H_3D_IC if( bICFlag ) { Int a, b, i, j; const Int iShift = IC_CONST_SHIFT; xGetLLSICPrediction( cu, mv, refPic, a, b, TEXT_LUMA ); for ( i = 0; i < height; i++ ) { for ( j = 0; j < width; j++ ) { dst[j] = Clip3( 0, ( 1 << g_bitDepthY ) - 1, ( ( a*dst[j] ) >> iShift ) + b ); } dst += dstStride; } if(bi) { Pel *dst2 = dstPic->getLumaAddr( partAddr ); Int shift = IF_INTERNAL_PREC - g_bitDepthY; for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { Short val = dst2[j] << shift; dst2[j] = val - (Short)IF_INTERNAL_OFFS; } dst2 += dstStride; } } } #endif } /** * \brief Generate motion-compensated chroma block * * \param cu Pointer to current CU * \param refPic Pointer to reference picture * \param partAddr Address of block within CU * \param mv Motion vector * \param width Width of block * \param height Height of block * \param dstPic Pointer to destination picture * \param bi Flag indicating whether bipred is used */ Void TComPrediction::xPredInterChromaBlk( TComDataCU *cu, TComPicYuv *refPic, UInt partAddr, TComMv *mv, Int width, Int height, TComYuv *&dstPic, Bool bi #if H_3D_ARP , Bool filterType #endif #if H_3D_IC , Bool bICFlag #endif ) { Int refStride = refPic->getCStride(); Int dstStride = dstPic->getCStride(); Int refOffset = (mv->getHor() >> 3) + (mv->getVer() >> 3) * refStride; Pel* refCb = refPic->getCbAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ) + refOffset; Pel* refCr = refPic->getCrAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ) + refOffset; Pel* dstCb = dstPic->getCbAddr( partAddr ); Pel* dstCr = dstPic->getCrAddr( partAddr ); Int xFrac = mv->getHor() & 0x7; Int yFrac = mv->getVer() & 0x7; UInt cxWidth = width >> 1; UInt cxHeight = height >> 1; Int extStride = m_filteredBlockTmp[0].getStride(); Short* extY = m_filteredBlockTmp[0].getLumaAddr(); Int filterSize = NTAPS_CHROMA; Int halfFilterSize = (filterSize>>1); if ( yFrac == 0 ) { #if H_3D_IC m_if.filterHorChroma(refCb, refStride, dstCb, dstStride, cxWidth, cxHeight, xFrac, !bi || bICFlag #else m_if.filterHorChroma(refCb, refStride, dstCb, dstStride, cxWidth, cxHeight, xFrac, !bi #endif #if H_3D_ARP , filterType #endif ); #if H_3D_IC m_if.filterHorChroma(refCr, refStride, dstCr, dstStride, cxWidth, cxHeight, xFrac, !bi || bICFlag #else m_if.filterHorChroma(refCr, refStride, dstCr, dstStride, cxWidth, cxHeight, xFrac, !bi #endif #if H_3D_ARP , filterType #endif ); } else if ( xFrac == 0 ) { #if H_3D_IC m_if.filterVerChroma(refCb, refStride, dstCb, dstStride, cxWidth, cxHeight, yFrac, true, !bi || bICFlag #else m_if.filterVerChroma(refCb, refStride, dstCb, dstStride, cxWidth, cxHeight, yFrac, true, !bi #endif #if H_3D_ARP , filterType #endif ); #if H_3D_IC m_if.filterVerChroma(refCr, refStride, dstCr, dstStride, cxWidth, cxHeight, yFrac, true, !bi || bICFlag #else m_if.filterVerChroma(refCr, refStride, dstCr, dstStride, cxWidth, cxHeight, yFrac, true, !bi #endif #if H_3D_ARP , filterType #endif ); } else { m_if.filterHorChroma(refCb - (halfFilterSize-1)*refStride, refStride, extY, extStride, cxWidth, cxHeight+filterSize-1, xFrac, false #if H_3D_ARP , filterType #endif ); #if H_3D_IC m_if.filterVerChroma(extY + (halfFilterSize-1)*extStride, extStride, dstCb, dstStride, cxWidth, cxHeight , yFrac, false, !bi || bICFlag #else m_if.filterVerChroma(extY + (halfFilterSize-1)*extStride, extStride, dstCb, dstStride, cxWidth, cxHeight , yFrac, false, !bi #endif #if H_3D_ARP , filterType #endif ); m_if.filterHorChroma(refCr - (halfFilterSize-1)*refStride, refStride, extY, extStride, cxWidth, cxHeight+filterSize-1, xFrac, false #if H_3D_ARP , filterType #endif ); #if H_3D_IC m_if.filterVerChroma(extY + (halfFilterSize-1)*extStride, extStride, dstCr, dstStride, cxWidth, cxHeight , yFrac, false, !bi || bICFlag #else m_if.filterVerChroma(extY + (halfFilterSize-1)*extStride, extStride, dstCr, dstStride, cxWidth, cxHeight , yFrac, false, !bi #endif #if H_3D_ARP , filterType #endif ); } #if H_3D_IC if( bICFlag ) { Int a, b, i, j; const Int iShift = IC_CONST_SHIFT; xGetLLSICPrediction( cu, mv, refPic, a, b, TEXT_CHROMA_U ); // Cb for ( i = 0; i < cxHeight; i++ ) { for ( j = 0; j < cxWidth; j++ ) { dstCb[j] = Clip3( 0, ( 1 << g_bitDepthC ) - 1, ( ( a*dstCb[j] ) >> iShift ) + b ); } dstCb += dstStride; } xGetLLSICPrediction( cu, mv, refPic, a, b, TEXT_CHROMA_V ); // Cr for ( i = 0; i < cxHeight; i++ ) { for ( j = 0; j < cxWidth; j++ ) { dstCr[j] = Clip3( 0, ( 1 << g_bitDepthC ) - 1, ( ( a*dstCr[j] ) >> iShift ) + b ); } dstCr += dstStride; } if(bi) { Pel* dstCb2 = dstPic->getCbAddr( partAddr ); Pel* dstCr2 = dstPic->getCrAddr( partAddr ); Int shift = IF_INTERNAL_PREC - g_bitDepthC; for (i = 0; i < cxHeight; i++) { for (j = 0; j < cxWidth; j++) { Short val = dstCb2[j] << shift; dstCb2[j] = val - (Short)IF_INTERNAL_OFFS; val = dstCr2[j] << shift; dstCr2[j] = val - (Short)IF_INTERNAL_OFFS; } dstCb2 += dstStride; dstCr2 += dstStride; } } } #endif } Void TComPrediction::xWeightedAverage( TComYuv* pcYuvSrc0, TComYuv* pcYuvSrc1, Int iRefIdx0, Int iRefIdx1, UInt uiPartIdx, Int iWidth, Int iHeight, TComYuv*& rpcYuvDst ) { if( iRefIdx0 >= 0 && iRefIdx1 >= 0 ) { rpcYuvDst->addAvg( pcYuvSrc0, pcYuvSrc1, uiPartIdx, iWidth, iHeight ); } else if ( iRefIdx0 >= 0 && iRefIdx1 < 0 ) { pcYuvSrc0->copyPartToPartYuv( rpcYuvDst, uiPartIdx, iWidth, iHeight ); } else if ( iRefIdx0 < 0 && iRefIdx1 >= 0 ) { pcYuvSrc1->copyPartToPartYuv( rpcYuvDst, uiPartIdx, iWidth, iHeight ); } } // AMVP Void TComPrediction::getMvPredAMVP( TComDataCU* pcCU, UInt uiPartIdx, UInt uiPartAddr, RefPicList eRefPicList, TComMv& rcMvPred ) { AMVPInfo* pcAMVPInfo = pcCU->getCUMvField(eRefPicList)->getAMVPInfo(); if( pcAMVPInfo->iN <= 1 ) { rcMvPred = pcAMVPInfo->m_acMvCand[0]; pcCU->setMVPIdxSubParts( 0, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr)); pcCU->setMVPNumSubParts( pcAMVPInfo->iN, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr)); return; } assert(pcCU->getMVPIdx(eRefPicList,uiPartAddr) >= 0); rcMvPred = pcAMVPInfo->m_acMvCand[pcCU->getMVPIdx(eRefPicList,uiPartAddr)]; return; } /** Function for deriving planar intra prediction. * \param pSrc pointer to reconstructed sample array * \param srcStride the stride of the reconstructed sample array * \param rpDst reference to pointer for the prediction sample array * \param dstStride the stride of the prediction sample array * \param width the width of the block * \param height the height of the block * * This function derives the prediction samples for planar mode (intra coding). */ Void TComPrediction::xPredIntraPlanar( Int* pSrc, Int srcStride, Pel* rpDst, Int dstStride, UInt width, UInt height ) { assert(width == height); Int k, l, bottomLeft, topRight; Int horPred; Int leftColumn[MAX_CU_SIZE+1], topRow[MAX_CU_SIZE+1], bottomRow[MAX_CU_SIZE], rightColumn[MAX_CU_SIZE]; UInt blkSize = width; UInt offset2D = width; UInt shift1D = g_aucConvertToBit[ width ] + 2; UInt shift2D = shift1D + 1; // Get left and above reference column and row for(k=0;k> shift2D ); } } } /** Function for filtering intra DC predictor. * \param pSrc pointer to reconstructed sample array * \param iSrcStride the stride of the reconstructed sample array * \param rpDst reference to pointer for the prediction sample array * \param iDstStride the stride of the prediction sample array * \param iWidth the width of the block * \param iHeight the height of the block * * This function performs filtering left and top edges of the prediction samples for DC mode (intra coding). */ Void TComPrediction::xDCPredFiltering( Int* pSrc, Int iSrcStride, Pel*& rpDst, Int iDstStride, Int iWidth, Int iHeight ) { Pel* pDst = rpDst; Int x, y, iDstStride2, iSrcStride2; // boundary pixels processing pDst[0] = (Pel)((pSrc[-iSrcStride] + pSrc[-1] + 2 * pDst[0] + 2) >> 2); for ( x = 1; x < iWidth; x++ ) { pDst[x] = (Pel)((pSrc[x - iSrcStride] + 3 * pDst[x] + 2) >> 2); } for ( y = 1, iDstStride2 = iDstStride, iSrcStride2 = iSrcStride-1; y < iHeight; y++, iDstStride2+=iDstStride, iSrcStride2+=iSrcStride ) { pDst[iDstStride2] = (Pel)((pSrc[iSrcStride2] + 3 * pDst[iDstStride2] + 2) >> 2); } return; } #if H_3D_IC /** Function for deriving the position of first non-zero binary bit of a value * \param x input value * * This function derives the position of first non-zero binary bit of a value */ Int GetMSB( UInt x ) { Int iMSB = 0, bits = ( sizeof( Int ) << 3 ), y = 1; while( x > 1 ) { bits >>= 1; y = x >> bits; if( y ) { x = y; iMSB += bits; } } iMSB+=y; return iMSB; } /** Function for deriving LM illumination compensation. */ Void TComPrediction::xGetLLSICPrediction( TComDataCU* pcCU, TComMv *pMv, TComPicYuv *pRefPic, Int &a, Int &b, TextType eType ) { TComPicYuv *pRecPic = pcCU->getPic()->getPicYuvRec(); Pel *pRec = NULL, *pRef = NULL; UInt uiWidth, uiHeight, uiTmpPartIdx; Int iRecStride = ( eType == TEXT_LUMA ) ? pRecPic->getStride() : pRecPic->getCStride(); Int iRefStride = ( eType == TEXT_LUMA ) ? pRefPic->getStride() : pRefPic->getCStride(); Int iCUPelX, iCUPelY, iRefX, iRefY, iRefOffset, iHor, iVer; iCUPelX = pcCU->getCUPelX() + g_auiRasterToPelX[g_auiZscanToRaster[pcCU->getZorderIdxInCU()]]; iCUPelY = pcCU->getCUPelY() + g_auiRasterToPelY[g_auiZscanToRaster[pcCU->getZorderIdxInCU()]]; iHor = pcCU->getSlice()->getIsDepth() ? pMv->getHor() : ( ( pMv->getHor() + 2 ) >> 2 ); iVer = pcCU->getSlice()->getIsDepth() ? pMv->getVer() : ( ( pMv->getVer() + 2 ) >> 2 ); iRefX = iCUPelX + iHor; iRefY = iCUPelY + iVer; if( eType != TEXT_LUMA ) { iHor = pcCU->getSlice()->getIsDepth() ? ( ( pMv->getHor() + 1 ) >> 1 ) : ( ( pMv->getHor() + 4 ) >> 3 ); iVer = pcCU->getSlice()->getIsDepth() ? ( ( pMv->getVer() + 1 ) >> 1 ) : ( ( pMv->getVer() + 4 ) >> 3 ); } uiWidth = ( eType == TEXT_LUMA ) ? pcCU->getWidth( 0 ) : ( pcCU->getWidth( 0 ) >> 1 ); uiHeight = ( eType == TEXT_LUMA ) ? pcCU->getHeight( 0 ) : ( pcCU->getHeight( 0 ) >> 1 ); Int i, j, iCountShift = 0; // LLS parameters estimation --> Int x = 0, y = 0, xx = 0, xy = 0; Int precShift = std::max(0, (( eType == TEXT_LUMA ) ? g_bitDepthY : g_bitDepthC) - 12); if( pcCU->getPUAbove( uiTmpPartIdx, pcCU->getZorderIdxInCU() ) && iCUPelY > 0 && iRefY > 0 ) { iRefOffset = iHor + iVer * iRefStride - iRefStride; if( eType == TEXT_LUMA ) { pRef = pRefPic->getLumaAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) + iRefOffset; pRec = pRecPic->getLumaAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) - iRecStride; } else if( eType == TEXT_CHROMA_U ) { pRef = pRefPic->getCbAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) + iRefOffset; pRec = pRecPic->getCbAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) - iRecStride; } else { assert( eType == TEXT_CHROMA_V ); pRef = pRefPic->getCrAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) + iRefOffset; pRec = pRecPic->getCrAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) - iRecStride; } for( j = 0; j < uiWidth; j+=2 ) { x += pRef[j]; y += pRec[j]; xx += (pRef[j] * pRef[j])>>precShift; xy += (pRef[j] * pRec[j])>>precShift; } iCountShift += g_aucConvertToBit[ uiWidth ] + 1; } if( pcCU->getPULeft( uiTmpPartIdx, pcCU->getZorderIdxInCU() ) && iCUPelX > 0 && iRefX > 0 ) { iRefOffset = iHor + iVer * iRefStride - 1; if( eType == TEXT_LUMA ) { pRef = pRefPic->getLumaAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) + iRefOffset; pRec = pRecPic->getLumaAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) - 1; } else if( eType == TEXT_CHROMA_U ) { pRef = pRefPic->getCbAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) + iRefOffset; pRec = pRecPic->getCbAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) - 1; } else { assert( eType == TEXT_CHROMA_V ); pRef = pRefPic->getCrAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) + iRefOffset; pRec = pRecPic->getCrAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() ) - 1; } for( i = 0; i < uiHeight; i+=2 ) { x += pRef[0]; y += pRec[0]; xx += (pRef[0] * pRef[0])>>precShift; xy += (pRef[0] * pRec[0])>>precShift; pRef += iRefStride*2; pRec += iRecStride*2; } iCountShift += iCountShift > 0 ? 1 : ( g_aucConvertToBit[ uiWidth ] + 1 ); } xy += xx >> IC_REG_COST_SHIFT; xx += xx >> IC_REG_COST_SHIFT; Int a1 = ( xy << iCountShift ) - ((y * x) >> precShift); Int a2 = ( xx << iCountShift ) - ((x * x) >> precShift); const Int iShift = IC_CONST_SHIFT; { { const Int iShiftA2 = 6; const Int iAccuracyShift = 15; Int iScaleShiftA2 = 0; Int iScaleShiftA1 = 0; Int a1s = a1; Int a2s = a2; a1 = Clip3(0, 2*a2, a1); iScaleShiftA2 = GetMSB( abs( a2 ) ) - iShiftA2; iScaleShiftA1 = iScaleShiftA2 - IC_SHIFT_DIFF; if( iScaleShiftA1 < 0 ) { iScaleShiftA1 = 0; } if( iScaleShiftA2 < 0 ) { iScaleShiftA2 = 0; } Int iScaleShiftA = iScaleShiftA2 + iAccuracyShift - iShift - iScaleShiftA1; a2s = a2 >> iScaleShiftA2; a1s = a1 >> iScaleShiftA1; a = a1s * m_uiaShift[ a2s ]; a = a >> iScaleShiftA; b = ( y - ( ( a * x ) >> iShift ) + ( 1 << ( iCountShift - 1 ) ) ) >> iCountShift; } } } #endif #if H_3D_VSP // not fully support iRatioTxtPerDepth* != 1 Void TComPrediction::xGetVirtualDepth( TComDataCU *cu, TComPicYuv *picRefDepth, TComMv *mv, UInt partAddr, Int width, Int height, TComYuv *yuvDepth, Int ratioTxtPerDepthX, Int ratioTxtPerDepthY ) { Int nTxtPerDepthX = H_3D_VSP_BLOCKSIZE; Int nTxtPerDepthY = H_3D_VSP_BLOCKSIZE; Int refDepStride = picRefDepth->getStride(); Int refDepOffset = ( (mv->getHor()+2) >> 2 ) + ( (mv->getVer()+2) >> 2 ) * refDepStride; Pel *refDepth = picRefDepth->getLumaAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ); if( ratioTxtPerDepthX!=1 || ratioTxtPerDepthY!=1 ) { Int posX, posY; refDepth = picRefDepth->getLumaAddr( ); cu->getPic()->getPicYuvRec()->getTopLeftSamplePos( cu->getAddr(), cu->getZorderIdxInCU() + partAddr, posX, posY ); // top-left position in texture posX /= ratioTxtPerDepthX; // texture position -> depth postion posY /= ratioTxtPerDepthY; refDepOffset += posX + posY * refDepStride; width /= ratioTxtPerDepthX; // texture size -> depth size height /= ratioTxtPerDepthY; } refDepth += refDepOffset; Int depStride = yuvDepth->getStride(); Pel *depth = yuvDepth->getLumaAddr(); if( width<8 || height<8 ) { // no split Int rightOffset = width - 1; Int depStrideBlock = depStride * nTxtPerDepthY; Pel *refDepthTop = refDepth; Pel *refDepthBot = refDepthTop + (height-1)*refDepStride; Pel maxDepth = refDepthTop[0] > refDepthBot[0] ? refDepthTop[0] : refDepthBot[0]; if( maxDepth < refDepthTop[rightOffset] ) { maxDepth = refDepthTop[rightOffset]; } if( maxDepth < refDepthBot[rightOffset] ) { maxDepth = refDepthBot[rightOffset]; } for( Int sY=0; sY refDepthTmp[0][x+offset[1]] ? refDepthTmp[0][x+offset[0]] : refDepthTmp[0][x+offset[1]]; if( repDepth4x8[0] < refDepthTmp[3][x+offset[0]] ) { repDepth4x8[0] = refDepthTmp[3][x+offset[0]]; } if( repDepth4x8[0] < refDepthTmp[3][x+offset[1]] ) { repDepth4x8[0] = refDepthTmp[3][x+offset[1]]; } repDepth4x8[1] = refDepthTmp[0][x+offset[2]] > refDepthTmp[0][x+offset[3]] ? refDepthTmp[0][x+offset[2]] : refDepthTmp[0][x+offset[3]]; if( repDepth4x8[1] < refDepthTmp[3][x+offset[2]] ) { repDepth4x8[1] = refDepthTmp[3][x+offset[2]]; } if( repDepth4x8[1] < refDepthTmp[3][x+offset[3]] ) { repDepth4x8[1] = refDepthTmp[3][x+offset[3]]; } depthTmp = &depth[x]; for( Int sY=0; sY refDepthTmp[0][x+offset[3]] ? refDepthTmp[0][x+offset[0]] : refDepthTmp[0][x+offset[3]]; if( repDepth8x4[0] < refDepthTmp[1][x+offset[0]] ) { repDepth8x4[0] = refDepthTmp[1][x+offset[0]]; } if( repDepth8x4[0] < refDepthTmp[1][x+offset[3]] ) { repDepth8x4[0] = refDepthTmp[1][x+offset[3]]; } repDepth8x4[1] = refDepthTmp[2][x+offset[0]] > refDepthTmp[2][x+offset[3]] ? refDepthTmp[2][x+offset[0]] : refDepthTmp[2][x+offset[3]]; if( repDepth8x4[1] < refDepthTmp[3][x+offset[0]] ) { repDepth8x4[1] = refDepthTmp[3][x+offset[0]]; } if( repDepth8x4[1] < refDepthTmp[3][x+offset[3]] ) { repDepth8x4[1] = refDepthTmp[3][x+offset[3]]; } depthTmp = &depth[x]; for( Int sY=0; sYgetStride(); Int dstStride = yuvDst->getStride(); Int depStride = yuvDepth->getStride(); Int refStrideBlock = refStride * nTxtPerDepthY; Int dstStrideBlock = dstStride * nTxtPerDepthY; Int depStrideBlock = depStride * nTxtPerDepthY; Pel *ref = picRef->getLumaAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ); Pel *dst = yuvDst->getLumaAddr(partAddr); Pel *depth = yuvDepth->getLumaAddr(); #if H_3D_VSP_BLOCKSIZE == 1 #if H_3D_VSP_CONSTRAINED //get LUT based horizontal reference range Int range = xGetConstrainedSize(width, height); // The minimum depth value Int minRelativePos = MAX_INT; Int maxRelativePos = MIN_INT; Pel* depthTemp, *depthInitial=depth; for (Int yTxt = 0; yTxt < height; yTxt++) { for (Int xTxt = 0; xTxt < width; xTxt++) { if (depthPosX+xTxt < widthDepth) { depthTemp = depthInitial + xTxt; } else { depthTemp = depthInitial + (widthDepth - depthPosX - 1); } Int disparity = shiftLUT[ *depthTemp ]; // << iShiftPrec; Int disparityInt = disparity >> 2; if( disparity <= 0) { if (minRelativePos > disparityInt+xTxt) { minRelativePos = disparityInt+xTxt; } } else { if (maxRelativePos < disparityInt+xTxt) { maxRelativePos = disparityInt+xTxt; } } } if (depthPosY+yTxt < heightDepth) { depthInitial = depthInitial + depStride; } } Int disparity_tmp = shiftLUT[ *depth ]; // << iShiftPrec; if (disparity_tmp <= 0) { maxRelativePos = minRelativePos + range -1 ; } else { minRelativePos = maxRelativePos - range +1 ; } #endif #endif // H_3D_VSP_BLOCKSIZE == 1 TComMv dv(0, 0); for ( Int yTxt = 0; yTxt < height; yTxt += nTxtPerDepthY ) { for ( Int xTxt = 0; xTxt < width; xTxt += nTxtPerDepthX ) { Pel repDepth = depth[ xTxt ]; assert( repDepth >= 0 && repDepth <= 255 ); Int disparity = shiftLUT[ repDepth ]; // remove << iShiftPrec ?? Int xFrac = disparity & 0x3; dv.setHor( disparity ); cu->clipMv( dv ); Int refOffset = xTxt + (dv.getHor() >> 2); #if H_3D_VSP_CONSTRAINED if(refOffsetmaxRelativePos) { xFrac = 0; } refOffset = Clip3(minRelativePos, maxRelativePos, refOffset); #endif assert( ref[refOffset] >= 0 && ref[refOffset]<= 255 ); m_if.filterHorLuma( &ref[refOffset], refStride, &dst[xTxt], dstStride, nTxtPerDepthX, nTxtPerDepthY, xFrac, !isBi ); } ref += refStrideBlock; dst += dstStrideBlock; depth += depStrideBlock; } } Void TComPrediction::xPredInterChromaBlkFromDM ( TComDataCU *cu, TComPicYuv *picRef, TComYuv *yuvDepth, Int* shiftLUT, TComMv *mv, UInt partAddr, Int width, Int height, Bool isDepth, TComYuv *&yuvDst, Bool isBi ) { #if (H_3D_VSP_BLOCKSIZE==1) Int nTxtPerDepthX = 1; Int nTxtPerDepthY = 1; #else Int nTxtPerDepthX = H_3D_VSP_BLOCKSIZE >> 1; Int nTxtPerDepthY = H_3D_VSP_BLOCKSIZE >> 1; #endif Int refStride = picRef->getCStride(); Int dstStride = yuvDst->getCStride(); Int depStride = yuvDepth->getStride(); Int refStrideBlock = refStride * nTxtPerDepthY; Int dstStrideBlock = dstStride * nTxtPerDepthY; Int depStrideBlock = depStride * (nTxtPerDepthY<<1); Pel *refCb = picRef->getCbAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ); Pel *refCr = picRef->getCrAddr( cu->getAddr(), cu->getZorderIdxInCU() + partAddr ); Pel *dstCb = yuvDst->getCbAddr(partAddr); Pel *dstCr = yuvDst->getCrAddr(partAddr); Pel *depth = yuvDepth->getLumaAddr(); #if H_3D_VSP_BLOCKSIZE == 1 #if H_3D_VSP_CONSTRAINED //get LUT based horizontal reference range Int range = xGetConstrainedSize(width, height, false); // The minimum depth value Int minRelativePos = MAX_INT; Int maxRelativePos = MIN_INT; Int depthTmp; for (Int yTxt=0; yTxt> 3;//in chroma resolution if (disparityInt < 0) { if (minRelativePos > disparityInt+xTxt) { minRelativePos = disparityInt+xTxt; } } else { if (maxRelativePos < disparityInt+xTxt) { maxRelativePos = disparityInt+xTxt; } } } } depthTmp = m_pDepthBlock[0]; Int disparity_tmp = shiftLUT[ depthTmp ]; // << iShiftPrec; if ( disparity_tmp < 0 ) { maxRelativePos = minRelativePos + range - 1; } else { minRelativePos = maxRelativePos - range + 1; } #endif // H_3D_VSP_CONSTRAINED #endif // H_3D_VSP_BLOCKSIZE == 1 TComMv dv(0, 0); // luma size -> chroma size height >>= 1; width >>= 1; for ( Int yTxt = 0; yTxt < height; yTxt += nTxtPerDepthY ) { for ( Int xTxt = 0; xTxt < width; xTxt += nTxtPerDepthX ) { Pel repDepth = depth[ xTxt<<1 ]; assert( repDepth >= 0 && repDepth <= 255 ); Int disparity = shiftLUT[ repDepth ]; // remove << iShiftPrec; Int xFrac = disparity & 0x7; dv.setHor( disparity ); cu->clipMv( dv ); Int refOffset = xTxt + (dv.getHor() >> 3); #if H_3D_VSP_CONSTRAINED if(refOffsetmaxRelativePos) { xFrac = 0; } refOffset = Clip3(minRelativePos, maxRelativePos, refOffset); #endif assert( refCb[refOffset] >= 0 && refCb[refOffset]<= 255 ); assert( refCr[refOffset] >= 0 && refCr[refOffset]<= 255 ); m_if.filterHorChroma( &refCb[refOffset], refStride, &dstCb[xTxt], dstStride, nTxtPerDepthX, nTxtPerDepthY, xFrac, !isBi ); m_if.filterHorChroma( &refCr[refOffset], refStride, &dstCr[xTxt], dstStride, nTxtPerDepthX, nTxtPerDepthY, xFrac, !isBi ); } refCb += refStrideBlock; refCr += refStrideBlock; dstCb += dstStrideBlock; dstCr += dstStrideBlock; depth += depStrideBlock; } } #if H_3D_VSP_CONSTRAINED Int TComPrediction::xGetConstrainedSize(Int nPbW, Int nPbH, Bool bLuma) { Int iSize = 0; if (bLuma) { Int iArea = (nPbW+7) * (nPbH+7); Int iAlpha = iArea / nPbH - nPbW - 7; iSize = iAlpha + nPbW; } else // chroma { Int iArea = (nPbW+2) * (nPbH+2); Int iAlpha = iArea / nPbH - nPbW - 4; iSize = iAlpha + nPbW; } return iSize; } #endif // H_3D_VSP_CONSTRAINED #endif // H_3D_VSP #if H_3D_DIM Void TComPrediction::xPredBiSegDCs( Int* ptrSrc, UInt srcStride, Bool* biSegPattern, Int patternStride, Pel& predDC1, Pel& predDC2 ) { Int refDC1, refDC2; const Int iTR = ( patternStride - 1 ) - srcStride; const Int iTM = ( ( patternStride - 1 ) >> 1 ) - srcStride; const Int iLB = ( patternStride - 1 ) * srcStride - 1; const Int iLM = ( ( patternStride - 1 ) >> 1 ) * srcStride - 1; Bool bL = ( biSegPattern[0] != biSegPattern[(patternStride-1)*patternStride] ); Bool bT = ( biSegPattern[0] != biSegPattern[(patternStride-1)] ); if( bL == bT ) { refDC1 = bL ? ( ptrSrc[iTR] + ptrSrc[iLB] )>>1 : 1<<( g_bitDepthY - 1 ); refDC2 = ( ptrSrc[ -1] + ptrSrc[-(Int)srcStride] )>>1; } else { refDC1 = bL ? ptrSrc[iLB] : ptrSrc[iTR]; refDC2 = bL ? ptrSrc[iTM] : ptrSrc[iLM]; } predDC1 = biSegPattern[0] ? refDC1 : refDC2; predDC2 = biSegPattern[0] ? refDC2 : refDC1; } Void TComPrediction::xAssignBiSegDCs( Pel* ptrDst, UInt dstStride, Bool* biSegPattern, Int patternStride, Pel valDC1, Pel valDC2 ) { if( dstStride == patternStride ) { for( UInt k = 0; k < (patternStride * patternStride); k++ ) { if( true == biSegPattern[k] ) { ptrDst[k] = valDC2; } else { ptrDst[k] = valDC1; } } } else { Pel* piTemp = ptrDst; for( UInt uiY = 0; uiY < patternStride; uiY++ ) { for( UInt uiX = 0; uiX < patternStride; uiX++ ) { if( true == biSegPattern[uiX] ) { piTemp[uiX] = valDC2; } else { piTemp[uiX] = valDC1; } } piTemp += dstStride; biSegPattern += patternStride; } } } #if H_3D_DIM_DMM UInt TComPrediction::xPredWedgeFromTex( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiWidth, UInt uiHeight, UInt intraTabIdx ) { TComPic* pcPicTex = pcCU->getSlice()->getTexturePic(); assert( pcPicTex != NULL ); TComDataCU* pcColTexCU = pcPicTex->getCU(pcCU->getAddr()); UInt uiTexPartIdx = pcCU->getZorderIdxInCU() + uiAbsPartIdx; Int uiColTexIntraDir = pcColTexCU->isIntra( uiTexPartIdx ) ? pcColTexCU->getLumaIntraDir( uiTexPartIdx ) : 255; assert( uiColTexIntraDir > DC_IDX && uiColTexIntraDir < 35 ); return g_aauiWdgLstM3[g_aucConvertToBit[uiWidth]][uiColTexIntraDir-2].at(intraTabIdx); } Void TComPrediction::xPredContourFromTex( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiWidth, UInt uiHeight, TComWedgelet* pcContourWedge ) { pcContourWedge->clear(); // get copy of co-located texture luma block TComYuv cTempYuv; cTempYuv.create( uiWidth, uiHeight ); cTempYuv.clear(); Pel* piRefBlkY = cTempYuv.getLumaAddr(); xCopyTextureLumaBlock( pcCU, uiAbsPartIdx, piRefBlkY, uiWidth, uiHeight ); piRefBlkY = cTempYuv.getLumaAddr(); // find contour for texture luma block UInt iDC = 0; for( UInt k = 0; k < (uiWidth*uiHeight); k++ ) { iDC += piRefBlkY[k]; } Int cuMaxLog2Size = g_aucConvertToBit[g_uiMaxCUWidth]+2; // iDC = iDC >> (cuMaxLog2Size - pcCU->getDepth(0))*2; // iDC /= (uiWidth*uiHeight); piRefBlkY = cTempYuv.getLumaAddr(); Bool* pabContourPattern = pcContourWedge->getPattern(); for( UInt k = 0; k < (uiWidth*uiHeight); k++ ) { pabContourPattern[k] = (piRefBlkY[k] > iDC) ? true : false; } cTempYuv.destroy(); } Void TComPrediction::xCopyTextureLumaBlock( TComDataCU* pcCU, UInt uiAbsPartIdx, Pel* piDestBlockY, UInt uiWidth, UInt uiHeight ) { TComPicYuv* pcPicYuvRef = pcCU->getSlice()->getTexturePic()->getPicYuvRec(); assert( pcPicYuvRef != NULL ); Int iRefStride = pcPicYuvRef->getStride(); Pel* piRefY = pcPicYuvRef->getLumaAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU() + uiAbsPartIdx ); for ( Int y = 0; y < uiHeight; y++ ) { ::memcpy(piDestBlockY, piRefY, sizeof(Pel)*uiWidth); piDestBlockY += uiWidth; piRefY += iRefStride; } } #endif #if H_3D_DIM_RBC Void TComPrediction::xDeltaDCQuantScaleUp( TComDataCU* pcCU, Pel& rDeltaDC ) { Int iSign = rDeltaDC < 0 ? -1 : 1; UInt uiAbs = abs( rDeltaDC ); Int iQp = pcCU->getQP(0); Double dMax = (Double)( 1<<( g_bitDepthY - 1 ) ); Double dStepSize = Clip3( 1.0, dMax, pow( 2.0, iQp/10.0 - 2.0 ) ); rDeltaDC = iSign * roftoi( uiAbs * dStepSize ); return; } Void TComPrediction::xDeltaDCQuantScaleDown( TComDataCU* pcCU, Pel& rDeltaDC ) { Int iSign = rDeltaDC < 0 ? -1 : 1; UInt uiAbs = abs( rDeltaDC ); Int iQp = pcCU->getQP(0); Double dMax = (Double)( 1<<( g_bitDepthY - 1 ) ); Double dStepSize = Clip3( 1.0, dMax, pow( 2.0, iQp/10.0 - 2.0 ) ); rDeltaDC = iSign * roftoi( uiAbs / dStepSize ); return; } #endif #if H_3D_DIM_SDC Void TComPrediction::analyzeSegmentsSDC( Pel* pOrig, UInt uiStride, UInt uiSize, Pel* rpSegMeans, UInt uiNumSegments, Bool* pMask, UInt uiMaskStride ,UInt uiIntraMode ,Bool orgDC ) { Int iSumDepth[2]; memset(iSumDepth, 0, sizeof(Int)*2); Int iSumPix[2]; memset(iSumPix, 0, sizeof(Int)*2); if (orgDC == false) { if ( getDimType(uiIntraMode) == DMM1_IDX ) { UChar ucSegmentLT = pMask[0]; UChar ucSegmentRT = pMask[uiSize-1]; UChar ucSegmentLB = pMask[uiMaskStride * (uiSize-1)]; UChar ucSegmentRB = pMask[uiMaskStride * (uiSize-1) + (uiSize-1)]; rpSegMeans[ucSegmentLT] = pOrig[0]; rpSegMeans[ucSegmentRT] = pOrig[uiSize-1]; rpSegMeans[ucSegmentLB] = pOrig[uiStride * (uiSize-1) ]; rpSegMeans[ucSegmentRB] = pOrig[uiStride * (uiSize-1) + (uiSize-1) ]; } else if (uiIntraMode == PLANAR_IDX) { Pel* pLeftTop = pOrig; Pel* pRightTop = pOrig + (uiSize-1); Pel* pLeftBottom = (pOrig+ (uiStride*(uiSize-1))); Pel* pRightBottom = (pOrig+ (uiStride*(uiSize-1)) + (uiSize-1)); rpSegMeans[0] = (*pLeftTop + *pRightTop + *pLeftBottom + *pRightBottom + 2)>>2; } return; } Int subSamplePix; if ( uiSize == 64 || uiSize == 32 ) { subSamplePix = 2; } else { subSamplePix = 1; } for (Int y=0; y 0 ) rpSegMeans[ucSeg] = iSumDepth[ucSeg] / iSumPix[ucSeg]; else rpSegMeans[ucSeg] = 0; // this happens for zero-segments } } #endif // H_3D_DIM_SDC #endif //! \}