/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2012, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncGOP.cpp \brief GOP encoder class */ #include #include #include "TEncTop.h" #include "TEncGOP.h" #include "TEncAnalyze.h" #include "libmd5/MD5.h" #include "TLibCommon/SEI.h" #include "TLibCommon/NAL.h" #include "NALwrite.h" #include "../../App/TAppEncoder/TAppEncTop.h" #include #include using namespace std; //! \ingroup TLibEncoder //! \{ // ==================================================================================================================== // Constructor / destructor / initialization / destroy // ==================================================================================================================== TEncGOP::TEncGOP() { m_iLastIDR = 0; m_iGopSize = 0; m_iNumPicCoded = 0; //Niko m_bFirst = true; m_pcCfg = NULL; m_pcSliceEncoder = NULL; m_pcListPic = NULL; m_pcEntropyCoder = NULL; m_pcCavlcCoder = NULL; m_pcSbacCoder = NULL; m_pcBinCABAC = NULL; #if DEPTH_MAP_GENERATION m_pcDepthMapGenerator = NULL; #endif #if HHI_INTER_VIEW_RESIDUAL_PRED m_pcResidualGenerator = NULL; #endif m_bSeqFirst = true; m_bRefreshPending = 0; m_pocCRA = 0; return; } TEncGOP::~TEncGOP() { } /** Create list to contain pointers to LCU start addresses of slice. * \param iWidth, iHeight are picture width, height. iMaxCUWidth, iMaxCUHeight are LCU width, height. */ Void TEncGOP::create( Int iWidth, Int iHeight, UInt iMaxCUWidth, UInt iMaxCUHeight ) { UInt uiWidthInCU = ( iWidth %iMaxCUWidth ) ? iWidth /iMaxCUWidth + 1 : iWidth /iMaxCUWidth; UInt uiHeightInCU = ( iHeight%iMaxCUHeight ) ? iHeight/iMaxCUHeight + 1 : iHeight/iMaxCUHeight; UInt uiNumCUsInFrame = uiWidthInCU * uiHeightInCU; m_uiStoredStartCUAddrForEncodingSlice = new UInt [uiNumCUsInFrame*(1<<(g_uiMaxCUDepth<<1))+1]; m_uiStoredStartCUAddrForEncodingEntropySlice = new UInt [uiNumCUsInFrame*(1<<(g_uiMaxCUDepth<<1))+1]; m_bLongtermTestPictureHasBeenCoded = 0; m_bLongtermTestPictureHasBeenCoded2 = 0; } Void TEncGOP::destroy() { delete [] m_uiStoredStartCUAddrForEncodingSlice; m_uiStoredStartCUAddrForEncodingSlice = NULL; delete [] m_uiStoredStartCUAddrForEncodingEntropySlice; m_uiStoredStartCUAddrForEncodingEntropySlice = NULL; } Void TEncGOP::init ( TEncTop* pcTEncTop ) { m_pcEncTop = pcTEncTop; m_pcCfg = pcTEncTop; m_pcSliceEncoder = pcTEncTop->getSliceEncoder(); m_pcListPic = pcTEncTop->getListPic(); m_pcEntropyCoder = pcTEncTop->getEntropyCoder(); m_pcCavlcCoder = pcTEncTop->getCavlcCoder(); m_pcSbacCoder = pcTEncTop->getSbacCoder(); m_pcBinCABAC = pcTEncTop->getBinCABAC(); m_pcLoopFilter = pcTEncTop->getLoopFilter(); m_pcBitCounter = pcTEncTop->getBitCounter(); #if DEPTH_MAP_GENERATION m_pcDepthMapGenerator = pcTEncTop->getDepthMapGenerator(); #endif #if HHI_INTER_VIEW_RESIDUAL_PRED m_pcResidualGenerator = pcTEncTop->getResidualGenerator(); #endif // Adaptive Loop filter m_pcAdaptiveLoopFilter = pcTEncTop->getAdaptiveLoopFilter(); //--Adaptive Loop filter m_pcSAO = pcTEncTop->getSAO(); m_pcRdCost = pcTEncTop->getRdCost(); } // ==================================================================================================================== // Public member functions // ==================================================================================================================== Void TEncGOP::initGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut, std::list& accessUnitsInGOP) { xInitGOP( iPOCLast, iNumPicRcvd, rcListPic, rcListPicYuvRecOut ); m_iNumPicCoded = 0; } Void TEncGOP::compressPicInGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut, std::list& accessUnitsInGOP, Int iGOPid) { TComPic* pcPic; TComPicYuv* pcPicYuvRecOut; TComSlice* pcSlice; TComOutputBitstream *pcBitstreamRedirect; pcBitstreamRedirect = new TComOutputBitstream; #if !REMOVE_TILE_DEPENDENCE OutputNALUnit *naluBuffered = NULL; Bool bIteratorAtListStart = false; #endif AccessUnit::iterator itLocationToPushSliceHeaderNALU; // used to store location where NALU containing slice header is to be inserted UInt uiOneBitstreamPerSliceLength = 0; TEncSbac* pcSbacCoders = NULL; TComOutputBitstream* pcSubstreamsOut = NULL; { UInt uiColDir = 1; //-- For time output for each slice long iBeforeTime = clock(); //select uiColDir Int iCloseLeft=1, iCloseRight=-1; for(Int i = 0; igetGOPEntry(iGOPid).m_numRefPics; i++) { Int iRef = m_pcCfg->getGOPEntry(iGOPid).m_referencePics[i]; if(iRef>0&&(iRefiCloseLeft||iCloseLeft==1)) { iCloseLeft=iRef; } } if(iCloseRight>-1) { iCloseRight=iCloseRight+m_pcCfg->getGOPEntry(iGOPid).m_POC-1; } if(iCloseLeft<1) { iCloseLeft=iCloseLeft+m_pcCfg->getGOPEntry(iGOPid).m_POC-1; while(iCloseLeft<0) { iCloseLeft+=m_iGopSize; } } Int iLeftQP=0, iRightQP=0; for(Int i=0; igetGOPEntry(i).m_POC==(iCloseLeft%m_iGopSize)+1) { iLeftQP= m_pcCfg->getGOPEntry(i).m_QPOffset; } if (m_pcCfg->getGOPEntry(i).m_POC==(iCloseRight%m_iGopSize)+1) { iRightQP=m_pcCfg->getGOPEntry(i).m_QPOffset; } } if(iCloseRight>-1&&iRightQPgetGOPEntry(iGOPid).m_POC; Int iTimeOffset = m_pcCfg->getGOPEntry(iGOPid).m_POC; if(iPOCLast == 0) { uiPOCCurr=0; iTimeOffset = 1; } if(uiPOCCurr>=m_pcCfg->getFrameToBeEncoded()) { return; } if( getNalUnitTypeBaseViewMvc( uiPOCCurr ) == NAL_UNIT_CODED_SLICE_IDR ) { m_iLastIDR = uiPOCCurr; } /* start a new access unit: create an entry in the list of output * access units */ accessUnitsInGOP.push_back(AccessUnit()); AccessUnit& accessUnit = accessUnitsInGOP.back(); xGetBuffer( rcListPic, rcListPicYuvRecOut, iNumPicRcvd, iTimeOffset, pcPic, pcPicYuvRecOut, uiPOCCurr ); // Slice data initialization pcPic->clearSliceBuffer(); assert(pcPic->getNumAllocatedSlice() == 1); m_pcSliceEncoder->setSliceIdx(0); pcPic->setCurrSliceIdx(0); std::vector& vAPS = m_pcEncTop->getAPS(); #if VIDYO_VPS_INTEGRATION m_pcSliceEncoder->initEncSlice ( pcPic, iPOCLast, uiPOCCurr, iNumPicRcvd, iGOPid, pcSlice, m_pcEncTop->getEncTop()->getVPS(), m_pcEncTop->getSPS(), m_pcEncTop->getPPS() ); #else m_pcSliceEncoder->initEncSlice ( pcPic, iPOCLast, uiPOCCurr, iNumPicRcvd, iGOPid, pcSlice, m_pcEncTop->getSPS(), m_pcEncTop->getPPS() ); #endif pcSlice->setLastIDR(m_iLastIDR); pcSlice->setSliceIdx(0); pcSlice->setViewId( m_pcEncTop->getViewId() ); pcSlice->setIsDepth( m_pcEncTop->getIsDepth() ); m_pcEncTop->getSPS()->setDisInter4x4(m_pcEncTop->getDisInter4x4()); pcSlice->setScalingList ( m_pcEncTop->getScalingList() ); if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_OFF) { m_pcEncTop->getTrQuant()->setFlatScalingList(); m_pcEncTop->getTrQuant()->setUseScalingList(false); } else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_DEFAULT) { pcSlice->setDefaultScalingList (); pcSlice->getScalingList()->setScalingListPresentFlag(true); m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList()); m_pcEncTop->getTrQuant()->setUseScalingList(true); } else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_FILE_READ) { if(pcSlice->getScalingList()->xParseScalingList(m_pcCfg->getScalingListFile())) { pcSlice->setDefaultScalingList (); } #if SCALING_LIST pcSlice->getScalingList()->checkDcOfMatrix(); #endif pcSlice->getScalingList()->setScalingListPresentFlag(pcSlice->checkDefaultScalingList()); m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList()); m_pcEncTop->getTrQuant()->setUseScalingList(true); } else { printf("error : ScalingList == %d no support\n",m_pcEncTop->getUseScalingListId()); assert(0); } #if HHI_INTERVIEW_SKIP if ( m_pcEncTop->getInterViewSkip() ) { m_pcEncTop->getEncTop()->getUsedPelsMap( pcPic->getViewId(), pcPic->getPOC(), pcPic->getUsedPelsMap() ); } #endif // Slice info. refinement if( pcSlice->getSliceType() == B_SLICE ) { if( m_pcCfg->getGOPEntry( (getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDV) ? MAX_GOP : iGOPid ).m_sliceType == 'P' ) { pcSlice->setSliceType( P_SLICE ); } } // Set the nal unit type pcSlice->setNalUnitType( getNalUnitType(uiPOCCurr) ); pcSlice->setNalUnitTypeBaseViewMvc( getNalUnitTypeBaseViewMvc(uiPOCCurr) ); // Do decoding refresh marking if any pcSlice->decodingRefreshMarking(m_pocCRA, m_bRefreshPending, rcListPic); if ( !pcSlice->getPPS()->getEnableTMVPFlag() && pcPic->getTLayer() == 0 ) { pcSlice->decodingMarkingForNoTMVP( rcListPic, pcSlice->getPOC() ); } m_pcEncTop->selectReferencePictureSet(pcSlice, uiPOCCurr, iGOPid,rcListPic); pcSlice->getRPS()->setNumberOfLongtermPictures(0); if(pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false) != 0) { pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS()); } pcSlice->applyReferencePictureSet(rcListPic, pcSlice->getRPS()); #if H0566_TLA && H0566_TLA_SET_FOR_SWITCHING_POINTS if(pcSlice->getTLayer() > 0) { if(pcSlice->isTemporalLayerSwitchingPoint(rcListPic, pcSlice->getRPS())) { pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TLA); } } #endif pcSlice->setNumRefIdx( REF_PIC_LIST_0, min( m_pcCfg->getGOPEntry( (getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDV) ? MAX_GOP : iGOPid ).m_numRefPicsActive, (pcSlice->getRPS()->getNumberOfPictures() + pcSlice->getSPS()->getNumberOfUsableInterViewRefs()) ) ); pcSlice->setNumRefIdx( REF_PIC_LIST_1, min( m_pcCfg->getGOPEntry( (getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDV) ? MAX_GOP : iGOPid ).m_numRefPicsActive, (pcSlice->getRPS()->getNumberOfPictures() + pcSlice->getSPS()->getNumberOfUsableInterViewRefs()) ) ); TComRefPicListModification* refPicListModification = pcSlice->getRefPicListModification(); refPicListModification->setRefPicListModificationFlagL0( false ); #if !H0137_0138_LIST_MODIFICATION refPicListModification->setNumberOfRefPicListModificationsL0(0); #endif refPicListModification->setRefPicListModificationFlagL1( false ); #if !H0137_0138_LIST_MODIFICATION refPicListModification->setNumberOfRefPicListModificationsL1(0); #endif xSetRefPicListModificationsMvc( pcSlice, uiPOCCurr, iGOPid ); #if ADAPTIVE_QP_SELECTION pcSlice->setTrQuant( m_pcEncTop->getTrQuant() ); #endif // Set reference list TAppEncTop* tAppEncTop = m_pcEncTop->getEncTop(); assert( tAppEncTop != NULL ); TComPic * const pcTexturePic = m_pcEncTop->getIsDepth() ? tAppEncTop->getPicFromView( m_pcEncTop->getViewId(), pcSlice->getPOC(), false ) : NULL; assert( !m_pcEncTop->getIsDepth() || pcTexturePic != NULL ); pcSlice->setTexturePic( pcTexturePic ); std::vector apcInterViewRefPics = tAppEncTop->getInterViewRefPics( m_pcEncTop->getViewId(), pcSlice->getPOC(), m_pcEncTop->getIsDepth(), pcSlice->getSPS() ); pcSlice->setRefPicListMvc( rcListPic, apcInterViewRefPics ); // Slice info. refinement if( pcSlice->getSliceType() == B_SLICE ) { if( m_pcCfg->getGOPEntry( (getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDV) ? MAX_GOP : iGOPid ).m_sliceType == 'P' ) { pcSlice->setSliceType( P_SLICE ); } } if (pcSlice->getSliceType() != B_SLICE || !pcSlice->getSPS()->getUseLComb()) { pcSlice->setNumRefIdx(REF_PIC_LIST_C, 0); pcSlice->setRefPicListCombinationFlag(false); pcSlice->setRefPicListModificationFlagLC(false); } else { pcSlice->setRefPicListCombinationFlag(pcSlice->getSPS()->getUseLComb()); pcSlice->setRefPicListModificationFlagLC(pcSlice->getSPS()->getLCMod()); pcSlice->setNumRefIdx(REF_PIC_LIST_C, pcSlice->getNumRefIdx(REF_PIC_LIST_0)); } if (pcSlice->getSliceType() == B_SLICE) { pcSlice->setColDir(uiColDir); Bool bLowDelay = true; Int iCurrPOC = pcSlice->getPOC(); Int iRefIdx = 0; for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_0) && bLowDelay; iRefIdx++) { if ( pcSlice->getRefPic(REF_PIC_LIST_0, iRefIdx)->getPOC() > iCurrPOC ) { bLowDelay = false; } } for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_1) && bLowDelay; iRefIdx++) { if ( pcSlice->getRefPic(REF_PIC_LIST_1, iRefIdx)->getPOC() > iCurrPOC ) { bLowDelay = false; } } pcSlice->setCheckLDC(bLowDelay); } uiColDir = 1-uiColDir; //------------------------------------------------------------- pcSlice->setRefPOCnViewListsMvc(); pcSlice->setNoBackPredFlag( false ); if ( pcSlice->getSliceType() == B_SLICE && !pcSlice->getRefPicListCombinationFlag()) { if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) ) { pcSlice->setNoBackPredFlag( true ); int i; for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ ) { if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) ) { pcSlice->setNoBackPredFlag( false ); break; } } } } if(pcSlice->getNoBackPredFlag()) { pcSlice->setNumRefIdx(REF_PIC_LIST_C, 0); } pcSlice->generateCombinedList(); #if HHI_VSO Bool bUseVSO = m_pcEncTop->getUseVSO(); m_pcRdCost->setUseVSO( bUseVSO ); #if SAIT_VSO_EST_A0033 m_pcRdCost->setUseEstimatedVSD( m_pcEncTop->getUseEstimatedVSD() ); #endif if ( bUseVSO ) { Int iVSOMode = m_pcEncTop->getVSOMode(); m_pcRdCost->setVSOMode( iVSOMode ); #if HHI_VSO_DIST_INT m_pcRdCost->setAllowNegDist( m_pcEncTop->getAllowNegDist() ); #endif #if HHI_VSO_SPEEDUP_A0033 #else if ( iVSOMode == 4 ) { m_pcEncTop->getEncTop()->setupRenModel( pcSlice->getPOC(), pcSlice->getViewId(), m_pcEncTop->isDepthCoder() ? 1 : 0 ); } else { AOT(true); } #endif #if SAIT_VSO_EST_A0033 m_pcRdCost->setVideoRecPicYuv( m_pcEncTop->getEncTop()->getPicYuvFromView( pcSlice->getViewId(), pcSlice->getPOC(), false, true ) ); m_pcRdCost->setDepthPicYuv ( m_pcEncTop->getEncTop()->getPicYuvFromView( pcSlice->getViewId(), pcSlice->getPOC(), true, false ) ); #endif #if LGE_WVSO_A0119 Bool bWVSO = m_pcEncTop->getWVSO(); m_pcRdCost->setWVSO( bWVSO ); #endif } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// Compress a slice // Slice compression if (m_pcCfg->getUseASR()) { m_pcSliceEncoder->setSearchRange(pcSlice); } #if H0111_MVD_L1_ZERO Bool bGPBcheck=false; if ( pcSlice->getSliceType() == B_SLICE) { if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) ) { bGPBcheck=true; int i; for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ ) { if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) ) { bGPBcheck=false; break; } } } } if(bGPBcheck) { pcSlice->setMvdL1ZeroFlag(true); } else { pcSlice->setMvdL1ZeroFlag(false); } pcPic->getSlice(pcSlice->getSliceIdx())->setMvdL1ZeroFlag(pcSlice->getMvdL1ZeroFlag()); #endif UInt uiNumSlices = 1; UInt uiInternalAddress = pcPic->getNumPartInCU()-4; UInt uiExternalAddress = pcPic->getPicSym()->getNumberOfCUsInFrame()-1; UInt uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); UInt uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while(uiPosX>=uiWidth||uiPosY>=uiHeight) { uiInternalAddress--; uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } uiInternalAddress++; if(uiInternalAddress==pcPic->getNumPartInCU()) { uiInternalAddress = 0; uiExternalAddress++; } UInt uiRealEndAddress = uiExternalAddress*pcPic->getNumPartInCU()+uiInternalAddress; UInt uiCummulativeTileWidth; UInt uiCummulativeTileHeight; Int p, j; UInt uiEncCUAddr; #if !REMOVE_TILE_DEPENDENCE if(pcSlice->getPPS()->getTileBehaviorControlPresentFlag() == 1) { pcPic->getPicSym()->setTileBoundaryIndependenceIdr( pcSlice->getPPS()->getTileBoundaryIndependenceIdr() ); } else { pcPic->getPicSym()->setTileBoundaryIndependenceIdr( pcSlice->getPPS()->getSPS()->getTileBoundaryIndependenceIdr() ); } #endif if( pcSlice->getPPS()->getColumnRowInfoPresent() == 1 ) //derive the tile parameters from PPS { //set NumColumnsMinus1 and NumRowsMinus1 pcPic->getPicSym()->setNumColumnsMinus1( pcSlice->getPPS()->getNumColumnsMinus1() ); pcPic->getPicSym()->setNumRowsMinus1( pcSlice->getPPS()->getNumRowsMinus1() ); //create the TComTileArray pcPic->getPicSym()->xCreateTComTileArray(); if( pcSlice->getPPS()->getUniformSpacingIdr() == 1 ) { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )-> setTileWidth( (p+1)*pcPic->getPicSym()->getFrameWidthInCU()/(pcPic->getPicSym()->getNumColumnsMinus1()+1) - (p*pcPic->getPicSym()->getFrameWidthInCU())/(pcPic->getPicSym()->getNumColumnsMinus1()+1) ); } } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )-> setTileHeight( (p+1)*pcPic->getPicSym()->getFrameHeightInCU()/(pcPic->getPicSym()->getNumRowsMinus1()+1) - (p*pcPic->getPicSym()->getFrameHeightInCU())/(pcPic->getPicSym()->getNumRowsMinus1()+1) ); } } } else { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { uiCummulativeTileWidth = 0; for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1(); p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )->setTileWidth( pcSlice->getPPS()->getColumnWidth(p) ); uiCummulativeTileWidth += pcSlice->getPPS()->getColumnWidth(p); } pcPic->getPicSym()->getTComTile(j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p)->setTileWidth( pcPic->getPicSym()->getFrameWidthInCU()-uiCummulativeTileWidth ); } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { uiCummulativeTileHeight = 0; for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1(); p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )->setTileHeight( pcSlice->getPPS()->getRowHeight(p) ); uiCummulativeTileHeight += pcSlice->getPPS()->getRowHeight(p); } pcPic->getPicSym()->getTComTile(p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j)->setTileHeight( pcPic->getPicSym()->getFrameHeightInCU()-uiCummulativeTileHeight ); } } } else //derive the tile parameters from SPS { //set NumColumnsMins1 and NumRowsMinus1 pcPic->getPicSym()->setNumColumnsMinus1( pcSlice->getSPS()->getNumColumnsMinus1() ); pcPic->getPicSym()->setNumRowsMinus1( pcSlice->getSPS()->getNumRowsMinus1() ); //create the TComTileArray pcPic->getPicSym()->xCreateTComTileArray(); if( pcSlice->getSPS()->getUniformSpacingIdr() == 1 ) { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )-> setTileWidth( (p+1)*pcPic->getPicSym()->getFrameWidthInCU()/(pcPic->getPicSym()->getNumColumnsMinus1()+1) - (p*pcPic->getPicSym()->getFrameWidthInCU())/(pcPic->getPicSym()->getNumColumnsMinus1()+1) ); } } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1()+1; p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )-> setTileHeight( (p+1)*pcPic->getPicSym()->getFrameHeightInCU()/(pcPic->getPicSym()->getNumRowsMinus1()+1) - (p*pcPic->getPicSym()->getFrameHeightInCU())/(pcPic->getPicSym()->getNumRowsMinus1()+1) ); } } } else { //set the width for each tile for(j=0; j < pcPic->getPicSym()->getNumRowsMinus1()+1; j++) { uiCummulativeTileWidth = 0; for(p=0; p < pcPic->getPicSym()->getNumColumnsMinus1(); p++) { pcPic->getPicSym()->getTComTile( j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p )->setTileWidth( pcSlice->getSPS()->getColumnWidth(p) ); uiCummulativeTileWidth += pcSlice->getSPS()->getColumnWidth(p); } pcPic->getPicSym()->getTComTile(j * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + p)->setTileWidth( pcPic->getPicSym()->getFrameWidthInCU()-uiCummulativeTileWidth ); } //set the height for each tile for(j=0; j < pcPic->getPicSym()->getNumColumnsMinus1()+1; j++) { uiCummulativeTileHeight = 0; for(p=0; p < pcPic->getPicSym()->getNumRowsMinus1(); p++) { pcPic->getPicSym()->getTComTile( p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j )->setTileHeight( pcSlice->getSPS()->getRowHeight(p) ); uiCummulativeTileHeight += pcSlice->getSPS()->getRowHeight(p); } pcPic->getPicSym()->getTComTile(p * (pcPic->getPicSym()->getNumColumnsMinus1()+1) + j)->setTileHeight( pcPic->getPicSym()->getFrameHeightInCU()-uiCummulativeTileHeight ); } } } //initialize each tile of the current picture pcPic->getPicSym()->xInitTiles(); // Allocate some coders, now we know how many tiles there are. Int iNumSubstreams = pcSlice->getPPS()->getNumSubstreams(); //generate the Coding Order Map and Inverse Coding Order Map for(p=0, uiEncCUAddr=0; pgetPicSym()->getNumberOfCUsInFrame(); p++, uiEncCUAddr = pcPic->getPicSym()->xCalculateNxtCUAddr(uiEncCUAddr)) { pcPic->getPicSym()->setCUOrderMap(p, uiEncCUAddr); pcPic->getPicSym()->setInverseCUOrderMap(uiEncCUAddr, p); } pcPic->getPicSym()->setCUOrderMap(pcPic->getPicSym()->getNumberOfCUsInFrame(), pcPic->getPicSym()->getNumberOfCUsInFrame()); pcPic->getPicSym()->setInverseCUOrderMap(pcPic->getPicSym()->getNumberOfCUsInFrame(), pcPic->getPicSym()->getNumberOfCUsInFrame()); if (pcSlice->getPPS()->getEntropyCodingMode()) { // Allocate some coders, now we know how many tiles there are. m_pcEncTop->createWPPCoders(iNumSubstreams); pcSbacCoders = m_pcEncTop->getSbacCoders(); pcSubstreamsOut = new TComOutputBitstream[iNumSubstreams]; } UInt uiStartCUAddrSliceIdx = 0; // used to index "m_uiStoredStartCUAddrForEncodingSlice" containing locations of slice boundaries UInt uiStartCUAddrSlice = 0; // used to keep track of current slice's starting CU addr. pcSlice->setSliceCurStartCUAddr( uiStartCUAddrSlice ); // Setting "start CU addr" for current slice memset(m_uiStoredStartCUAddrForEncodingSlice, 0, sizeof(UInt) * (pcPic->getPicSym()->getNumberOfCUsInFrame()*pcPic->getNumPartInCU()+1)); UInt uiStartCUAddrEntropySliceIdx = 0; // used to index "m_uiStoredStartCUAddrForEntropyEncodingSlice" containing locations of slice boundaries UInt uiStartCUAddrEntropySlice = 0; // used to keep track of current Entropy slice's starting CU addr. pcSlice->setEntropySliceCurStartCUAddr( uiStartCUAddrEntropySlice ); // Setting "start CU addr" for current Entropy slice memset(m_uiStoredStartCUAddrForEncodingEntropySlice, 0, sizeof(UInt) * (pcPic->getPicSym()->getNumberOfCUsInFrame()*pcPic->getNumPartInCU()+1)); UInt uiNextCUAddr = 0; m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx++] = uiNextCUAddr; m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx++] = uiNextCUAddr; #if DEPTH_MAP_GENERATION // init view component and predict virtual depth map m_pcDepthMapGenerator->initViewComponent( pcPic ); #if !QC_MULTI_DIS_CAN m_pcDepthMapGenerator->predictDepthMap ( pcPic ); #endif #endif #if HHI_INTER_VIEW_MOTION_PRED m_pcDepthMapGenerator->covertOrgDepthMap( pcPic ); #endif #if HHI_INTER_VIEW_RESIDUAL_PRED m_pcResidualGenerator->initViewComponent( pcPic ); #endif while(uiNextCUAddrsetNextSlice ( false ); pcSlice->setNextEntropySlice( false ); assert(pcPic->getNumAllocatedSlice() == uiStartCUAddrSliceIdx); m_pcSliceEncoder->precompressSlice( pcPic ); m_pcSliceEncoder->compressSlice ( pcPic ); Bool bNoBinBitConstraintViolated = (!pcSlice->isNextSlice() && !pcSlice->isNextEntropySlice()); if (pcSlice->isNextSlice() || (bNoBinBitConstraintViolated && m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_LCU_IN_SLICE)) { uiStartCUAddrSlice = pcSlice->getSliceCurEndCUAddr(); // Reconstruction slice m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx++] = uiStartCUAddrSlice; // Entropy slice if (uiStartCUAddrEntropySliceIdx>0 && m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx-1] != uiStartCUAddrSlice) { m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx++] = uiStartCUAddrSlice; } if (uiStartCUAddrSlice < uiRealEndAddress) { pcPic->allocateNewSlice(); pcPic->setCurrSliceIdx ( uiStartCUAddrSliceIdx-1 ); m_pcSliceEncoder->setSliceIdx ( uiStartCUAddrSliceIdx-1 ); pcSlice = pcPic->getSlice ( uiStartCUAddrSliceIdx-1 ); pcSlice->copySliceInfo ( pcPic->getSlice(0) ); pcSlice->setSliceIdx ( uiStartCUAddrSliceIdx-1 ); pcSlice->setSliceCurStartCUAddr ( uiStartCUAddrSlice ); pcSlice->setEntropySliceCurStartCUAddr ( uiStartCUAddrSlice ); pcSlice->setSliceBits(0); uiNumSlices ++; } } else if (pcSlice->isNextEntropySlice() || (bNoBinBitConstraintViolated && m_pcCfg->getEntropySliceMode()==SHARP_FIXED_NUMBER_OF_LCU_IN_ENTROPY_SLICE)) { uiStartCUAddrEntropySlice = pcSlice->getEntropySliceCurEndCUAddr(); m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx++] = uiStartCUAddrEntropySlice; pcSlice->setEntropySliceCurStartCUAddr( uiStartCUAddrEntropySlice ); } else { uiStartCUAddrSlice = pcSlice->getSliceCurEndCUAddr(); uiStartCUAddrEntropySlice = pcSlice->getEntropySliceCurEndCUAddr(); } uiNextCUAddr = (uiStartCUAddrSlice > uiStartCUAddrEntropySlice) ? uiStartCUAddrSlice : uiStartCUAddrEntropySlice; } m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx++] = pcSlice->getSliceCurEndCUAddr(); m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx++] = pcSlice->getSliceCurEndCUAddr(); pcSlice = pcPic->getSlice(0); #if HHI_INTER_VIEW_RESIDUAL_PRED // set residual picture m_pcResidualGenerator->setRecResidualPic( pcPic ); #endif #if DEPTH_MAP_GENERATION #if !QC_MULTI_DIS_CAN // update virtual depth map m_pcDepthMapGenerator->updateDepthMap( pcPic ); #endif #endif //-- Loop filter Bool bLFCrossTileBoundary = (pcSlice->getPPS()->getTileBehaviorControlPresentFlag() == 1)? (pcSlice->getPPS()->getLFCrossTileBoundaryFlag()):(pcSlice->getPPS()->getSPS()->getLFCrossTileBoundaryFlag()); #if DBL_CONTROL m_pcLoopFilter->setCfg(pcSlice->getPPS()->getDeblockingFilterControlPresent(), pcSlice->getLoopFilterDisable(), pcSlice->getLoopFilterBetaOffset(), pcSlice->getLoopFilterTcOffset(), bLFCrossTileBoundary); #else m_pcLoopFilter->setCfg(pcSlice->getLoopFilterDisable(), pcSlice->getLoopFilterBetaOffset(), pcSlice->getLoopFilterTcOffset(), bLFCrossTileBoundary); #endif m_pcLoopFilter->loopFilterPic( pcPic ); pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) { Int sliceGranularity = pcSlice->getPPS()->getSliceGranularity(); pcPic->createNonDBFilterInfo(m_uiStoredStartCUAddrForEncodingSlice, uiNumSlices, sliceGranularity, pcSlice->getSPS()->getLFCrossSliceBoundaryFlag(),pcPic->getPicSym()->getNumTiles() ,bLFCrossTileBoundary); } pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseSAO()) { m_pcSAO->createPicSaoInfo(pcPic, uiNumSlices); } #if LCU_SYNTAX_ALF AlfParamSet* alfSliceParams = NULL; std::vector* alfCUCtrlParam = NULL; #else std::vector vAlfCUCtrlParam; #endif pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseALF()) { #if LCU_SYNTAX_ALF m_pcAdaptiveLoopFilter->createPicAlfInfo(pcPic, uiNumSlices, pcSlice->getSliceQp()); m_pcAdaptiveLoopFilter->initALFEnc(m_pcCfg->getALFParamInSlice(), m_pcCfg->getALFPicBasedEncode(), uiNumSlices, alfSliceParams, alfCUCtrlParam); #else vAlfCUCtrlParam.resize(uiNumSlices); m_pcAdaptiveLoopFilter->createPicAlfInfo(pcPic, uiNumSlices); #endif } /////////////////////////////////////////////////////////////////////////////////////////////////// File writing // Set entropy coder m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); /* write various header sets. */ if ( m_bSeqFirst ) { #if VIDYO_VPS_INTEGRATION { OutputNALUnit nalu(NAL_UNIT_VPS, true, m_pcEncTop->getLayerId()); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodeVPS(m_pcEncTop->getEncTop()->getVPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); } #endif #if NAL_REF_FLAG #if VIDYO_VPS_INTEGRATION OutputNALUnit nalu(NAL_UNIT_SPS, true, m_pcEncTop->getLayerId()); #else OutputNALUnit nalu(NAL_UNIT_SPS, true, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif #else OutputNALUnit nalu(NAL_UNIT_SPS, NAL_REF_IDC_PRIORITY_HIGHEST, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); #if TILES_WPP_ENTRY_POINT_SIGNALLING pcSlice->getSPS()->setNumSubstreams( pcSlice->getPPS()->getNumSubstreams() ); #endif #if HHI_MPI m_pcEntropyCoder->encodeSPS(pcSlice->getSPS(), m_pcEncTop->getIsDepth()); #else m_pcEntropyCoder->encodeSPS(pcSlice->getSPS()); #endif writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); #if NAL_REF_FLAG #if VIDYO_VPS_INTEGRATION nalu = NALUnit(NAL_UNIT_PPS, true, m_pcEncTop->getLayerId()); #else nalu = NALUnit(NAL_UNIT_PPS, true, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif #else nalu = NALUnit(NAL_UNIT_PPS, NAL_REF_IDC_PRIORITY_HIGHEST, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodePPS(pcSlice->getPPS()); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); m_bSeqFirst = false; } /* use the main bitstream buffer for storing the marshalled picture */ m_pcEntropyCoder->setBitstream(NULL); uiStartCUAddrSliceIdx = 0; uiStartCUAddrSlice = 0; uiStartCUAddrEntropySliceIdx = 0; uiStartCUAddrEntropySlice = 0; uiNextCUAddr = 0; pcSlice = pcPic->getSlice(uiStartCUAddrSliceIdx); Int processingState = (pcSlice->getSPS()->getUseALF() || pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getScalingListFlag() || pcSlice->getSPS()->getUseDF())?(EXECUTE_INLOOPFILTER):(ENCODE_SLICE); static Int iCurrAPSIdx = 0; Int iCodedAPSIdx = 0; TComSlice* pcSliceForAPS = NULL; bool skippedSlice=false; while (uiNextCUAddr < uiRealEndAddress) // Iterate over all slices { switch(processingState) { case ENCODE_SLICE: { pcSlice->setNextSlice ( false ); pcSlice->setNextEntropySlice( false ); if (uiNextCUAddr == m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx]) { pcSlice = pcPic->getSlice(uiStartCUAddrSliceIdx); #if COLLOCATED_REF_IDX if(uiStartCUAddrSliceIdx > 0 && pcSlice->getSliceType()!= I_SLICE) { pcSlice->checkColRefIdx(uiStartCUAddrSliceIdx, pcPic); } #endif pcPic->setCurrSliceIdx(uiStartCUAddrSliceIdx); m_pcSliceEncoder->setSliceIdx(uiStartCUAddrSliceIdx); assert(uiStartCUAddrSliceIdx == pcSlice->getSliceIdx()); // Reconstruction slice pcSlice->setSliceCurStartCUAddr( uiNextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setSliceCurEndCUAddr ( m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx+1 ] ); // Entropy slice pcSlice->setEntropySliceCurStartCUAddr( uiNextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setEntropySliceCurEndCUAddr ( m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx+1 ] ); pcSlice->setNextSlice ( true ); uiStartCUAddrSliceIdx++; uiStartCUAddrEntropySliceIdx++; } else if (uiNextCUAddr == m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx]) { // Entropy slice pcSlice->setEntropySliceCurStartCUAddr( uiNextCUAddr ); // to be used in encodeSlice() + context restriction pcSlice->setEntropySliceCurEndCUAddr ( m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx+1 ] ); pcSlice->setNextEntropySlice( true ); uiStartCUAddrEntropySliceIdx++; } pcSlice->setRPS(pcPic->getSlice(0)->getRPS()); pcSlice->setRPSidx(pcPic->getSlice(0)->getRPSidx()); UInt uiDummyStartCUAddr; UInt uiDummyBoundingCUAddr; m_pcSliceEncoder->xDetermineStartAndBoundingCUAddr(uiDummyStartCUAddr,uiDummyBoundingCUAddr,pcPic,true); uiInternalAddress = pcPic->getPicSym()->getPicSCUAddr(pcSlice->getEntropySliceCurEndCUAddr()-1) % pcPic->getNumPartInCU(); uiExternalAddress = pcPic->getPicSym()->getPicSCUAddr(pcSlice->getEntropySliceCurEndCUAddr()-1) / pcPic->getNumPartInCU(); uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while(uiPosX>=uiWidth||uiPosY>=uiHeight) { uiInternalAddress--; uiPosX = ( uiExternalAddress % pcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / pcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } uiInternalAddress++; if(uiInternalAddress==pcPic->getNumPartInCU()) { uiInternalAddress = 0; uiExternalAddress = pcPic->getPicSym()->getCUOrderMap(pcPic->getPicSym()->getInverseCUOrderMap(uiExternalAddress)+1); } UInt uiEndAddress = pcPic->getPicSym()->getPicSCUEncOrder(uiExternalAddress*pcPic->getNumPartInCU()+uiInternalAddress); if(uiEndAddress<=pcSlice->getEntropySliceCurStartCUAddr()) { UInt uiBoundingAddrSlice, uiBoundingAddrEntropySlice; uiBoundingAddrSlice = m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx]; uiBoundingAddrEntropySlice = m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx]; uiNextCUAddr = min(uiBoundingAddrSlice, uiBoundingAddrEntropySlice); if(pcSlice->isNextSlice()) { skippedSlice=true; } continue; } if(skippedSlice) { pcSlice->setNextSlice ( true ); pcSlice->setNextEntropySlice( false ); } skippedSlice=false; if (pcSlice->getPPS()->getEntropyCodingMode()) { pcSlice->allocSubstreamSizes( iNumSubstreams ); for ( UInt ui = 0 ; ui < iNumSubstreams; ui++ ) pcSubstreamsOut[ui].clear(); } m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); /* start slice NALunit */ #if H0388 #if NAL_REF_FLAG OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->isReferenced(), #if !VIDYO_VPS_INTEGRATION m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth(), pcSlice->getTLayer() ); #else m_pcEncTop->getLayerId(), pcSlice->getTLayer() ); #endif #else OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->isReferenced() ? NAL_REF_IDC_PRIORITY_HIGHEST: NAL_REF_IDC_PRIORITY_LOWEST, #if !VIDYO_VPS_INTEGRATION m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth(), pcSlice->getTLayer() ); #else m_pcEncTop->getLayerId(), pcSlice->getTLayer() ); #endif #endif #else OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->isReferenced() ? NAL_REF_IDC_PRIORITY_HIGHEST: NAL_REF_IDC_PRIORITY_LOWEST, #if !VIDYO_VPS_INTEGRATION m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth(), pcSlice->getTLayer(), true ); #else m_pcEncTop->getLayerId(), pcSlice->getTLayer(), true ); #endif #endif Bool bEntropySlice = (!pcSlice->isNextSlice()); if (!bEntropySlice) { uiOneBitstreamPerSliceLength = 0; // start of a new slice } // used while writing slice header Int iTransmitLWHeader = (m_pcCfg->getTileMarkerFlag()==0) ? 0 : 1; pcSlice->setTileMarkerFlag ( iTransmitLWHeader ); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); #if !CABAC_INIT_FLAG pcSlice->setCABACinitIDC(pcSlice->getSliceType()); #endif m_pcEntropyCoder->encodeSliceHeader(pcSlice); if(pcSlice->isNextSlice()) { if (pcSlice->getSPS()->getUseALF()) { #if LCU_SYNTAX_ALF if(pcSlice->getAlfEnabledFlag()) #else if(pcSlice->getAPS()->getAlfEnabled()) #endif { #if LCU_SYNTAX_ALF if( pcSlice->getSPS()->getUseALFCoefInSlice()) { Int iNumSUinLCU = 1<< (g_uiMaxCUDepth << 1); Int firstLCUAddr = pcSlice->getSliceCurStartCUAddr() / iNumSUinLCU; Bool isAcrossSlice = pcSlice->getSPS()->getLFCrossSliceBoundaryFlag(); m_pcEntropyCoder->encodeAlfParam( &(alfSliceParams[pcSlice->getSliceIdx()]), false, firstLCUAddr, isAcrossSlice); } if( !pcSlice->getSPS()->getUseALFCoefInSlice()) { AlfCUCtrlInfo& cAlfCUCtrlParam = (*alfCUCtrlParam)[pcSlice->getSliceIdx()]; #else AlfCUCtrlInfo& cAlfCUCtrlParam = vAlfCUCtrlParam[pcSlice->getSliceIdx()]; #endif if(cAlfCUCtrlParam.cu_control_flag) { m_pcEntropyCoder->setAlfCtrl( true ); m_pcEntropyCoder->setMaxAlfCtrlDepth(cAlfCUCtrlParam.alf_max_depth); m_pcCavlcCoder->setAlfCtrl(true); m_pcCavlcCoder->setMaxAlfCtrlDepth(cAlfCUCtrlParam.alf_max_depth); } else { m_pcEntropyCoder->setAlfCtrl(false); } m_pcEntropyCoder->encodeAlfCtrlParam(cAlfCUCtrlParam, m_pcAdaptiveLoopFilter->getNumCUsInPic()); #if LCU_SYNTAX_ALF } #endif } } } m_pcEntropyCoder->encodeTileMarkerFlag(pcSlice); // is it needed? { if (!bEntropySlice) { pcBitstreamRedirect->writeAlignOne(); } else { // We've not completed our slice header info yet, do the alignment later. } m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); for ( UInt ui = 0 ; ui < pcSlice->getPPS()->getNumSubstreams() ; ui++ ) { m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->resetEntropy (); } } if(pcSlice->isNextSlice()) { // set entropy coder for writing m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); { for ( UInt ui = 0 ; ui < pcSlice->getPPS()->getNumSubstreams() ; ui++ ) { m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->resetEntropy (); } pcSbacCoders[0].load(m_pcSbacCoder); m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[0], pcSlice ); //ALF is written in substream #0 with CABAC coder #0 (see ALF param encoding below) } m_pcEntropyCoder->resetEntropy (); // File writing if (!bEntropySlice) { m_pcEntropyCoder->setBitstream(pcBitstreamRedirect); } else { m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); } // for now, override the TILES_DECODER setting in order to write substreams. m_pcEntropyCoder->setBitstream ( &pcSubstreamsOut[0] ); } pcSlice->setFinalized(true); m_pcSbacCoder->load( &pcSbacCoders[0] ); pcSlice->setTileOffstForMultES( uiOneBitstreamPerSliceLength ); if (!bEntropySlice) { pcSlice->setTileLocationCount ( 0 ); m_pcSliceEncoder->encodeSlice(pcPic, pcBitstreamRedirect, pcSubstreamsOut); // redirect is only used for CAVLC tile position info. } else { m_pcSliceEncoder->encodeSlice(pcPic, &nalu.m_Bitstream, pcSubstreamsOut); // nalu.m_Bitstream is only used for CAVLC tile position info. } { // Construct the final bitstream by flushing and concatenating substreams. // The final bitstream is either nalu.m_Bitstream or pcBitstreamRedirect; UInt* puiSubstreamSizes = pcSlice->getSubstreamSizes(); UInt uiTotalCodedSize = 0; // for padding calcs. UInt uiNumSubstreamsPerTile = iNumSubstreams; #if !REMOVE_TILE_DEPENDENCE #if WPP_SIMPLIFICATION if (pcPic->getPicSym()->getTileBoundaryIndependenceIdr() && iNumSubstreams > 1) #else if (pcPic->getPicSym()->getTileBoundaryIndependenceIdr() && pcSlice->getPPS()->getEntropyCodingSynchro()) #endif uiNumSubstreamsPerTile /= pcPic->getPicSym()->getNumTiles(); #else #if WPP_SIMPLIFICATION if (iNumSubstreams > 1) #else if (pcSlice->getPPS()->getEntropyCodingSynchro()) #endif { uiNumSubstreamsPerTile /= pcPic->getPicSym()->getNumTiles(); } #endif for ( UInt ui = 0 ; ui < iNumSubstreams; ui++ ) { // Flush all substreams -- this includes empty ones. // Terminating bit and flush. m_pcEntropyCoder->setEntropyCoder ( &pcSbacCoders[ui], pcSlice ); m_pcEntropyCoder->setBitstream ( &pcSubstreamsOut[ui] ); m_pcEntropyCoder->encodeTerminatingBit( 1 ); m_pcEntropyCoder->encodeSliceFinish(); pcSubstreamsOut[ui].write( 1, 1 ); // stop bit. #if TILES_WPP_ENTRY_POINT_SIGNALLING pcSubstreamsOut[ui].writeAlignZero(); #endif // Byte alignment is necessary between tiles when tiles are independent. uiTotalCodedSize += pcSubstreamsOut[ui].getNumberOfWrittenBits(); { Bool bNextSubstreamInNewTile = ((ui+1) < iNumSubstreams) && ((ui+1)%uiNumSubstreamsPerTile == 0); if (bNextSubstreamInNewTile) { // byte align. while (uiTotalCodedSize&0x7) { pcSubstreamsOut[ui].write(0, 1); uiTotalCodedSize++; } } Bool bRecordOffsetNext = m_pcCfg->getTileLocationInSliceHeaderFlag() && bNextSubstreamInNewTile; if (bRecordOffsetNext) pcSlice->setTileLocation(ui/uiNumSubstreamsPerTile, pcSlice->getTileOffstForMultES()+(uiTotalCodedSize>>3)); } if (ui+1 < pcSlice->getPPS()->getNumSubstreams()) puiSubstreamSizes[ui] = pcSubstreamsOut[ui].getNumberOfWrittenBits(); } // Complete the slice header info. m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); #if TILES_WPP_ENTRY_POINT_SIGNALLING if (m_pcCfg->getTileLocationInSliceHeaderFlag()==0) { pcSlice->setTileLocationCount( 0 ); } m_pcEntropyCoder->encodeTilesWPPEntryPoint( pcSlice ); #else m_pcEntropyCoder->encodeSliceHeaderSubstreamTable(pcSlice); #endif // Substreams... TComOutputBitstream *pcOut = pcBitstreamRedirect; // xWriteTileLocation will perform byte-alignment... { if (bEntropySlice) { // In these cases, padding is necessary here. pcOut = &nalu.m_Bitstream; pcOut->writeAlignOne(); } } UInt uiAccumulatedLength = 0; for ( UInt ui = 0 ; ui < pcSlice->getPPS()->getNumSubstreams(); ui++ ) { pcOut->addSubstream(&pcSubstreamsOut[ui]); // Update tile marker location information for (Int uiMrkIdx = 0; uiMrkIdx < pcSubstreamsOut[ui].getTileMarkerLocationCount(); uiMrkIdx++) { UInt uiBottom = pcOut->getTileMarkerLocationCount(); pcOut->setTileMarkerLocation ( uiBottom, uiAccumulatedLength + pcSubstreamsOut[ui].getTileMarkerLocation( uiMrkIdx ) ); pcOut->setTileMarkerLocationCount ( uiBottom + 1 ); } uiAccumulatedLength = (pcOut->getNumberOfWrittenBits() >> 3); } } UInt uiBoundingAddrSlice, uiBoundingAddrEntropySlice; uiBoundingAddrSlice = m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx]; uiBoundingAddrEntropySlice = m_uiStoredStartCUAddrForEncodingEntropySlice[uiStartCUAddrEntropySliceIdx]; uiNextCUAddr = min(uiBoundingAddrSlice, uiBoundingAddrEntropySlice); #if !REMOVE_TILE_DEPENDENCE Bool bNextCUInNewSlice = (uiNextCUAddr >= uiRealEndAddress) || (uiNextCUAddr == m_uiStoredStartCUAddrForEncodingSlice[uiStartCUAddrSliceIdx]); #endif // If current NALU is the first NALU of slice (containing slice header) and more NALUs exist (due to multiple entropy slices) then buffer it. // If current NALU is the last NALU of slice and a NALU was buffered, then (a) Write current NALU (b) Update an write buffered NALU at approproate location in NALU list. Bool bNALUAlignedWrittenToList = false; // used to ensure current NALU is not written more than once to the NALU list. #if !REMOVE_TILE_DEPENDENCE if (pcSlice->getSPS()->getTileBoundaryIndependenceIdr() && !pcSlice->getSPS()->getTileBoundaryIndependenceIdr()) { if (bNextCUInNewSlice) { if (!bEntropySlice) // there were no entropy slices { xWriteTileLocationToSliceHeader(nalu, pcBitstreamRedirect, pcSlice); } // (a) writing current NALU writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); bNALUAlignedWrittenToList = true; // (b) update and write buffered NALU if (bEntropySlice) // if entropy slices existed in the slice then perform concatenation for the buffered nalu-bitstream and buffered payload bitstream { // Perform bitstream concatenation of slice header and partial slice payload xWriteTileLocationToSliceHeader((*naluBuffered), pcBitstreamRedirect, pcSlice); if (bIteratorAtListStart) { itLocationToPushSliceHeaderNALU = accessUnit.begin(); } else { itLocationToPushSliceHeaderNALU++; } accessUnit.insert(itLocationToPushSliceHeaderNALU, (new NALUnitEBSP((*naluBuffered))) ); // free buffered nalu delete naluBuffered; naluBuffered = NULL; } } else // another entropy slice exists { // Is this start-of-slice NALU? i.e. the one containing slice header. If Yes, then buffer it. if (!bEntropySlice) { // store a pointer to where NALU for slice header is to be written in NALU list itLocationToPushSliceHeaderNALU = accessUnit.end(); if (accessUnit.begin() == accessUnit.end()) { bIteratorAtListStart = true; } else { bIteratorAtListStart = false; itLocationToPushSliceHeaderNALU--; } // buffer nalu for later writing #if H0388 naluBuffered = new OutputNALUnit( pcSlice->getNalUnitType(), pcSlice->isReferenced() ? NAL_REF_IDC_PRIORITY_HIGHEST: NAL_REF_IDC_PRIORITY_LOWEST, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth(), pcSlice->getTLayer() ); #else naluBuffered = new OutputNALUnit(pcSlice->getNalUnitType(), pcSlice->isReferenced() ? NAL_REF_IDC_PRIORITY_HIGHEST: NAL_REF_IDC_PRIORITY_LOWEST, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth(), pcSlice->getTLayer(), true); #endif copyNaluData( (*naluBuffered), nalu ); // perform byte-alignment to get appropriate bitstream length (used for explicit tile location signaling in slice header) writeRBSPTrailingBits((*pcBitstreamRedirect)); bNALUAlignedWrittenToList = true; // This is not really a write to bitsream but buffered for later. The flag is set to prevent writing of current NALU to list. uiOneBitstreamPerSliceLength += pcBitstreamRedirect->getNumberOfWrittenBits(); // length of bitstream after byte-alignment } else // write out entropy slice { writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); bNALUAlignedWrittenToList = true; uiOneBitstreamPerSliceLength += nalu.m_Bitstream.getNumberOfWrittenBits(); // length of bitstream after byte-alignment } } } else { #endif xWriteTileLocationToSliceHeader(nalu, pcBitstreamRedirect, pcSlice); writeRBSPTrailingBits(nalu.m_Bitstream); accessUnit.push_back(new NALUnitEBSP(nalu)); bNALUAlignedWrittenToList = true; uiOneBitstreamPerSliceLength += nalu.m_Bitstream.getNumberOfWrittenBits(); // length of bitstream after byte-alignment #if !REMOVE_TILE_DEPENDENCE } #endif if (!bNALUAlignedWrittenToList) { { nalu.m_Bitstream.writeAlignZero(); } accessUnit.push_back(new NALUnitEBSP(nalu)); uiOneBitstreamPerSliceLength += nalu.m_Bitstream.getNumberOfWrittenBits() + 24; // length of bitstream after byte-alignment + 3 byte startcode 0x000001 } processingState = ENCODE_SLICE; } break; case EXECUTE_INLOOPFILTER: { TComAPS cAPS; allocAPS(&cAPS, pcSlice->getSPS()); #if SAO_UNIT_INTERLEAVING cAPS.setSaoInterleavingFlag(m_pcCfg->getSaoInterleavingFlag()); #endif // set entropy coder for RD m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); if ( pcSlice->getSPS()->getUseSAO() ) { m_pcEntropyCoder->resetEntropy(); m_pcEntropyCoder->setBitstream( m_pcBitCounter ); m_pcSAO->startSaoEnc(pcPic, m_pcEntropyCoder, m_pcEncTop->getRDSbacCoder(), NULL); SAOParam& cSaoParam = *(cAPS.getSaoParam()); #if SAO_CHROMA_LAMBDA m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma()); #else #if ALF_CHROMA_LAMBDA m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambdaLuma()); #else m_pcSAO->SAOProcess(&cSaoParam, pcPic->getSlice(0)->getLambda()); #endif #endif m_pcSAO->endSaoEnc(); m_pcAdaptiveLoopFilter->PCMLFDisableProcess(pcPic); } // adaptive loop filter #if !LCU_SYNTAX_ALF UInt64 uiDist, uiBits; #endif if ( pcSlice->getSPS()->getUseALF()) { m_pcEntropyCoder->resetEntropy (); m_pcEntropyCoder->setBitstream ( m_pcBitCounter ); m_pcAdaptiveLoopFilter->startALFEnc(pcPic, m_pcEntropyCoder ); #if LCU_SYNTAX_ALF AlfParamSet* pAlfEncParam = (pcSlice->getSPS()->getUseALFCoefInSlice())?( alfSliceParams ):( cAPS.getAlfParam()); #if ALF_CHROMA_LAMBDA #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess(pAlfEncParam, alfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma(), m_pcEncTop->getInterViewSkip() ); #else m_pcAdaptiveLoopFilter->ALFProcess(pAlfEncParam, alfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma() ); #endif #else #if SAO_CHROMA_LAMBDA #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess(pAlfEncParam, alfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), m_pcEncTop->getInterViewSkip()); #else m_pcAdaptiveLoopFilter->ALFProcess(pAlfEncParam, alfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma()); #endif #else #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess(pAlfEncParam, alfCUCtrlParam, pcPic->getSlice(0)->getLambda(), m_pcEncTop->getInterViewSkip() ); #else m_pcAdaptiveLoopFilter->ALFProcess(pAlfEncParam, alfCUCtrlParam, pcPic->getSlice(0)->getLambda()); #endif #endif #endif #else ALFParam& cAlfParam = *( cAPS.getAlfParam()); #if ALF_CHROMA_LAMBDA #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess( &cAlfParam, &vAlfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma(), uiDist, uiBits, m_pcEncTop->getInterViewSkip()); #else m_pcAdaptiveLoopFilter->ALFProcess( &cAlfParam, &vAlfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma(), uiDist, uiBits); #endif #else #if SAO_CHROMA_LAMBDA #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess( &cAlfParam, &vAlfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), uiDist, uiBits, m_pcEncTop->getInterViewSkip()); #else m_pcAdaptiveLoopFilter->ALFProcess( &cAlfParam, &vAlfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), uiDist, uiBits); #endif #else #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess( &cAlfParam, &vAlfCUCtrlParam, pcPic->getSlice(0)->getLambdaLuma(), uiDist, uiBits, m_pcEncTop->getInterViewSkip()); #else m_pcAdaptiveLoopFilter->ALFProcess( &cAlfParam, &vAlfCUCtrlParam, pcPic->getSlice(0)->getLambda(), uiDist, uiBits); #endif #endif #endif #endif m_pcAdaptiveLoopFilter->endALFEnc(); m_pcAdaptiveLoopFilter->PCMLFDisableProcess(pcPic); } iCodedAPSIdx = iCurrAPSIdx; pcSliceForAPS = pcSlice; assignNewAPS(cAPS, iCodedAPSIdx, vAPS, pcSliceForAPS); iCurrAPSIdx = (iCurrAPSIdx +1)%MAX_NUM_SUPPORTED_APS; processingState = ENCODE_APS; //set APS link to the slices for(Int s=0; s< uiNumSlices; s++) { if (pcSlice->getSPS()->getUseALF()) { #if LCU_SYNTAX_ALF pcPic->getSlice(s)->setAlfEnabledFlag( (pcSlice->getSPS()->getUseALFCoefInSlice())?(alfSliceParams[s].isEnabled[ALF_Y]):(cAPS.getAlfEnabled()) ); #else pcPic->getSlice(s)->setAlfEnabledFlag((cAPS.getAlfParam()->alf_flag==1)?true:false); #endif } if (pcSlice->getSPS()->getUseSAO()) { pcPic->getSlice(s)->setSaoEnabledFlag((cAPS.getSaoParam()->bSaoFlag[0]==1)?true:false); } pcPic->getSlice(s)->setAPS(&(vAPS[iCodedAPSIdx])); pcPic->getSlice(s)->setAPSId(iCodedAPSIdx); } } break; case ENCODE_APS: { #if NAL_REF_FLAG #if VIDYO_VPS_INTEGRATION OutputNALUnit nalu(NAL_UNIT_APS, true, m_pcEncTop->getLayerId()); #else OutputNALUnit nalu(NAL_UNIT_APS, true, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif #else OutputNALUnit nalu(NAL_UNIT_APS, NAL_REF_IDC_PRIORITY_HIGHEST, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif encodeAPS(&(vAPS[iCodedAPSIdx]), nalu.m_Bitstream, pcSliceForAPS); accessUnit.push_back(new NALUnitEBSP(nalu)); processingState = ENCODE_SLICE; } break; default: { printf("Not a supported encoding state\n"); assert(0); exit(-1); } } } // end iteration over slices if(pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) { if(pcSlice->getSPS()->getUseSAO()) { m_pcSAO->destroyPicSaoInfo(); } if(pcSlice->getSPS()->getUseALF()) { #if LCU_SYNTAX_ALF m_pcAdaptiveLoopFilter->uninitALFEnc(alfSliceParams, alfCUCtrlParam); #endif m_pcAdaptiveLoopFilter->destroyPicAlfInfo(); } pcPic->destroyNonDBFilterInfo(); } #if HHI_INTERVIEW_SKIP if (pcPic->getUsedPelsMap()) pcPic->removeUsedPelsMapBuffer() ; #endif #if HHI_INTER_VIEW_MOTION_PRED pcPic->removeOrgDepthMapBuffer(); #endif // pcPic->compressMotion(); m_pocLastCoded = pcPic->getPOC(); //-- For time output for each slice Double dEncTime = (double)(clock()-iBeforeTime) / CLOCKS_PER_SEC; const char* digestStr = NULL; if (m_pcCfg->getPictureDigestEnabled()) { /* calculate MD5sum for entire reconstructed picture */ SEIpictureDigest sei_recon_picture_digest; sei_recon_picture_digest.method = SEIpictureDigest::MD5; calcMD5(*pcPic->getPicYuvRec(), sei_recon_picture_digest.digest); digestStr = digestToString(sei_recon_picture_digest.digest); #if NAL_REF_FLAG #if VIDYO_VPS_INTEGRATION OutputNALUnit nalu(NAL_UNIT_SEI, false, m_pcEncTop->getLayerId()); #else OutputNALUnit nalu(NAL_UNIT_SEI, false, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif #else OutputNALUnit nalu(NAL_UNIT_SEI, NAL_REF_IDC_PRIORITY_LOWEST, m_pcEncTop->getViewId(), m_pcEncTop->getIsDepth()); #endif /* write the SEI messages */ m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream); m_pcEntropyCoder->encodeSEI(sei_recon_picture_digest); writeRBSPTrailingBits(nalu.m_Bitstream); /* insert the SEI message NALUnit before any Slice NALUnits */ AccessUnit::iterator it = find_if(accessUnit.begin(), accessUnit.end(), mem_fun(&NALUnit::isSlice)); accessUnit.insert(it, new NALUnitEBSP(nalu)); } xCalculateAddPSNR( pcPic, pcPic->getPicYuvRec(), accessUnit, dEncTime ); if (digestStr) printf(" [MD5:%s]", digestStr); #if FIXED_ROUNDING_FRAME_MEMORY /* TODO: this should happen after copyToPic(pcPicYuvRecOut) */ pcPic->getPicYuvRec()->xFixedRoundingPic(); #endif pcPic->getPicYuvRec()->copyToPic(pcPicYuvRecOut); pcPic->setReconMark ( true ); pcPic->setUsedForTMVP ( true ); m_bFirst = false; m_iNumPicCoded++; /* logging: insert a newline at end of picture period */ printf("\n"); fflush(stdout); } delete[] pcSubstreamsOut; delete pcBitstreamRedirect; } /** Memory allocation for APS * \param [out] pAPS APS pointer * \param [in] pSPS SPS pointer */ Void TEncGOP::allocAPS (TComAPS* pAPS, TComSPS* pSPS) { if(pSPS->getUseSAO()) { pAPS->createSaoParam(); m_pcSAO->allocSaoParam(pAPS->getSaoParam()); } if(pSPS->getUseALF()) { pAPS->createAlfParam(); #if LCU_SYNTAX_ALF //alf Enabled flag in APS is false after pAPS->createAlfParam(); if(!pSPS->getUseALFCoefInSlice()) { pAPS->getAlfParam()->create(m_pcAdaptiveLoopFilter->getNumLCUInPicWidth(), m_pcAdaptiveLoopFilter->getNumLCUInPicHeight(), m_pcAdaptiveLoopFilter->getNumCUsInPic()); pAPS->getAlfParam()->createALFParam(); } #else m_pcAdaptiveLoopFilter->allocALFParam(pAPS->getAlfParam()); #endif } } /** Memory deallocation for APS * \param [out] pAPS APS pointer * \param [in] pSPS SPS pointer */ Void TEncGOP::freeAPS (TComAPS* pAPS, TComSPS* pSPS) { if(pSPS->getUseSAO()) { if(pAPS->getSaoParam() != NULL) { m_pcSAO->freeSaoParam(pAPS->getSaoParam()); pAPS->destroySaoParam(); } } if(pSPS->getUseALF()) { if(pAPS->getAlfParam() != NULL) { #if LCU_SYNTAX_ALF if(!pSPS->getUseALFCoefInSlice()) { pAPS->getAlfParam()->releaseALFParam(); } #else m_pcAdaptiveLoopFilter->freeALFParam(pAPS->getAlfParam()); #endif pAPS->destroyAlfParam(); } } } /** Assign APS object into APS container according to APS ID * \param [in] cAPS APS object * \param [in] apsID APS ID * \param [in,out] vAPS APS container * \param [in] pcSlice pointer to slice */ Void TEncGOP::assignNewAPS(TComAPS& cAPS, Int apsID, std::vector& vAPS, TComSlice* pcSlice) { cAPS.setAPSID(apsID); if(pcSlice->getPOC() == 0) { cAPS.setScalingListEnabled(pcSlice->getSPS()->getScalingListFlag()); } else { cAPS.setScalingListEnabled(false); } cAPS.setSaoEnabled(pcSlice->getSPS()->getUseSAO() ? (cAPS.getSaoParam()->bSaoFlag[0] ):(false)); #if LCU_SYNTAX_ALF cAPS.setAlfEnabled(pcSlice->getSPS()->getUseALF() ? (cAPS.getAlfParam()->isEnabled[0]):(false)); #else cAPS.setAlfEnabled(pcSlice->getSPS()->getUseALF() ? (cAPS.getAlfParam()->alf_flag ==1):(false)); #endif cAPS.setLoopFilterOffsetInAPS(m_pcCfg->getLoopFilterOffsetInAPS()); cAPS.setLoopFilterDisable(m_pcCfg->getLoopFilterDisable()); cAPS.setLoopFilterBetaOffset(m_pcCfg->getLoopFilterBetaOffset()); cAPS.setLoopFilterTcOffset(m_pcCfg->getLoopFilterTcOffset()); //assign new APS into APS container Int apsBufSize= (Int)vAPS.size(); if(apsID >= apsBufSize) { vAPS.resize(apsID +1); } freeAPS(&(vAPS[apsID]), pcSlice->getSPS()); vAPS[apsID] = cAPS; } /** encode APS syntax elements * \param [in] pcAPS APS pointer * \param [in, out] APSbs bitstream * \param [in] pointer to slice (just used for entropy coder initialization) */ Void TEncGOP::encodeAPS(TComAPS* pcAPS, TComOutputBitstream& APSbs, TComSlice* pcSlice) { m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice); m_pcEntropyCoder->resetEntropy (); m_pcEntropyCoder->setBitstream(&APSbs); m_pcEntropyCoder->encodeAPSInitInfo(pcAPS); if(pcAPS->getScalingListEnabled()) { m_pcEntropyCoder->encodeScalingList( pcSlice->getScalingList() ); } if(pcAPS->getLoopFilterOffsetInAPS()) { m_pcEntropyCoder->encodeDFParams(pcAPS); } #if SAO_UNIT_INTERLEAVING m_pcEntropyCoder->encodeSaoParam(pcAPS); #else if(pcAPS->getSaoEnabled()) { m_pcEntropyCoder->encodeSaoParam(pcAPS->getSaoParam()); } #endif #if LCU_SYNTAX_ALF m_pcEntropyCoder->encodeAPSAlfFlag( pcAPS->getAlfEnabled()?1:0); #endif if(pcAPS->getAlfEnabled()) { m_pcEntropyCoder->encodeAlfParam(pcAPS->getAlfParam()); } m_pcEntropyCoder->encodeApsExtensionFlag(); //neither SAO and ALF is enabled writeRBSPTrailingBits(APSbs); } Void TEncGOP::preLoopFilterPicAll( TComPic* pcPic, UInt64& ruiDist, UInt64& ruiBits ) { TComSlice* pcSlice = pcPic->getSlice(pcPic->getCurrSliceIdx()); Bool bCalcDist = false; #if DBL_CONTROL m_pcLoopFilter->setCfg(pcSlice->getPPS()->getDeblockingFilterControlPresent(), pcSlice->getLoopFilterDisable(), m_pcCfg->getLoopFilterBetaOffset(), m_pcCfg->getLoopFilterTcOffset(), m_pcCfg->getLFCrossTileBoundaryFlag()); #else m_pcLoopFilter->setCfg(pcSlice->getLoopFilterDisable(), m_pcCfg->getLoopFilterBetaOffset(), m_pcCfg->getLoopFilterTcOffset(), m_pcCfg->getLFCrossTileBoundaryFlag()); #endif m_pcLoopFilter->loopFilterPic( pcPic ); m_pcEntropyCoder->setEntropyCoder ( m_pcEncTop->getRDGoOnSbacCoder(), pcSlice ); m_pcEntropyCoder->resetEntropy (); m_pcEntropyCoder->setBitstream ( m_pcBitCounter ); pcSlice = pcPic->getSlice(0); if(pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) { pcPic->createNonDBFilterInfo(); } // Adaptive Loop filter if( pcSlice->getSPS()->getUseALF() ) { m_pcAdaptiveLoopFilter->createPicAlfInfo(pcPic); #if LCU_SYNTAX_ALF AlfParamSet* alfParamSet; std::vector* alfCUCtrlParam = NULL; alfParamSet= new AlfParamSet; alfParamSet->create( m_pcAdaptiveLoopFilter->getNumLCUInPicWidth(), m_pcAdaptiveLoopFilter->getNumLCUInPicHeight(), m_pcAdaptiveLoopFilter->getNumCUsInPic()); alfParamSet->createALFParam(); m_pcAdaptiveLoopFilter->initALFEnc(false, true, 1, alfParamSet, alfCUCtrlParam); #else ALFParam cAlfParam; m_pcAdaptiveLoopFilter->allocALFParam(&cAlfParam); #endif m_pcAdaptiveLoopFilter->startALFEnc(pcPic, m_pcEntropyCoder); #if LCU_SYNTAX_ALF #if ALF_CHROMA_LAMBDA #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess(alfParamSet, NULL, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma(), m_pcEncTop->getInterViewSkip() ); #else m_pcAdaptiveLoopFilter->ALFProcess(alfParamSet, NULL, pcPic->getSlice(0)->getLambdaLuma(), pcPic->getSlice(0)->getLambdaChroma() ); #endif #else #if SAO_CHROMA_LAMBDA m_pcAdaptiveLoopFilter->ALFProcess(alfParamSet, NULL, pcPic->getSlice(0)->getLambdaLuma(), m_pcEncTop->getInterViewSkip()); #if HHI_INTERVIEW_SKIP #else m_pcAdaptiveLoopFilter->ALFProcess(alfParamSet, NULL, pcPic->getSlice(0)->getLambdaLuma()); #endif #else #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess(alfParamSet, NULL, pcPic->getSlice(0)->getLambda(), m_pcEncTop->getInterViewSkip()); #else m_pcAdaptiveLoopFilter->ALFProcess(alfParamSet, NULL, pcPic->getSlice(0)->getLambda()); #endif #endif #endif #else #if ALF_CHROMA_LAMBDA m_pcAdaptiveLoopFilter->ALFProcess(&cAlfParam, NULL, pcSlice->getLambdaLuma(), pcSlice->getLambdaChroma(), ruiDist, ruiBits, m_pcEncTop->getInterViewSkip()); #if HHI_INTERVIEW_SKIP #else m_pcAdaptiveLoopFilter->ALFProcess(&cAlfParam, NULL, pcSlice->getLambdaLuma(), pcSlice->getLambdaChroma(), ruiDist, ruiBits); #endif #else #if SAO_CHROMA_LAMBDA #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess(&cAlfParam, NULL, pcSlice->getLambdaLuma(), ruiDist, ruiBits, m_pcEncTop->getInterViewSkip()); #else m_pcAdaptiveLoopFilter->ALFProcess(&cAlfParam, NULL, pcSlice->getLambdaLuma(), ruiDist, ruiBits); #endif #else #if HHI_INTERVIEW_SKIP m_pcAdaptiveLoopFilter->ALFProcess(&cAlfParam, NULL, pcSlice->getLambda(), ruiDist, ruiBits, m_pcEncTop->getInterViewSkip()); #else m_pcAdaptiveLoopFilter->ALFProcess(&cAlfParam, NULL, pcSlice->getLambda(), ruiDist, ruiBits); #endif #endif #endif #endif m_pcAdaptiveLoopFilter->endALFEnc(); #if LCU_SYNTAX_ALF alfParamSet->releaseALFParam(); delete alfParamSet; delete alfCUCtrlParam; #else m_pcAdaptiveLoopFilter->freeALFParam(&cAlfParam); #endif m_pcAdaptiveLoopFilter->PCMLFDisableProcess(pcPic); m_pcAdaptiveLoopFilter->destroyPicAlfInfo(); } if( pcSlice->getSPS()->getUseSAO() || pcSlice->getSPS()->getUseALF()) { pcPic->destroyNonDBFilterInfo(); } m_pcEntropyCoder->resetEntropy (); ruiBits += m_pcEntropyCoder->getNumberOfWrittenBits(); if (!bCalcDist) ruiDist = xFindDistortionFrame(pcPic->getPicYuvOrg(), pcPic->getPicYuvRec()); } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== Void TEncGOP::xInitGOP( Int iPOCLast, Int iNumPicRcvd, TComList& rcListPic, TComList& rcListPicYuvRecOut ) { assert( iNumPicRcvd > 0 ); // Exception for the first frame if ( iPOCLast == 0 ) { m_iGopSize = 1; } else m_iGopSize = m_pcCfg->getGOPSize(); assert (m_iGopSize > 0); return; } Void TEncGOP::xGetBuffer( TComList& rcListPic, TComList& rcListPicYuvRecOut, Int iNumPicRcvd, Int iTimeOffset, TComPic*& rpcPic, TComPicYuv*& rpcPicYuvRecOut, UInt uiPOCCurr ) { Int i; // Rec. output TComList::iterator iterPicYuvRec = rcListPicYuvRecOut.end(); for ( i = 0; i < iNumPicRcvd - iTimeOffset + 1; i++ ) { iterPicYuvRec--; } rpcPicYuvRecOut = *(iterPicYuvRec); // Current pic. TComList::iterator iterPic = rcListPic.begin(); while (iterPic != rcListPic.end()) { rpcPic = *(iterPic); rpcPic->setCurrSliceIdx(0); if (rpcPic->getPOC() == (Int)uiPOCCurr) { break; } iterPic++; } assert (rpcPic->getPOC() == (Int)uiPOCCurr); return; } UInt64 TEncGOP::xFindDistortionFrame (TComPicYuv* pcPic0, TComPicYuv* pcPic1) { Int x, y; Pel* pSrc0 = pcPic0 ->getLumaAddr(); Pel* pSrc1 = pcPic1 ->getLumaAddr(); #if IBDI_DISTORTION Int iShift = g_uiBitIncrement; Int iOffset = 1<<(g_uiBitIncrement-1); #else UInt uiShift = g_uiBitIncrement<<1; #endif Int iTemp; Int iStride = pcPic0->getStride(); Int iWidth = pcPic0->getWidth(); Int iHeight = pcPic0->getHeight(); UInt64 uiTotalDiff = 0; for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { #if IBDI_DISTORTION iTemp = ((pSrc0[x]+iOffset)>>iShift) - ((pSrc1[x]+iOffset)>>iShift); uiTotalDiff += iTemp * iTemp; #else iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; #endif } pSrc0 += iStride; pSrc1 += iStride; } iHeight >>= 1; iWidth >>= 1; iStride >>= 1; pSrc0 = pcPic0->getCbAddr(); pSrc1 = pcPic1->getCbAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { #if IBDI_DISTORTION iTemp = ((pSrc0[x]+iOffset)>>iShift) - ((pSrc1[x]+iOffset)>>iShift); uiTotalDiff += iTemp * iTemp; #else iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; #endif } pSrc0 += iStride; pSrc1 += iStride; } pSrc0 = pcPic0->getCrAddr(); pSrc1 = pcPic1->getCrAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { #if IBDI_DISTORTION iTemp = ((pSrc0[x]+iOffset)>>iShift) - ((pSrc1[x]+iOffset)>>iShift); uiTotalDiff += iTemp * iTemp; #else iTemp = pSrc0[x] - pSrc1[x]; uiTotalDiff += (iTemp*iTemp) >> uiShift; #endif } pSrc0 += iStride; pSrc1 += iStride; } return uiTotalDiff; } #if VERBOSE_RATE static const char* nalUnitTypeToString(NalUnitType type) { switch (type) { case NAL_UNIT_CODED_SLICE: return "SLICE"; #if H0566_TLA case NAL_UNIT_CODED_SLICE_IDV: return "IDV"; case NAL_UNIT_CODED_SLICE_CRA: return "CRA"; case NAL_UNIT_CODED_SLICE_TLA: return "TLA"; #else case NAL_UNIT_CODED_SLICE_CDR: return "CDR"; #endif case NAL_UNIT_CODED_SLICE_IDR: return "IDR"; case NAL_UNIT_SEI: return "SEI"; case NAL_UNIT_SPS: return "SPS"; case NAL_UNIT_PPS: return "PPS"; case NAL_UNIT_FILLER_DATA: return "FILLER"; default: return "UNK"; } } #endif Void TEncGOP::xCalculateAddPSNR( TComPic* pcPic, TComPicYuv* pcPicD, const AccessUnit& accessUnit, Double dEncTime ) { Int x, y; UInt64 uiSSDY = 0; UInt64 uiSSDU = 0; UInt64 uiSSDV = 0; Double dYPSNR = 0.0; Double dUPSNR = 0.0; Double dVPSNR = 0.0; //===== calculate PSNR ===== Pel* pOrg = pcPic ->getPicYuvOrg()->getLumaAddr(); Pel* pRec = pcPicD->getLumaAddr(); Int iStride = pcPicD->getStride(); Int iWidth; Int iHeight; iWidth = pcPicD->getWidth () - m_pcEncTop->getPad(0); iHeight = pcPicD->getHeight() - m_pcEncTop->getPad(1); Int iSize = iWidth*iHeight; for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDY += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } #if HHI_VSO #if HHI_VSO_SYNTH_DIST_OUT if ( m_pcRdCost->getUseRenModel() ) { unsigned int maxval = 255 * (1<<(g_uiBitDepth + g_uiBitIncrement -8)); Double fRefValueY = (double) maxval * maxval * iSize; Double fRefValueC = fRefValueY / 4.0; TRenModel* pcRenModel = m_pcEncTop->getEncTop()->getRenModel(); Int64 iDistVSOY, iDistVSOU, iDistVSOV; pcRenModel->getTotalSSE( iDistVSOY, iDistVSOU, iDistVSOV ); dYPSNR = ( iDistVSOY ? 10.0 * log10( fRefValueY / (Double) iDistVSOY ) : 99.99 ); dUPSNR = ( iDistVSOU ? 10.0 * log10( fRefValueC / (Double) iDistVSOU ) : 99.99 ); dVPSNR = ( iDistVSOV ? 10.0 * log10( fRefValueC / (Double) iDistVSOV ) : 99.99 ); } else #endif #endif { iHeight >>= 1; iWidth >>= 1; iStride >>= 1; pOrg = pcPic ->getPicYuvOrg()->getCbAddr(); pRec = pcPicD->getCbAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDU += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } pOrg = pcPic ->getPicYuvOrg()->getCrAddr(); pRec = pcPicD->getCrAddr(); for( y = 0; y < iHeight; y++ ) { for( x = 0; x < iWidth; x++ ) { Int iDiff = (Int)( pOrg[x] - pRec[x] ); uiSSDV += iDiff * iDiff; } pOrg += iStride; pRec += iStride; } unsigned int maxval = 255 * (1<<(g_uiBitDepth + g_uiBitIncrement -8)); Double fRefValueY = (double) maxval * maxval * iSize; Double fRefValueC = fRefValueY / 4.0; dYPSNR = ( uiSSDY ? 10.0 * log10( fRefValueY / (Double)uiSSDY ) : 99.99 ); dUPSNR = ( uiSSDU ? 10.0 * log10( fRefValueC / (Double)uiSSDU ) : 99.99 ); dVPSNR = ( uiSSDV ? 10.0 * log10( fRefValueC / (Double)uiSSDV ) : 99.99 ); } /* calculate the size of the access unit, excluding: * - any AnnexB contributions (start_code_prefix, zero_byte, etc.,) * - SEI NAL units */ unsigned numRBSPBytes = 0; for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++) { unsigned numRBSPBytes_nal = unsigned((*it)->m_nalUnitData.str().size()); #if VERBOSE_RATE printf("*** %6s numBytesInNALunit: %u\n", nalUnitTypeToString((*it)->m_nalUnitType), numRBSPBytes_nal); #endif if ((*it)->m_nalUnitType != NAL_UNIT_SEI) numRBSPBytes += numRBSPBytes_nal; } unsigned uibits = numRBSPBytes * 8; m_vRVM_RP.push_back( uibits ); //===== add PSNR ===== m_pcEncTop->getAnalyzeAll()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); TComSlice* pcSlice = pcPic->getSlice(0); if (pcSlice->isIntra()) { m_pcEncTop->getAnalyzeI()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } if (pcSlice->isInterP()) { m_pcEncTop->getAnalyzeP()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } if (pcSlice->isInterB()) { m_pcEncTop->getAnalyzeB()->addResult (dYPSNR, dUPSNR, dVPSNR, (Double)uibits); } Char c = (pcSlice->isIntra() ? 'I' : pcSlice->isInterP() ? 'P' : 'B'); if (!pcSlice->isReferenced()) c += 32; #if ADAPTIVE_QP_SELECTION printf("%s View %3d POC %4d TId: %1d ( %c-SLICE, nQP %d QP %d ) %10d bits", pcSlice->getIsDepth() ? "Depth " : "Texture", pcSlice->getViewId(), pcSlice->getPOC(), pcSlice->getTLayer(), c, pcSlice->getSliceQpBase(), pcSlice->getSliceQp(), uibits ); #else printf("%s View %3d POC %4d TId: %1d ( %c-SLICE, QP %d ) %10d bits", pcSlice->getIsDepth() ? "Depth " : "Texture", pcSlice->getViewId(), pcSlice->getPOC()-pcSlice->getLastIDR(), pcSlice->getTLayer(), c, pcSlice->getSliceQp(), uibits ); #endif printf(" [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", dYPSNR, dUPSNR, dVPSNR ); printf(" [ET %5.0f ]", dEncTime ); for (Int iRefList = 0; iRefList < 2; iRefList++) { printf(" [L%d ", iRefList); for (Int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx(RefPicList(iRefList)); iRefIndex++) { if( pcSlice->getViewId() != pcSlice->getRefViewId( RefPicList(iRefList), iRefIndex ) ) { printf( "V%d ", pcSlice->getRefViewId( RefPicList(iRefList), iRefIndex ) ); } else { printf ("%d ", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex)-pcSlice->getLastIDR()); } } printf("]"); } if(pcSlice->getNumRefIdx(REF_PIC_LIST_C)>0 && !pcSlice->getNoBackPredFlag()) { printf(" [LC "); for (Int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx(REF_PIC_LIST_C); iRefIndex++) { if( pcSlice->getViewId() != pcSlice->getRefViewId( (RefPicList)pcSlice->getListIdFromIdxOfLC(iRefIndex), pcSlice->getRefIdxFromIdxOfLC(iRefIndex) ) ) { printf( "V%d ", pcSlice->getRefViewId( (RefPicList)pcSlice->getListIdFromIdxOfLC(iRefIndex), pcSlice->getRefIdxFromIdxOfLC(iRefIndex) ) ); } else { printf ("%d ", pcSlice->getRefPOC((RefPicList)pcSlice->getListIdFromIdxOfLC(iRefIndex), pcSlice->getRefIdxFromIdxOfLC(iRefIndex))-pcSlice->getLastIDR()); } } printf("]"); } } /** Function for deciding the nal_unit_type. * \param uiPOCCurr POC of the current picture * \returns the nal_unit type of the picture * This function checks the configuration and returns the appropriate nal_unit_type for the picture. */ NalUnitType TEncGOP::getNalUnitType(UInt uiPOCCurr) { Bool bInterViewOnlySlice = ( m_pcCfg->getGOPEntry(MAX_GOP).m_POC == 0 && (m_pcCfg->getGOPEntry(MAX_GOP).m_sliceType == 'P' || m_pcCfg->getGOPEntry(MAX_GOP).m_sliceType == 'B') ); if (uiPOCCurr == 0) { if( bInterViewOnlySlice ) { return NAL_UNIT_CODED_SLICE_IDV; } else { return NAL_UNIT_CODED_SLICE_IDR; } } if (uiPOCCurr % m_pcCfg->getIntraPeriod() == 0) { if (m_pcCfg->getDecodingRefreshType() == 1) { if( bInterViewOnlySlice ) { return NAL_UNIT_CODED_SLICE_IDV; } else { #if H0566_TLA return NAL_UNIT_CODED_SLICE_CRA; #else return NAL_UNIT_CODED_SLICE_CDR; #endif } } else if (m_pcCfg->getDecodingRefreshType() == 2) { if( bInterViewOnlySlice ) { return NAL_UNIT_CODED_SLICE_IDV; } else { return NAL_UNIT_CODED_SLICE_IDR; } } } return NAL_UNIT_CODED_SLICE; } NalUnitType TEncGOP::getNalUnitTypeBaseViewMvc(UInt uiPOCCurr) { if( uiPOCCurr == 0 ) { return NAL_UNIT_CODED_SLICE_IDR; } if( uiPOCCurr % m_pcCfg->getIntraPeriod() == 0 ) { if( m_pcCfg->getDecodingRefreshType() == 1 ) { #if H0566_TLA return NAL_UNIT_CODED_SLICE_CRA; #else return NAL_UNIT_CODED_SLICE_CDR; #endif } else if( m_pcCfg->getDecodingRefreshType() == 2 ) { return NAL_UNIT_CODED_SLICE_IDR; } } return NAL_UNIT_CODED_SLICE; } Double TEncGOP::xCalculateRVM() { Double dRVM = 0; if( m_pcCfg->getGOPSize() == 1 && m_pcCfg->getIntraPeriod() != 1 && m_pcCfg->getFrameToBeEncoded() > RVM_VCEGAM10_M * 2 ) { // calculate RVM only for lowdelay configurations std::vector vRL , vB; size_t N = m_vRVM_RP.size(); vRL.resize( N ); vB.resize( N ); Int i; Double dRavg = 0 , dBavg = 0; vB[RVM_VCEGAM10_M] = 0; for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ ) { vRL[i] = 0; for( Int j = i - RVM_VCEGAM10_M ; j <= i + RVM_VCEGAM10_M - 1 ; j++ ) vRL[i] += m_vRVM_RP[j]; vRL[i] /= ( 2 * RVM_VCEGAM10_M ); vB[i] = vB[i-1] + m_vRVM_RP[i] - vRL[i]; dRavg += m_vRVM_RP[i]; dBavg += vB[i]; } dRavg /= ( N - 2 * RVM_VCEGAM10_M ); dBavg /= ( N - 2 * RVM_VCEGAM10_M ); double dSigamB = 0; for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ ) { Double tmp = vB[i] - dBavg; dSigamB += tmp * tmp; } dSigamB = sqrt( dSigamB / ( N - 2 * RVM_VCEGAM10_M ) ); double f = sqrt( 12.0 * ( RVM_VCEGAM10_M - 1 ) / ( RVM_VCEGAM10_M + 1 ) ); dRVM = dSigamB / dRavg * f; } return( dRVM ); } /** Determine the difference between consecutive tile sizes (in bytes) and writes it to bistream rNalu [slice header] * \param rpcBitstreamRedirect contains the bitstream to be concatenated to rNalu. rpcBitstreamRedirect contains slice payload. rpcSlice contains tile location information. * \returns Updates rNalu to contain concatenated bitstream. rpcBitstreamRedirect is cleared at the end of this function call. */ Void TEncGOP::xWriteTileLocationToSliceHeader (OutputNALUnit& rNalu, TComOutputBitstream*& rpcBitstreamRedirect, TComSlice*& rpcSlice) { { #if !TILES_WPP_ENTRY_POINT_SIGNALLING Int iTransmitTileLocationInSliceHeader = (rpcSlice->getTileLocationCount()==0 || m_pcCfg->getTileLocationInSliceHeaderFlag()==0) ? 0 : 1; rNalu.m_Bitstream.write(iTransmitTileLocationInSliceHeader, 1); // write flag indicating whether tile location information communicated in slice header if (iTransmitTileLocationInSliceHeader) { rNalu.m_Bitstream.write(rpcSlice->getTileLocationCount()-1, 5); // write number of tiles Int *aiDiff; aiDiff = new Int [rpcSlice->getTileLocationCount()]; // Find largest number of bits required by Diff Int iLastSize = 0, iDiffMax = 0, iDiffMin = 0; for (UInt uiIdx=0; uiIdxgetTileLocationCount(); uiIdx++) { Int iCurDiff, iCurSize; if (uiIdx==0) { iCurDiff = rpcSlice->getTileLocation( uiIdx ); iLastSize = rpcSlice->getTileLocation( uiIdx ); } else { iCurSize = rpcSlice->getTileLocation( uiIdx ) - rpcSlice->getTileLocation( uiIdx-1 ); iCurDiff = iCurSize - iLastSize; iLastSize = iCurSize; } // Store Diff so it may be written to slice header later without re-calculating. aiDiff[uiIdx] = iCurDiff; if (iCurDiff>iDiffMax) { iDiffMax = iCurDiff; } if (iCurDiff= (1 << iBitsUsedByDiff) ) { iBitsUsedByDiff++; } else { break; } } iBitsUsedByDiff++; if (iBitsUsedByDiff > 32) { printf("\nDiff magnitude uses more than 32-bits"); assert ( 0 ); exit ( 0 ); // trying to catch any problems with using fixed bits for Diff information } rNalu.m_Bitstream.write( iBitsUsedByDiff-1, 5 ); // write number of bits used by Diff // Write diff to slice header (rNalu) for (UInt uiIdx=0; uiIdxgetTileLocationCount(); uiIdx++) { Int iCurDiff = aiDiff[uiIdx]; // write sign of diff if (uiIdx!=0) { if (iCurDiff<0) { rNalu.m_Bitstream.write(1, 1); } else { rNalu.m_Bitstream.write(0, 1); } } // write abs value of diff Int iAbsDiff = (iCurDiff<0) ? (-iCurDiff) : iCurDiff; if (iAbsDiff > ((((UInt64)1)<<32)-1)) { printf("\niAbsDiff exceeds 32-bit limit"); exit(0); } rNalu.m_Bitstream.write( iAbsDiff, iBitsUsedByDiff-1 ); } delete [] aiDiff; } #endif } // Byte-align rNalu.m_Bitstream.writeAlignOne(); // Update tile marker locations TComOutputBitstream *pcOut = &rNalu.m_Bitstream; UInt uiAccumulatedLength = pcOut->getNumberOfWrittenBits() >> 3; for (Int uiMrkIdx = 0; uiMrkIdx < rpcBitstreamRedirect->getTileMarkerLocationCount(); uiMrkIdx++) { UInt uiBottom = pcOut->getTileMarkerLocationCount(); pcOut->setTileMarkerLocation ( uiBottom, uiAccumulatedLength + rpcBitstreamRedirect->getTileMarkerLocation( uiMrkIdx ) ); pcOut->setTileMarkerLocationCount ( uiBottom + 1 ); } // Perform bitstream concatenation if (rpcBitstreamRedirect->getNumberOfWrittenBits() > 0) { UInt uiBitCount = rpcBitstreamRedirect->getNumberOfWrittenBits(); if (rpcBitstreamRedirect->getByteStreamLength()>0) { UChar *pucStart = reinterpret_cast(rpcBitstreamRedirect->getByteStream()); UInt uiWriteByteCount = 0; while (uiWriteByteCount < (uiBitCount >> 3) ) { UInt uiBits = (*pucStart); rNalu.m_Bitstream.write(uiBits, 8); pucStart++; uiWriteByteCount++; } } UInt uiBitsHeld = (uiBitCount & 0x07); for (UInt uiIdx=0; uiIdx < uiBitsHeld; uiIdx++) { rNalu.m_Bitstream.write((rpcBitstreamRedirect->getHeldBits() & (1 << (7-uiIdx))) >> (7-uiIdx), 1); } } m_pcEntropyCoder->setBitstream(&rNalu.m_Bitstream); delete rpcBitstreamRedirect; rpcBitstreamRedirect = new TComOutputBitstream; } Void TEncGOP::xSetRefPicListModificationsMvc( TComSlice* pcSlice, UInt uiPOCCurr, UInt iGOPid ) { if( pcSlice->getSliceType() == I_SLICE || !(pcSlice->getSPS()->getListsModificationPresentFlag()) || pcSlice->getSPS()->getNumberOfUsableInterViewRefs() == 0 ) { return; } // analyze inter-view modifications GOPEntryMvc gem = m_pcCfg->getGOPEntry( (getNalUnitType(uiPOCCurr) == NAL_UNIT_CODED_SLICE_IDV) ? MAX_GOP : iGOPid ); Int numL0Modifications = 0; Int numL1Modifications = 0; for( Int k = 0; k < gem.m_numInterViewRefPics; k++ ) { if( gem.m_interViewRefPosL0[k] > 0 ) { numL0Modifications++; } if( gem.m_interViewRefPosL1[k] > 0 ) { numL1Modifications++; } } TComRefPicListModification* refPicListModification = pcSlice->getRefPicListModification(); Int maxRefListSize = pcSlice->getNumPocTotalCurrMvc(); Int numTemporalRefs = pcSlice->getNumPocTotalCurr(); // set L0 inter-view modifications if( (maxRefListSize > 1) && (numL0Modifications > 0) ) { refPicListModification->setRefPicListModificationFlagL0( true ); Int tempListEntryL0[16]; for( Int k = 0; k < 16; k++ ) { tempListEntryL0[k] = -1; } Bool hasModification = false; for( Int k = 0; k < gem.m_numInterViewRefPics; k++ ) { if( gem.m_interViewRefPosL0[k] > 0 ) { for( Int l = 0; l < pcSlice->getSPS()->getNumberOfUsableInterViewRefs(); l++ ) { if( gem.m_interViewRefs[k] == pcSlice->getSPS()->getUsableInterViewRef( l ) && (gem.m_interViewRefPosL0[k] - 1) != (numTemporalRefs + l) ) { tempListEntryL0[gem.m_interViewRefPosL0[k]-1] = numTemporalRefs + l; hasModification = true; } } } } if( hasModification ) { Int temporalRefIdx = 0; for( Int i = 0; i < pcSlice->getNumRefIdx( REF_PIC_LIST_0 ); i++ ) { if( tempListEntryL0[i] >= 0 ) { refPicListModification->setRefPicSetIdxL0( i, tempListEntryL0[i] ); } else { refPicListModification->setRefPicSetIdxL0( i, temporalRefIdx ); temporalRefIdx++; } } } else { refPicListModification->setRefPicListModificationFlagL0( false ); } } // set L1 inter-view modifications if( (maxRefListSize > 1) && (numL1Modifications > 0) ) { refPicListModification->setRefPicListModificationFlagL1( true ); Int tempListEntryL1[16]; for( Int k = 0; k < 16; k++ ) { tempListEntryL1[k] = -1; } Bool hasModification = false; for( Int k = 0; k < gem.m_numInterViewRefPics; k++ ) { if( gem.m_interViewRefPosL1[k] > 0 ) { for( Int l = 0; l < pcSlice->getSPS()->getNumberOfUsableInterViewRefs(); l++ ) { if( gem.m_interViewRefs[k] == pcSlice->getSPS()->getUsableInterViewRef( l ) && (gem.m_interViewRefPosL1[k] - 1) != (numTemporalRefs + l) ) { tempListEntryL1[gem.m_interViewRefPosL1[k]-1] = numTemporalRefs + l; hasModification = true; } } } } if( hasModification ) { Int temporalRefIdx = 0; for( Int i = 0; i < pcSlice->getNumRefIdx( REF_PIC_LIST_1 ); i++ ) { if( tempListEntryL1[i] >= 0 ) { refPicListModification->setRefPicSetIdxL1( i, tempListEntryL1[i] ); } else { refPicListModification->setRefPicSetIdxL1( i, temporalRefIdx ); temporalRefIdx++; } } } else { refPicListModification->setRefPicListModificationFlagL1( false ); } } return; } //! \}