/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2012, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncSlice.cpp \brief slice encoder class */ #include "TEncTop.h" #include "TEncSlice.h" #include //! \ingroup TLibEncoder //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== TEncSlice::TEncSlice() { m_apcPicYuvPred = NULL; m_apcPicYuvResi = NULL; m_pdRdPicLambda = NULL; m_pdRdPicQp = NULL; m_piRdPicQp = NULL; m_pcBufferSbacCoders = NULL; m_pcBufferBinCoderCABACs = NULL; m_pcBufferLowLatSbacCoders = NULL; m_pcBufferLowLatBinCoderCABACs = NULL; } TEncSlice::~TEncSlice() { } Void TEncSlice::create( Int iWidth, Int iHeight, UInt iMaxCUWidth, UInt iMaxCUHeight, UChar uhTotalDepth ) { // create prediction picture if ( m_apcPicYuvPred == NULL ) { m_apcPicYuvPred = new TComPicYuv; m_apcPicYuvPred->create( iWidth, iHeight, iMaxCUWidth, iMaxCUHeight, uhTotalDepth ); } // create residual picture if( m_apcPicYuvResi == NULL ) { m_apcPicYuvResi = new TComPicYuv; m_apcPicYuvResi->create( iWidth, iHeight, iMaxCUWidth, iMaxCUHeight, uhTotalDepth ); } } Void TEncSlice::destroy() { // destroy prediction picture if ( m_apcPicYuvPred ) { m_apcPicYuvPred->destroy(); delete m_apcPicYuvPred; m_apcPicYuvPred = NULL; } // destroy residual picture if ( m_apcPicYuvResi ) { m_apcPicYuvResi->destroy(); delete m_apcPicYuvResi; m_apcPicYuvResi = NULL; } // free lambda and QP arrays if ( m_pdRdPicLambda ) { xFree( m_pdRdPicLambda ); m_pdRdPicLambda = NULL; } if ( m_pdRdPicQp ) { xFree( m_pdRdPicQp ); m_pdRdPicQp = NULL; } if ( m_piRdPicQp ) { xFree( m_piRdPicQp ); m_piRdPicQp = NULL; } if ( m_pcBufferSbacCoders ) { delete[] m_pcBufferSbacCoders; } if ( m_pcBufferBinCoderCABACs ) { delete[] m_pcBufferBinCoderCABACs; } if ( m_pcBufferLowLatSbacCoders ) delete[] m_pcBufferLowLatSbacCoders; if ( m_pcBufferLowLatBinCoderCABACs ) delete[] m_pcBufferLowLatBinCoderCABACs; } Void TEncSlice::init( TEncTop* pcEncTop ) { m_pcCfg = pcEncTop; m_pcListPic = pcEncTop->getListPic(); m_pcGOPEncoder = pcEncTop->getGOPEncoder(); m_pcCuEncoder = pcEncTop->getCuEncoder(); m_pcPredSearch = pcEncTop->getPredSearch(); m_pcEntropyCoder = pcEncTop->getEntropyCoder(); m_pcCavlcCoder = pcEncTop->getCavlcCoder(); m_pcSbacCoder = pcEncTop->getSbacCoder(); m_pcBinCABAC = pcEncTop->getBinCABAC(); m_pcTrQuant = pcEncTop->getTrQuant(); m_pcBitCounter = pcEncTop->getBitCounter(); m_pcRdCost = pcEncTop->getRdCost(); m_pppcRDSbacCoder = pcEncTop->getRDSbacCoder(); m_pcRDGoOnSbacCoder = pcEncTop->getRDGoOnSbacCoder(); // create lambda and QP arrays m_pdRdPicLambda = (Double*)xMalloc( Double, m_pcCfg->getDeltaQpRD() * 2 + 1 ); m_pdRdPicQp = (Double*)xMalloc( Double, m_pcCfg->getDeltaQpRD() * 2 + 1 ); m_piRdPicQp = (Int* )xMalloc( Int, m_pcCfg->getDeltaQpRD() * 2 + 1 ); } /** - non-referenced frame marking - QP computation based on temporal structure - lambda computation based on QP - set temporal layer ID and the parameter sets . \param pcPic picture class \param iPOCLast POC of last picture \param uiPOCCurr current POC \param iNumPicRcvd number of received pictures \param iTimeOffset POC offset for hierarchical structure \param iDepth temporal layer depth \param rpcSlice slice header class \param pSPS SPS associated with the slice \param pPPS PPS associated with the slice */ #if VIDYO_VPS_INTEGRATION Void TEncSlice::initEncSlice( TComPic* pcPic, Int iPOCLast, UInt uiPOCCurr, Int iNumPicRcvd, Int iGOPid, TComSlice*& rpcSlice, TComVPS * pVPS, TComSPS* pSPS, TComPPS *pPPS ) #else Void TEncSlice::initEncSlice( TComPic* pcPic, Int iPOCLast, UInt uiPOCCurr, Int iNumPicRcvd, Int iGOPid, TComSlice*& rpcSlice, TComSPS* pSPS, TComPPS *pPPS ) #endif { Double dQP; Double dLambda; rpcSlice = pcPic->getSlice(0); #if VIDYO_VPS_INTEGRATION rpcSlice->setVPS( pVPS ); #endif rpcSlice->setSPS( pSPS ); rpcSlice->setPPS( pPPS ); rpcSlice->setSliceBits(0); rpcSlice->setPic( pcPic ); rpcSlice->initSlice(); rpcSlice->initTiles(); #if H0388 rpcSlice->setPicOutputFlag( true ); #endif rpcSlice->setPOC( uiPOCCurr ); #if SONY_COLPIC_AVAILABILITY rpcSlice->setViewOrderIdx(m_pcCfg->getViewOrderIdx()); #endif // set mutliview parameters rpcSlice->initMultiviewSlice( pcPic->getCodedScale(), pcPic->getCodedOffset() ); // depth computation based on GOP size int iDepth; { Int i, j; Int iPOC = rpcSlice->getPOC()%m_pcCfg->getGOPSize(); if ( iPOC == 0 ) { iDepth = 0; } else { Int iStep = m_pcCfg->getGOPSize(); iDepth = 0; for( i=iStep>>1; i>=1; i>>=1 ) { for ( j=i; jgetGOPSize(); j+=iStep ) { if ( j == iPOC ) { i=0; break; } } iStep>>=1; iDepth++; } } } // slice type SliceType eSliceTypeBaseView; if( iPOCLast == 0 || uiPOCCurr % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0 ) { eSliceTypeBaseView = I_SLICE; } else { eSliceTypeBaseView = B_SLICE; } SliceType eSliceType = eSliceTypeBaseView; if( eSliceTypeBaseView == I_SLICE && m_pcCfg->getGOPEntry(MAX_GOP).m_POC == 0 && m_pcCfg->getGOPEntry(MAX_GOP).m_sliceType != 'I' ) { eSliceType = B_SLICE; } rpcSlice->setSliceType( eSliceType ); // ------------------------------------------------------------------------------------------------------------------ // Non-referenced frame marking // ------------------------------------------------------------------------------------------------------------------ rpcSlice->setReferenced( m_pcCfg->getGOPEntry(iGOPid).m_refPic ); if( eSliceTypeBaseView == I_SLICE ) { rpcSlice->setReferenced(true); } // ------------------------------------------------------------------------------------------------------------------ // QP setting // ------------------------------------------------------------------------------------------------------------------ dQP = m_pcCfg->getQP(); if( eSliceType != I_SLICE ) { #if LOSSLESS_CODING #if H0736_AVC_STYLE_QP_RANGE if (!(( m_pcCfg->getMaxDeltaQP() == 0 ) && (dQP == -rpcSlice->getSPS()->getQpBDOffsetY() ) && (rpcSlice->getSPS()->getUseLossless()))) #else if (!(( m_pcCfg->getMaxDeltaQP() == 0 ) && (dQP == 0 ) && (rpcSlice->getSPS()->getUseLossless()))) #endif #endif { dQP += m_pcCfg->getGOPEntry( (eSliceTypeBaseView == I_SLICE) ? MAX_GOP : iGOPid ).m_QPOffset; } } // modify QP Int* pdQPs = m_pcCfg->getdQPs(); if ( pdQPs ) { dQP += pdQPs[ rpcSlice->getPOC() ]; } // ------------------------------------------------------------------------------------------------------------------ // Lambda computation // ------------------------------------------------------------------------------------------------------------------ Int iQP; Double dOrigQP = dQP; // pre-compute lambda and QP values for all possible QP candidates for ( Int iDQpIdx = 0; iDQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; iDQpIdx++ ) { // compute QP value dQP = dOrigQP + ((iDQpIdx+1)>>1)*(iDQpIdx%2 ? -1 : 1); // compute lambda value Int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 ); Int SHIFT_QP = 12; Double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(Double)NumberBFrames ); #if FULL_NBIT Int bitdepth_luma_qp_scale = 6 * (g_uiBitDepth - 8); #else Int bitdepth_luma_qp_scale = 0; #endif Double qp_temp = (Double) dQP + bitdepth_luma_qp_scale - SHIFT_QP; #if FULL_NBIT Double qp_temp_orig = (Double) dQP - SHIFT_QP; #endif // Case #1: I or P-slices (key-frame) Double dQPFactor; if( eSliceType != I_SLICE ) { dQPFactor = m_pcCfg->getGOPEntry( (eSliceTypeBaseView == I_SLICE) ? MAX_GOP : iGOPid ).m_QPFactor; } else { dQPFactor = 0.57 * dLambda_scale; } dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 ); if ( iDepth>0 ) { #if FULL_NBIT dLambda *= Clip3( 2.00, 4.00, (qp_temp_orig / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 ) #else dLambda *= Clip3( 2.00, 4.00, (qp_temp / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 ) #endif } // if hadamard is used in ME process if ( !m_pcCfg->getUseHADME() ) { dLambda *= 0.95; } #if H0736_AVC_STYLE_QP_RANGE iQP = max( -pSPS->getQpBDOffsetY(), min( MAX_QP, (Int) floor( dQP + 0.5 ) ) ); #else iQP = max( MIN_QP, min( MAX_QP, (Int)floor( dQP + 0.5 ) ) ); #endif m_pdRdPicLambda[iDQpIdx] = dLambda; m_pdRdPicQp [iDQpIdx] = dQP; m_piRdPicQp [iDQpIdx] = iQP; } // obtain dQP = 0 case dLambda = m_pdRdPicLambda[0]; dQP = m_pdRdPicQp [0]; iQP = m_piRdPicQp [0]; if( rpcSlice->getSliceType( ) != I_SLICE ) { dLambda *= m_pcCfg->getLambdaModifier( iDepth ); } // store lambda m_pcRdCost ->setLambda( dLambda ); #if WEIGHTED_CHROMA_DISTORTION // for RDO // in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma. #if H0736_AVC_STYLE_QP_RANGE Double weight = 1.0; if(iQP >= 0) { weight = pow( 2.0, (iQP-g_aucChromaScale[iQP])/3.0 ); // takes into account of the chroma qp mapping without chroma qp Offset } #else Double weight = pow( 2.0, (iQP-g_aucChromaScale[iQP])/3.0 ); // takes into account of the chroma qp mapping without chroma qp Offset #endif m_pcRdCost ->setChromaDistortionWeight( weight ); #endif #if HHI_VSO m_pcRdCost->setUseLambdaScaleVSO ( (m_pcCfg->getUseVSO() || m_pcCfg->getForceLambdaScaleVSO()) && m_pcCfg->isDepthCoder() ); m_pcRdCost->setLambdaVSO( dLambda * m_pcCfg->getLambdaScaleVSO() ); #endif #if RDOQ_CHROMA_LAMBDA // for RDOQ m_pcTrQuant->setLambda( dLambda, dLambda / weight ); #else m_pcTrQuant->setLambda( dLambda ); #endif #if ALF_CHROMA_LAMBDA || SAO_CHROMA_LAMBDA // For ALF or SAO rpcSlice ->setLambda( dLambda, dLambda / weight ); #else rpcSlice ->setLambda( dLambda ); #endif #if HHI_INTER_VIEW_MOTION_PRED m_pcRdCost ->setLambdaMVReg ( dLambda * m_pcCfg->getMultiviewMvRegLambdaScale() ); #endif #if HB_LAMBDA_FOR_LDC // restore original slice type eSliceType = eSliceTypeBaseView; if( eSliceTypeBaseView == I_SLICE && m_pcCfg->getGOPEntry(MAX_GOP).m_POC == 0 && m_pcCfg->getGOPEntry(MAX_GOP).m_sliceType != 'I' ) { eSliceType = B_SLICE; } rpcSlice->setSliceType( eSliceType ); #endif rpcSlice->setSliceQp ( iQP ); #if ADAPTIVE_QP_SELECTION rpcSlice->setSliceQpBase ( iQP ); #endif rpcSlice->setSliceQpDelta ( 0 ); rpcSlice->setNumRefIdx(REF_PIC_LIST_0,m_pcCfg->getGOPEntry( (eSliceTypeBaseView == I_SLICE) ? MAX_GOP : iGOPid ).m_numRefPicsActive); rpcSlice->setNumRefIdx(REF_PIC_LIST_1,m_pcCfg->getGOPEntry( (eSliceTypeBaseView == I_SLICE) ? MAX_GOP : iGOPid ).m_numRefPicsActive); rpcSlice->setLoopFilterOffsetInAPS( m_pcCfg->getLoopFilterOffsetInAPS() ); #if DBL_CONTROL if (rpcSlice->getPPS()->getDeblockingFilterControlPresent()) { #endif rpcSlice->setInheritDblParamFromAPS( m_pcCfg->getLoopFilterOffsetInAPS() ? 1 : 0 ); rpcSlice->setLoopFilterDisable( m_pcCfg->getLoopFilterDisable() ); if ( !rpcSlice->getLoopFilterDisable()) { rpcSlice->setLoopFilterBetaOffset( m_pcCfg->getLoopFilterBetaOffset() ); rpcSlice->setLoopFilterTcOffset( m_pcCfg->getLoopFilterTcOffset() ); } #if DBL_CONTROL } #endif rpcSlice->setDepth ( iDepth ); pcPic->setTLayer( m_pcCfg->getGOPEntry( (eSliceTypeBaseView == I_SLICE) ? MAX_GOP : iGOPid ).m_temporalId ); if( eSliceType == I_SLICE ) { pcPic->setTLayer(0); } rpcSlice->setTLayer( pcPic->getTLayer() ); #if !H0566_TLA rpcSlice->setTLayerSwitchingFlag( pPPS->getTLayerSwitchingFlag( pcPic->getTLayer() ) ); #endif assert( m_apcPicYuvPred ); assert( m_apcPicYuvResi ); pcPic->setPicYuvPred( m_apcPicYuvPred ); pcPic->setPicYuvResi( m_apcPicYuvResi ); rpcSlice->setSliceMode ( m_pcCfg->getSliceMode() ); rpcSlice->setSliceArgument ( m_pcCfg->getSliceArgument() ); rpcSlice->setEntropySliceMode ( m_pcCfg->getEntropySliceMode() ); rpcSlice->setEntropySliceArgument ( m_pcCfg->getEntropySliceArgument() ); #if ( HHI_MPI || HHI_INTER_VIEW_MOTION_PRED ) #if ( HHI_MPI && HHI_INTER_VIEW_MOTION_PRED ) const int iExtraMergeCandidates = ( pSPS->getUseMVI() || pSPS->getMultiviewMvPredMode() ) ? 1 : 0; #elif HHI_MPI const int iExtraMergeCandidates = pSPS->getUseMVI() ? 1 : 0; #else const int iExtraMergeCandidates = pSPS->getMultiviewMvPredMode() ? 1 : 0; #endif rpcSlice->setMaxNumMergeCand (MRG_MAX_NUM_CANDS_SIGNALED+iExtraMergeCandidates); #else rpcSlice->setMaxNumMergeCand (MRG_MAX_NUM_CANDS_SIGNALED); #endif xStoreWPparam( pPPS->getUseWP(), pPPS->getWPBiPredIdc() ); } // ==================================================================================================================== // Public member functions // ==================================================================================================================== Void TEncSlice::setSearchRange( TComSlice* pcSlice ) { Int iCurrPOC = pcSlice->getPOC(); Int iRefPOC; Int iGOPSize = m_pcCfg->getGOPSize(); Int iOffset = (iGOPSize >> 1); Int iMaxSR = m_pcCfg->getSearchRange(); Int iNumPredDir = pcSlice->isInterP() ? 1 : 2; for (Int iDir = 0; iDir <= iNumPredDir; iDir++) { RefPicList e = (RefPicList)iDir; for (Int iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(e); iRefIdx++) { iRefPOC = pcSlice->getRefPic(e, iRefIdx)->getPOC(); Int iNewSR = Clip3(8, iMaxSR, (iMaxSR*ADAPT_SR_SCALE*abs(iCurrPOC - iRefPOC)+iOffset)/iGOPSize); m_pcPredSearch->setAdaptiveSearchRange(iDir, iRefIdx, iNewSR); } } } /** - multi-loop slice encoding for different slice QP . \param rpcPic picture class */ Void TEncSlice::precompressSlice( TComPic*& rpcPic ) { // if deltaQP RD is not used, simply return if ( m_pcCfg->getDeltaQpRD() == 0 ) { return; } TComSlice* pcSlice = rpcPic->getSlice(getSliceIdx()); Double dPicRdCostBest = MAX_DOUBLE; UInt uiQpIdxBest = 0; Double dFrameLambda; #if FULL_NBIT Int SHIFT_QP = 12 + 6 * (g_uiBitDepth - 8); #else Int SHIFT_QP = 12; #endif // set frame lambda if (m_pcCfg->getGOPSize() > 1) { dFrameLambda = 0.68 * pow (2, (m_piRdPicQp[0] - SHIFT_QP) / 3.0) * (pcSlice->isInterB()? 2 : 1); } else { dFrameLambda = 0.68 * pow (2, (m_piRdPicQp[0] - SHIFT_QP) / 3.0); } m_pcRdCost ->setFrameLambda(dFrameLambda); // for each QP candidate for ( UInt uiQpIdx = 0; uiQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; uiQpIdx++ ) { pcSlice ->setSliceQp ( m_piRdPicQp [uiQpIdx] ); #if ADAPTIVE_QP_SELECTION pcSlice ->setSliceQpBase ( m_piRdPicQp [uiQpIdx] ); #endif m_pcRdCost ->setLambda ( m_pdRdPicLambda[uiQpIdx] ); #if WEIGHTED_CHROMA_DISTORTION // for RDO // in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma. int iQP = m_piRdPicQp [uiQpIdx]; #if H0736_AVC_STYLE_QP_RANGE Double weight = 1.0; if(iQP >= 0) { weight = pow( 2.0, (iQP-g_aucChromaScale[iQP])/3.0 ); // takes into account of the chroma qp mapping without chroma qp Offset } #else Double weight = pow( 2.0, (iQP-g_aucChromaScale[iQP])/3.0 ); // takes into account of the chroma qp mapping without chroma qp Offset #endif m_pcRdCost ->setChromaDistortionWeight( weight ); #endif #if RDOQ_CHROMA_LAMBDA // for RDOQ m_pcTrQuant ->setLambda( m_pdRdPicLambda[uiQpIdx], m_pdRdPicLambda[uiQpIdx] / weight ); #else m_pcTrQuant ->setLambda ( m_pdRdPicLambda[uiQpIdx] ); #endif #if ALF_CHROMA_LAMBDA || SAO_CHROMA_LAMBDA // For ALF or SAO pcSlice ->setLambda ( m_pdRdPicLambda[uiQpIdx], m_pdRdPicLambda[uiQpIdx] / weight ); #else pcSlice ->setLambda ( m_pdRdPicLambda[uiQpIdx] ); #endif #if HHI_INTER_VIEW_MOTION_PRED m_pcRdCost ->setLambdaMVReg ( m_pdRdPicLambda[uiQpIdx] * m_pcCfg->getMultiviewMvRegLambdaScale() ); #endif // try compress compressSlice ( rpcPic ); Double dPicRdCost; UInt64 uiPicDist = m_uiPicDist; UInt64 uiALFBits = 0; m_pcGOPEncoder->preLoopFilterPicAll( rpcPic, uiPicDist, uiALFBits ); // compute RD cost and choose the best dPicRdCost = m_pcRdCost->calcRdCost64( m_uiPicTotalBits + uiALFBits, uiPicDist, true, DF_SSE_FRAME); if ( dPicRdCost < dPicRdCostBest ) { uiQpIdxBest = uiQpIdx; dPicRdCostBest = dPicRdCost; } } // set best values pcSlice ->setSliceQp ( m_piRdPicQp [uiQpIdxBest] ); #if ADAPTIVE_QP_SELECTION pcSlice ->setSliceQpBase ( m_piRdPicQp [uiQpIdxBest] ); #endif m_pcRdCost ->setLambda ( m_pdRdPicLambda[uiQpIdxBest] ); #if WEIGHTED_CHROMA_DISTORTION // in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma. int iQP = m_piRdPicQp [uiQpIdxBest]; #if H0736_AVC_STYLE_QP_RANGE Double weight = 1.0; if(iQP >= 0) { weight = pow( 2.0, (iQP-g_aucChromaScale[iQP])/3.0 ); // takes into account of the chroma qp mapping without chroma qp Offset } #else Double weight = pow( 2.0, (iQP-g_aucChromaScale[iQP])/3.0 ); // takes into account of the chroma qp mapping without chroma qp Offset #endif m_pcRdCost ->setChromaDistortionWeight( weight ); #endif #if RDOQ_CHROMA_LAMBDA // for RDOQ m_pcTrQuant ->setLambda( m_pdRdPicLambda[uiQpIdxBest], m_pdRdPicLambda[uiQpIdxBest] / weight ); #else m_pcTrQuant ->setLambda ( m_pdRdPicLambda[uiQpIdxBest] ); #endif #if ALF_CHROMA_LAMBDA || SAO_CHROMA_LAMBDA // For ALF or SAO pcSlice ->setLambda ( m_pdRdPicLambda[uiQpIdxBest], m_pdRdPicLambda[uiQpIdxBest] / weight ); #else pcSlice ->setLambda ( m_pdRdPicLambda[uiQpIdxBest] ); #endif #if HHI_INTER_VIEW_MOTION_PRED m_pcRdCost ->setLambdaMVReg ( m_pdRdPicLambda[uiQpIdxBest] * m_pcCfg->getMultiviewMvRegLambdaScale() ); #endif } /** \param rpcPic picture class */ Void TEncSlice::compressSlice( TComPic*& rpcPic ) { UInt uiCUAddr; UInt uiStartCUAddr; UInt uiBoundingCUAddr; rpcPic->getSlice(getSliceIdx())->setEntropySliceCounter(0); TEncBinCABAC* pppcRDSbacCoder = NULL; TComSlice* pcSlice = rpcPic->getSlice(getSliceIdx()); xDetermineStartAndBoundingCUAddr ( uiStartCUAddr, uiBoundingCUAddr, rpcPic, false ); // initialize cost values m_uiPicTotalBits = 0; m_dPicRdCost = 0; m_uiPicDist = 0; // set entropy coder if( m_pcCfg->getUseSBACRD() ) { m_pcSbacCoder->init( m_pcBinCABAC ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); m_pppcRDSbacCoder[0][CI_CURR_BEST]->load(m_pcSbacCoder); pppcRDSbacCoder = (TEncBinCABAC *) m_pppcRDSbacCoder[0][CI_CURR_BEST]->getEncBinIf(); pppcRDSbacCoder->setBinCountingEnableFlag( false ); pppcRDSbacCoder->setBinsCoded( 0 ); } else { m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); m_pcEntropyCoder->setBitstream ( m_pcBitCounter ); } //------------------------------------------------------------------------------ // Weighted Prediction parameters estimation. //------------------------------------------------------------------------------ // calculate AC/DC values for current picture if( pcSlice->getPPS()->getUseWP() || pcSlice->getPPS()->getWPBiPredIdc() ) { xCalcACDCParamSlice(pcSlice); } Bool bWp_explicit = (pcSlice->getSliceType()==P_SLICE && pcSlice->getPPS()->getUseWP()) || (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPredIdc()==1); Bool bWp_implicit = (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPredIdc()==2); if ( bWp_explicit || bWp_implicit ) { //------------------------------------------------------------------------------ // Weighted Prediction implemented at Slice level. SliceMode=2 is not supported yet. //------------------------------------------------------------------------------ if ( pcSlice->getSliceMode()==2 || pcSlice->getEntropySliceMode()==2 ) { printf("Weighted Prediction is not supported with slice mode determined by max number of bins.\n"); exit(0); } if( bWp_explicit ) { xEstimateWPParamSlice( pcSlice ); } pcSlice->initWpScaling(); // check WP on/off if( bWp_explicit ) { xCheckWPEnable( pcSlice ); } } #if ADAPTIVE_QP_SELECTION if( m_pcCfg->getUseAdaptQpSelect() ) { m_pcTrQuant->clearSliceARLCnt(); if(pcSlice->getSliceType()!=I_SLICE) { Int qpBase = pcSlice->getSliceQpBase(); pcSlice->setSliceQp(qpBase + m_pcTrQuant->getQpDelta(qpBase)); } } #endif // initialize ALF parameters m_pcEntropyCoder->setAlfCtrl(false); m_pcEntropyCoder->setMaxAlfCtrlDepth(0); //unnecessary TEncTop* pcEncTop = (TEncTop*) m_pcCfg; TEncSbac**** ppppcRDSbacCoders = pcEncTop->getRDSbacCoders(); TComBitCounter* pcBitCounters = pcEncTop->getBitCounters(); Int iNumSubstreams = 1; UInt uiTilesAcross = 0; if( m_pcCfg->getUseSBACRD() ) { iNumSubstreams = pcSlice->getPPS()->getNumSubstreams(); uiTilesAcross = rpcPic->getPicSym()->getNumColumnsMinus1()+1; delete[] m_pcBufferSbacCoders; delete[] m_pcBufferBinCoderCABACs; m_pcBufferSbacCoders = new TEncSbac [uiTilesAcross]; m_pcBufferBinCoderCABACs = new TEncBinCABAC[uiTilesAcross]; for (int ui = 0; ui < uiTilesAcross; ui++) { m_pcBufferSbacCoders[ui].init( &m_pcBufferBinCoderCABACs[ui] ); } for (UInt ui = 0; ui < uiTilesAcross; ui++) { m_pcBufferSbacCoders[ui].load(m_pppcRDSbacCoder[0][CI_CURR_BEST]); //init. state } for ( UInt ui = 0 ; ui < iNumSubstreams ; ui++ ) //init all sbac coders for RD optimization { ppppcRDSbacCoders[ui][0][CI_CURR_BEST]->load(m_pppcRDSbacCoder[0][CI_CURR_BEST]); } } //if( m_pcCfg->getUseSBACRD() ) { delete[] m_pcBufferLowLatSbacCoders; delete[] m_pcBufferLowLatBinCoderCABACs; m_pcBufferLowLatSbacCoders = new TEncSbac [uiTilesAcross]; m_pcBufferLowLatBinCoderCABACs = new TEncBinCABAC[uiTilesAcross]; for (int ui = 0; ui < uiTilesAcross; ui++) { m_pcBufferLowLatSbacCoders[ui].init( &m_pcBufferLowLatBinCoderCABACs[ui] ); } for (UInt ui = 0; ui < uiTilesAcross; ui++) m_pcBufferLowLatSbacCoders[ui].load(m_pppcRDSbacCoder[0][CI_CURR_BEST]); //init. state } UInt uiWidthInLCUs = rpcPic->getPicSym()->getFrameWidthInCU(); //UInt uiHeightInLCUs = rpcPic->getPicSym()->getFrameHeightInCU(); UInt uiCol=0, uiLin=0, uiSubStrm=0; #if !REMOVE_TILE_DEPENDENCE Int iBreakDep = 0; #endif UInt uiTileCol = 0; UInt uiTileStartLCU = 0; UInt uiTileLCUX = 0; // for every CU in slice UInt uiEncCUOrder; uiCUAddr = rpcPic->getPicSym()->getCUOrderMap( uiStartCUAddr /rpcPic->getNumPartInCU()); for( uiEncCUOrder = uiStartCUAddr/rpcPic->getNumPartInCU(); uiEncCUOrder < (uiBoundingCUAddr+(rpcPic->getNumPartInCU()-1))/rpcPic->getNumPartInCU(); uiCUAddr = rpcPic->getPicSym()->getCUOrderMap(++uiEncCUOrder) ) { // initialize CU encoder TComDataCU*& pcCU = rpcPic->getCU( uiCUAddr ); pcCU->initCU( rpcPic, uiCUAddr ); // inherit from TR if necessary, select substream to use. if( m_pcCfg->getUseSBACRD() ) { #if !REMOVE_TILE_DEPENDENCE iBreakDep = rpcPic->getPicSym()->getTileBoundaryIndependenceIdr(); #endif uiTileCol = rpcPic->getPicSym()->getTileIdxMap(uiCUAddr) % (rpcPic->getPicSym()->getNumColumnsMinus1()+1); // what column of tiles are we in? uiTileStartLCU = rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr(); uiTileLCUX = uiTileStartLCU % uiWidthInLCUs; //UInt uiSliceStartLCU = pcSlice->getSliceCurStartCUAddr(); uiCol = uiCUAddr % uiWidthInLCUs; uiLin = uiCUAddr / uiWidthInLCUs; #if !REMOVE_TILE_DEPENDENCE #if WPP_SIMPLIFICATION if (iBreakDep && pcSlice->getPPS()->getNumSubstreams() > 1) #else if (iBreakDep && pcSlice->getPPS()->getEntropyCodingSynchro()) #endif #else #if WPP_SIMPLIFICATION if (pcSlice->getPPS()->getNumSubstreams() > 1) #else if (pcSlice->getPPS()->getEntropyCodingSynchro()) #endif #endif { // independent tiles => substreams are "per tile". iNumSubstreams has already been multiplied. Int iNumSubstreamsPerTile = iNumSubstreams/rpcPic->getPicSym()->getNumTiles(); uiSubStrm = rpcPic->getPicSym()->getTileIdxMap(uiCUAddr)*iNumSubstreamsPerTile + uiLin%iNumSubstreamsPerTile; } else { // dependent tiles => substreams are "per frame". uiSubStrm = uiLin % iNumSubstreams; } #if WPP_SIMPLIFICATION if ( pcSlice->getPPS()->getNumSubstreams() > 1 && (uiCol == uiTileLCUX) ) #else if ( pcSlice->getPPS()->getEntropyCodingSynchro() && (uiCol == uiTileLCUX) ) #endif { // We'll sync if the TR is available. TComDataCU *pcCUUp = pcCU->getCUAbove(); UInt uiWidthInCU = rpcPic->getFrameWidthInCU(); UInt uiMaxParts = 1<<(pcSlice->getSPS()->getMaxCUDepth()<<1); TComDataCU *pcCUTR = NULL; #if WPP_SIMPLIFICATION if ( pcCUUp && ((uiCUAddr%uiWidthInCU+1) < uiWidthInCU) ) { pcCUTR = rpcPic->getCU( uiCUAddr - uiWidthInCU + 1 ); } #else if ( pcCUUp && ((uiCUAddr%uiWidthInCU+pcSlice->getPPS()->getEntropyCodingSynchro()) < uiWidthInCU) ) { pcCUTR = rpcPic->getCU( uiCUAddr - uiWidthInCU + pcSlice->getPPS()->getEntropyCodingSynchro() ); } #endif if ( ((pcCUTR==NULL) || (pcCUTR->getSlice()==NULL) || (pcCUTR->getSCUAddr()+uiMaxParts-1 < pcSlice->getSliceCurStartCUAddr()) || #if !REMOVE_TILE_DEPENDENCE (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr() && (rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #else ((rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #endif )|| ((pcCUTR==NULL) || (pcCUTR->getSlice()==NULL) || (pcCUTR->getSCUAddr()+uiMaxParts-1 < pcSlice->getEntropySliceCurStartCUAddr()) || #if !REMOVE_TILE_DEPENDENCE (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr() && (rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #else ((rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #endif ) ) { // TR not available. } else { // TR is available, we use it. ppppcRDSbacCoders[uiSubStrm][0][CI_CURR_BEST]->loadContexts( &m_pcBufferSbacCoders[uiTileCol] ); } } m_pppcRDSbacCoder[0][CI_CURR_BEST]->load( ppppcRDSbacCoders[uiSubStrm][0][CI_CURR_BEST] ); //this load is used to simplify the code } // reset the entropy coder if( uiCUAddr == rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr() && // must be first CU of tile uiCUAddr!=0 && // cannot be first CU of picture uiCUAddr!=rpcPic->getPicSym()->getPicSCUAddr(rpcPic->getSlice(rpcPic->getCurrSliceIdx())->getSliceCurStartCUAddr())/rpcPic->getNumPartInCU()) // cannot be first CU of slice { #if CABAC_INIT_FLAG SliceType sliceType = pcSlice->getSliceType(); if (!pcSlice->isIntra() && pcSlice->getPPS()->getCabacInitPresentFlag() && pcSlice->getPPS()->getEncCABACTableIdx()!=0) { sliceType = (SliceType) pcSlice->getPPS()->getEncCABACTableIdx(); } m_pcEntropyCoder->updateContextTables ( sliceType, pcSlice->getSliceQp(), false ); m_pcEntropyCoder->setEntropyCoder ( m_pppcRDSbacCoder[0][CI_CURR_BEST], pcSlice ); m_pcEntropyCoder->updateContextTables ( sliceType, pcSlice->getSliceQp() ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); #else m_pcEntropyCoder->updateContextTables ( pcSlice->getSliceType(), pcSlice->getSliceQp(), false ); m_pcEntropyCoder->setEntropyCoder ( m_pppcRDSbacCoder[0][CI_CURR_BEST], pcSlice ); m_pcEntropyCoder->updateContextTables ( pcSlice->getSliceType(), pcSlice->getSliceQp() ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); #endif } #if !REMOVE_TILE_DEPENDENCE if( (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr()==0) && (rpcPic->getPicSym()->getNumColumnsMinus1()!=0) ) { // Synchronize cabac probabilities with LCU among Tiles if( (uiTileLCUX != 0) && (uiCUAddr == rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr()) ) { TComDataCU *pcCULeft = pcCU->getCULeft(); UInt uiMaxParts = 1<<(pcSlice->getSPS()->getMaxCUDepth()<<1); if ( (true/*bEnforceSliceRestriction*/ && ((pcCULeft==NULL) || (pcCULeft->getSlice()==NULL) || ((pcCULeft->getSCUAddr()+uiMaxParts-1) < pcSlice->getSliceCurStartCUAddr()) ) )|| (true/*bEnforceEntropySliceRestriction*/ && ((pcCULeft==NULL) || (pcCULeft->getSlice()==NULL) || ((pcCULeft->getSCUAddr()+uiMaxParts-1) < pcSlice->getEntropySliceCurStartCUAddr()) ) ) ) { // Left not available. } else { // Left is available, we use it. ppppcRDSbacCoders[uiSubStrm][0][CI_CURR_BEST]->loadContexts( &m_pcBufferLowLatSbacCoders[uiTileCol-1] ); m_pppcRDSbacCoder[0][CI_CURR_BEST]->loadContexts( ppppcRDSbacCoders[uiSubStrm][0][CI_CURR_BEST] ); //this load is used to simplify the code } } } #endif // if RD based on SBAC is used if( m_pcCfg->getUseSBACRD() ) { // set go-on entropy coder m_pcEntropyCoder->setEntropyCoder ( m_pcRDGoOnSbacCoder, pcSlice ); m_pcEntropyCoder->setBitstream( &pcBitCounters[uiSubStrm] ); ((TEncBinCABAC*)m_pcRDGoOnSbacCoder->getEncBinIf())->setBinCountingEnableFlag(true); // run CU encoder m_pcCuEncoder->compressCU( pcCU ); // restore entropy coder to an initial stage m_pcEntropyCoder->setEntropyCoder ( m_pppcRDSbacCoder[0][CI_CURR_BEST], pcSlice ); m_pcEntropyCoder->setBitstream( &pcBitCounters[uiSubStrm] ); m_pcCuEncoder->setBitCounter( &pcBitCounters[uiSubStrm] ); m_pcBitCounter = &pcBitCounters[uiSubStrm]; pppcRDSbacCoder->setBinCountingEnableFlag( true ); m_pcBitCounter->resetBits(); pppcRDSbacCoder->setBinsCoded( 0 ); m_pcCuEncoder->encodeCU( pcCU ); pppcRDSbacCoder->setBinCountingEnableFlag( false ); if (m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_BYTES_IN_SLICE && ( ( pcSlice->getSliceBits() + m_pcEntropyCoder->getNumberOfWrittenBits() ) ) > m_pcCfg->getSliceArgument()<<3) { pcSlice->setNextSlice( true ); break; } if (m_pcCfg->getEntropySliceMode()==SHARP_MULTIPLE_CONSTRAINT_BASED_ENTROPY_SLICE && pcSlice->getEntropySliceCounter()+pppcRDSbacCoder->getBinsCoded() > m_pcCfg->getEntropySliceArgument()&&pcSlice->getSliceCurEndCUAddr()!=pcSlice->getEntropySliceCurEndCUAddr()) { pcSlice->setNextEntropySlice( true ); break; } if( m_pcCfg->getUseSBACRD() ) { ppppcRDSbacCoders[uiSubStrm][0][CI_CURR_BEST]->load( m_pppcRDSbacCoder[0][CI_CURR_BEST] ); //Store probabilties of second LCU in line into buffer #if WPP_SIMPLIFICATION if (pcSlice->getPPS()->getNumSubstreams() > 1 && uiCol == uiTileLCUX+1) #else if (pcSlice->getPPS()->getEntropyCodingSynchro() && uiCol == uiTileLCUX+pcSlice->getPPS()->getEntropyCodingSynchro()) #endif { m_pcBufferSbacCoders[uiTileCol].loadContexts(ppppcRDSbacCoders[uiSubStrm][0][CI_CURR_BEST]); } } #if !REMOVE_TILE_DEPENDENCE if( (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr()==0) && (rpcPic->getPicSym()->getNumColumnsMinus1()!=0) ) { //Store probabilties for next tile if( (uiLin == (rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr() / uiWidthInLCUs )) && (uiCol == rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getRightEdgePosInCU()) ) { m_pcBufferLowLatSbacCoders[uiTileCol].loadContexts(ppppcRDSbacCoders[uiSubStrm][0][CI_CURR_BEST]); } } #endif } // other case: encodeCU is not called else { m_pcCuEncoder->compressCU( pcCU ); m_pcCuEncoder->encodeCU( pcCU ); if (m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_BYTES_IN_SLICE && ( ( pcSlice->getSliceBits()+ m_pcEntropyCoder->getNumberOfWrittenBits() ) ) > m_pcCfg->getSliceArgument()<<3) { pcSlice->setNextSlice( true ); break; } if (m_pcCfg->getEntropySliceMode()==SHARP_MULTIPLE_CONSTRAINT_BASED_ENTROPY_SLICE && pcSlice->getEntropySliceCounter()+ m_pcEntropyCoder->getNumberOfWrittenBits()> m_pcCfg->getEntropySliceArgument()&&pcSlice->getSliceCurEndCUAddr()!=pcSlice->getEntropySliceCurEndCUAddr()) { pcSlice->setNextEntropySlice( true ); break; } } m_uiPicTotalBits += pcCU->getTotalBits(); m_dPicRdCost += pcCU->getTotalCost(); m_uiPicDist += pcCU->getTotalDistortion(); } xRestoreWPparam( pcSlice ); } /** \param rpcPic picture class \retval rpcBitstream bitstream class */ Void TEncSlice::encodeSlice ( TComPic*& rpcPic, TComOutputBitstream* pcBitstream, TComOutputBitstream* pcSubstreams ) { UInt uiCUAddr; UInt uiStartCUAddr; UInt uiBoundingCUAddr; TComSlice* pcSlice = rpcPic->getSlice(getSliceIdx()); uiStartCUAddr=pcSlice->getEntropySliceCurStartCUAddr(); uiBoundingCUAddr=pcSlice->getEntropySliceCurEndCUAddr(); // choose entropy coder { m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); } m_pcCuEncoder->setBitCounter( NULL ); m_pcBitCounter = NULL; // Appropriate substream bitstream is switched later. // for every CU #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceEnable; #endif DTRACE_CABAC_VL( g_nSymbolCounter++ ); DTRACE_CABAC_T( "\tPOC: " ); DTRACE_CABAC_V( rpcPic->getPOC() ); DTRACE_CABAC_T( "\n" ); #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceDisable; #endif TEncTop* pcEncTop = (TEncTop*) m_pcCfg; TEncSbac* pcSbacCoders = pcEncTop->getSbacCoders(); //coder for each substream Int iNumSubstreams = pcSlice->getPPS()->getNumSubstreams(); UInt uiBitsOriginallyInSubstreams = 0; { UInt uiTilesAcross = rpcPic->getPicSym()->getNumColumnsMinus1()+1; for (UInt ui = 0; ui < uiTilesAcross; ui++) { m_pcBufferSbacCoders[ui].load(m_pcSbacCoder); //init. state } for (Int iSubstrmIdx=0; iSubstrmIdx < iNumSubstreams; iSubstrmIdx++) { uiBitsOriginallyInSubstreams += pcSubstreams[iSubstrmIdx].getNumberOfWrittenBits(); } for (UInt ui = 0; ui < uiTilesAcross; ui++) { m_pcBufferLowLatSbacCoders[ui].load(m_pcSbacCoder); //init. state } } UInt uiWidthInLCUs = rpcPic->getPicSym()->getFrameWidthInCU(); UInt uiCol=0, uiLin=0, uiSubStrm=0; #if !REMOVE_TILE_DEPENDENCE Int iBreakDep = 0; #endif UInt uiTileCol = 0; UInt uiTileStartLCU = 0; UInt uiTileLCUX = 0; UInt uiEncCUOrder; uiCUAddr = rpcPic->getPicSym()->getCUOrderMap( uiStartCUAddr /rpcPic->getNumPartInCU()); /*for tiles, uiStartCUAddr is NOT the real raster scan address, it is actually an encoding order index, so we need to convert the index (uiStartCUAddr) into the real raster scan address (uiCUAddr) via the CUOrderMap*/ for( uiEncCUOrder = uiStartCUAddr /rpcPic->getNumPartInCU(); uiEncCUOrder < (uiBoundingCUAddr+rpcPic->getNumPartInCU()-1)/rpcPic->getNumPartInCU(); uiCUAddr = rpcPic->getPicSym()->getCUOrderMap(++uiEncCUOrder) ) { if( m_pcCfg->getUseSBACRD() ) { #if !REMOVE_TILE_DEPENDENCE iBreakDep = rpcPic->getPicSym()->getTileBoundaryIndependenceIdr(); #endif uiTileCol = rpcPic->getPicSym()->getTileIdxMap(uiCUAddr) % (rpcPic->getPicSym()->getNumColumnsMinus1()+1); // what column of tiles are we in? uiTileStartLCU = rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr(); uiTileLCUX = uiTileStartLCU % uiWidthInLCUs; //UInt uiSliceStartLCU = pcSlice->getSliceCurStartCUAddr(); uiCol = uiCUAddr % uiWidthInLCUs; uiLin = uiCUAddr / uiWidthInLCUs; #if !REMOVE_TILE_DEPENDENCE #if WPP_SIMPLIFICATION if (iBreakDep && pcSlice->getPPS()->getNumSubstreams() > 1) #else if (iBreakDep && pcSlice->getPPS()->getEntropyCodingSynchro()) #endif #else #if WPP_SIMPLIFICATION if (pcSlice->getPPS()->getNumSubstreams() > 1) #else if (pcSlice->getPPS()->getEntropyCodingSynchro()) #endif #endif { // independent tiles => substreams are "per tile". iNumSubstreams has already been multiplied. Int iNumSubstreamsPerTile = iNumSubstreams/rpcPic->getPicSym()->getNumTiles(); uiSubStrm = rpcPic->getPicSym()->getTileIdxMap(uiCUAddr)*iNumSubstreamsPerTile + uiLin%iNumSubstreamsPerTile; } else { // dependent tiles => substreams are "per frame". uiSubStrm = uiLin % iNumSubstreams; } m_pcEntropyCoder->setBitstream( &pcSubstreams[uiSubStrm] ); // Synchronize cabac probabilities with upper-right LCU if it's available and we're at the start of a line. #if WPP_SIMPLIFICATION if (pcSlice->getPPS()->getNumSubstreams() > 1 && (uiCol == uiTileLCUX)) #else if (pcSlice->getPPS()->getEntropyCodingSynchro() && (uiCol == uiTileLCUX)) #endif { // We'll sync if the TR is available. TComDataCU *pcCUUp = rpcPic->getCU( uiCUAddr )->getCUAbove(); UInt uiWidthInCU = rpcPic->getFrameWidthInCU(); UInt uiMaxParts = 1<<(pcSlice->getSPS()->getMaxCUDepth()<<1); TComDataCU *pcCUTR = NULL; #if WPP_SIMPLIFICATION if ( pcCUUp && ((uiCUAddr%uiWidthInCU+1) < uiWidthInCU) ) { pcCUTR = rpcPic->getCU( uiCUAddr - uiWidthInCU + 1 ); } #else if ( pcCUUp && ((uiCUAddr%uiWidthInCU+pcSlice->getPPS()->getEntropyCodingSynchro()) < uiWidthInCU) ) { pcCUTR = rpcPic->getCU( uiCUAddr - uiWidthInCU + pcSlice->getPPS()->getEntropyCodingSynchro() ); } #endif if ( (true/*bEnforceSliceRestriction*/ && ((pcCUTR==NULL) || (pcCUTR->getSlice()==NULL) || (pcCUTR->getSCUAddr()+uiMaxParts-1 < pcSlice->getSliceCurStartCUAddr()) || #if !REMOVE_TILE_DEPENDENCE (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr() && (rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #else ((rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #endif ))|| (true/*bEnforceEntropySliceRestriction*/ && ((pcCUTR==NULL) || (pcCUTR->getSlice()==NULL) || (pcCUTR->getSCUAddr()+uiMaxParts-1 < pcSlice->getEntropySliceCurStartCUAddr()) || #if !REMOVE_TILE_DEPENDENCE (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr() && (rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #else ((rpcPic->getPicSym()->getTileIdxMap( pcCUTR->getAddr() ) != rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))) #endif )) ) { // TR not available. } else { // TR is available, we use it. pcSbacCoders[uiSubStrm].loadContexts( &m_pcBufferSbacCoders[uiTileCol] ); } } m_pcSbacCoder->load(&pcSbacCoders[uiSubStrm]); //this load is used to simplify the code (avoid to change all the call to m_pcSbacCoder) } // reset the entropy coder if( uiCUAddr == rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr() && // must be first CU of tile uiCUAddr!=0 && // cannot be first CU of picture uiCUAddr!=rpcPic->getPicSym()->getPicSCUAddr(rpcPic->getSlice(rpcPic->getCurrSliceIdx())->getSliceCurStartCUAddr())/rpcPic->getNumPartInCU()) // cannot be first CU of slice { Int iTileIdx = rpcPic->getPicSym()->getTileIdxMap(uiCUAddr); Bool bWriteTileMarker = false; // check if current iTileIdx should have a marker for (Int iEntryIdx=0; iEntryIdxgetMaxTileMarkerEntryPoints()-1; iEntryIdx++) { bWriteTileMarker = ( (((Int)((iEntryIdx+1)*m_pcCfg->getMaxTileMarkerOffset()+0.5)) == iTileIdx ) && iEntryIdx < (m_pcCfg->getMaxTileMarkerEntryPoints()-1)) ? true : false; if (bWriteTileMarker) { break; } } { // We're crossing into another tile, tiles are independent. // When tiles are independent, we have "substreams per tile". Each substream has already been terminated, and we no longer // have to perform it here. #if WPP_SIMPLIFICATION if (pcSlice->getPPS()->getNumSubstreams() > 1) #else if (pcSlice->getPPS()->getEntropyCodingSynchro()) #endif { ; // do nothing. } else { #if CABAC_INIT_FLAG SliceType sliceType = pcSlice->getSliceType(); if (!pcSlice->isIntra() && pcSlice->getPPS()->getCabacInitPresentFlag() && pcSlice->getPPS()->getEncCABACTableIdx()!=0) { sliceType = (SliceType) pcSlice->getPPS()->getEncCABACTableIdx(); } m_pcEntropyCoder->updateContextTables( sliceType, pcSlice->getSliceQp() ); #else m_pcEntropyCoder->updateContextTables( pcSlice->getSliceType(), pcSlice->getSliceQp() ); #endif pcSubstreams[uiSubStrm].write( 1, 1 ); pcSubstreams[uiSubStrm].writeAlignZero(); } } { // Write TileMarker into the appropriate substream (nothing has been written to it yet). if (m_pcCfg->getTileMarkerFlag() && bWriteTileMarker) { // Log locations where tile markers are to be inserted during emulation prevention UInt uiMarkerCount = pcSubstreams[uiSubStrm].getTileMarkerLocationCount(); pcSubstreams[uiSubStrm].setTileMarkerLocation ( uiMarkerCount, pcSubstreams[uiSubStrm].getNumberOfWrittenBits() >> 3 ); pcSubstreams[uiSubStrm].setTileMarkerLocationCount( uiMarkerCount + 1 ); // Write tile index m_pcEntropyCoder->writeTileMarker(iTileIdx, rpcPic->getPicSym()->getBitsUsedByTileIdx()); // Tile index } UInt uiAccumulatedSubstreamLength = 0; for (Int iSubstrmIdx=0; iSubstrmIdx < iNumSubstreams; iSubstrmIdx++) { uiAccumulatedSubstreamLength += pcSubstreams[iSubstrmIdx].getNumberOfWrittenBits(); } UInt uiLocationCount = pcSlice->getTileLocationCount(); // add bits coded in previous entropy slices + bits coded so far pcSlice->setTileLocation( uiLocationCount, (pcSlice->getTileOffstForMultES() + uiAccumulatedSubstreamLength - uiBitsOriginallyInSubstreams) >> 3 ); pcSlice->setTileLocationCount( uiLocationCount + 1 ); } } TComDataCU*& pcCU = rpcPic->getCU( uiCUAddr ); #if !REMOVE_TILE_DEPENDENCE if( (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr()==0) && (rpcPic->getPicSym()->getNumColumnsMinus1()!=0) ) { // Synchronize cabac probabilities with LCU among Tiles if( (uiTileLCUX != 0) && (uiCUAddr == rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr()) ) { TComDataCU *pcCULeft = pcCU->getCULeft(); UInt uiMaxParts = 1<<(pcSlice->getSPS()->getMaxCUDepth()<<1); if ( (true/*bEnforceSliceRestriction*/ && ((pcCULeft==NULL) || (pcCULeft->getSlice()==NULL) || ((pcCULeft->getSCUAddr()+uiMaxParts-1) < pcSlice->getSliceCurStartCUAddr()) ) )|| (true/*bEnforceEntropySliceRestriction*/ && ((pcCULeft==NULL) || (pcCULeft->getSlice()==NULL) || ((pcCULeft->getSCUAddr()+uiMaxParts-1) < pcSlice->getEntropySliceCurStartCUAddr()) ) ) ) { // Left not available. } else { // Left is available, we use it. pcSbacCoders[uiSubStrm].loadContexts( &m_pcBufferLowLatSbacCoders[uiTileCol-1] ); m_pcSbacCoder->loadContexts(&pcSbacCoders[uiSubStrm]); //this load is used to simplify the code (avoid to change all the call to m_pcSbacCoder) } } } #endif #if SAO_UNIT_INTERLEAVING if ( pcSlice->getSPS()->getUseSAO() && pcSlice->getAPS()->getSaoInterleavingFlag() && pcSlice->getSaoEnabledFlag() ) { Int iNumCuInWidth = pcSlice->getAPS()->getSaoParam()->numCuInWidth; Int iCUAddrInSlice = uiCUAddr - (pcSlice->getSliceCurStartCUAddr() /rpcPic->getNumPartInCU()); Int iCUAddrUpInSlice = iCUAddrInSlice - iNumCuInWidth; Int rx = uiCUAddr % iNumCuInWidth; Int ry = uiCUAddr / iNumCuInWidth; m_pcEntropyCoder->encodeSaoUnitInterleaving( rx, ry, pcSlice->getAPS()->getSaoParam(),pcCU, iCUAddrInSlice, iCUAddrUpInSlice, pcSlice->getSPS()->getLFCrossSliceBoundaryFlag()); } #endif #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceEnable; #endif if ( (m_pcCfg->getSliceMode()!=0 || m_pcCfg->getEntropySliceMode()!=0) && uiCUAddr == rpcPic->getPicSym()->getCUOrderMap((uiBoundingCUAddr+rpcPic->getNumPartInCU()-1)/rpcPic->getNumPartInCU()-1) ) { m_pcCuEncoder->encodeCU( pcCU, true ); } else { m_pcCuEncoder->encodeCU( pcCU ); } #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceDisable; #endif if( m_pcCfg->getUseSBACRD() ) { pcSbacCoders[uiSubStrm].load(m_pcSbacCoder); //load back status of the entropy coder after encoding the LCU into relevant bitstream entropy coder //Store probabilties of second LCU in line into buffer #if WPP_SIMPLIFICATION if (pcSlice->getPPS()->getNumSubstreams() > 1 && (uiCol == uiTileLCUX+1)) #else if (pcSlice->getPPS()->getEntropyCodingSynchro() && (uiCol == uiTileLCUX+pcSlice->getPPS()->getEntropyCodingSynchro())) #endif { m_pcBufferSbacCoders[uiTileCol].loadContexts( &pcSbacCoders[uiSubStrm] ); } } #if !REMOVE_TILE_DEPENDENCE if( (rpcPic->getPicSym()->getTileBoundaryIndependenceIdr()==0) && (rpcPic->getPicSym()->getNumColumnsMinus1()!=0) ) { pcSbacCoders[uiSubStrm].load(m_pcSbacCoder); //load back status of the entropy coder after encoding the LCU into relevant bitstream entropy coder //Store probabilties for next tile if( (uiLin == (rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getFirstCUAddr() / uiWidthInLCUs )) && (uiCol == rpcPic->getPicSym()->getTComTile(rpcPic->getPicSym()->getTileIdxMap(uiCUAddr))->getRightEdgePosInCU()) ) { m_pcBufferLowLatSbacCoders[uiTileCol].loadContexts( &pcSbacCoders[uiSubStrm] ); } } #endif } #if ADAPTIVE_QP_SELECTION if( m_pcCfg->getUseAdaptQpSelect() ) { m_pcTrQuant->storeSliceQpNext(pcSlice); } #endif #if CABAC_INIT_FLAG if (pcSlice->getPPS()->getCabacInitPresentFlag()) { m_pcEntropyCoder->determineCabacInitIdx(); } #endif } /** Determines the starting and bounding LCU address of current slice / entropy slice * \param bEncodeSlice Identifies if the calling function is compressSlice() [false] or encodeSlice() [true] * \returns Updates uiStartCUAddr, uiBoundingCUAddr with appropriate LCU address */ Void TEncSlice::xDetermineStartAndBoundingCUAddr ( UInt& uiStartCUAddr, UInt& uiBoundingCUAddr, TComPic*& rpcPic, Bool bEncodeSlice ) { TComSlice* pcSlice = rpcPic->getSlice(getSliceIdx()); UInt uiStartCUAddrSlice, uiBoundingCUAddrSlice; #if FIXED_NUMBER_OF_TILES_SLICE_MODE UInt tileIdxIncrement; UInt tileIdx; UInt tileWidthInLcu; UInt tileHeightInLcu; UInt tileTotalCount; #endif uiStartCUAddrSlice = pcSlice->getSliceCurStartCUAddr(); UInt uiNumberOfCUsInFrame = rpcPic->getNumCUsInFrame(); uiBoundingCUAddrSlice = uiNumberOfCUsInFrame; if (bEncodeSlice) { UInt uiCUAddrIncrement; switch (m_pcCfg->getSliceMode()) { case AD_HOC_SLICES_FIXED_NUMBER_OF_LCU_IN_SLICE: uiCUAddrIncrement = m_pcCfg->getSliceArgument(); uiBoundingCUAddrSlice = ((uiStartCUAddrSlice + uiCUAddrIncrement) < uiNumberOfCUsInFrame*rpcPic->getNumPartInCU()) ? (uiStartCUAddrSlice + uiCUAddrIncrement) : uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; case AD_HOC_SLICES_FIXED_NUMBER_OF_BYTES_IN_SLICE: uiCUAddrIncrement = rpcPic->getNumCUsInFrame(); uiBoundingCUAddrSlice = pcSlice->getSliceCurEndCUAddr(); break; #if FIXED_NUMBER_OF_TILES_SLICE_MODE case AD_HOC_SLICES_FIXED_NUMBER_OF_TILES_IN_SLICE: tileIdx = rpcPic->getPicSym()->getTileIdxMap( rpcPic->getPicSym()->getCUOrderMap(uiStartCUAddrSlice/rpcPic->getNumPartInCU()) ); uiCUAddrIncrement = 0; tileTotalCount = (rpcPic->getPicSym()->getNumColumnsMinus1()+1) * (rpcPic->getPicSym()->getNumRowsMinus1()+1); for(tileIdxIncrement = 0; tileIdxIncrement < m_pcCfg->getSliceArgument(); tileIdxIncrement++) { if((tileIdx + tileIdxIncrement) < tileTotalCount) { tileWidthInLcu = rpcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileWidth(); tileHeightInLcu = rpcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileHeight(); uiCUAddrIncrement += (tileWidthInLcu * tileHeightInLcu * rpcPic->getNumPartInCU()) >> (m_pcCfg->getSliceGranularity() << 1); } } uiBoundingCUAddrSlice = ((uiStartCUAddrSlice + uiCUAddrIncrement) < uiNumberOfCUsInFrame*rpcPic->getNumPartInCU()) ? (uiStartCUAddrSlice + uiCUAddrIncrement) : uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; #endif default: uiCUAddrIncrement = rpcPic->getNumCUsInFrame(); uiBoundingCUAddrSlice = uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; } pcSlice->setSliceCurEndCUAddr( uiBoundingCUAddrSlice ); } else { UInt uiCUAddrIncrement ; switch (m_pcCfg->getSliceMode()) { case AD_HOC_SLICES_FIXED_NUMBER_OF_LCU_IN_SLICE: uiCUAddrIncrement = m_pcCfg->getSliceArgument(); uiBoundingCUAddrSlice = ((uiStartCUAddrSlice + uiCUAddrIncrement) < uiNumberOfCUsInFrame*rpcPic->getNumPartInCU()) ? (uiStartCUAddrSlice + uiCUAddrIncrement) : uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; #if FIXED_NUMBER_OF_TILES_SLICE_MODE case AD_HOC_SLICES_FIXED_NUMBER_OF_TILES_IN_SLICE: tileIdx = rpcPic->getPicSym()->getTileIdxMap( rpcPic->getPicSym()->getCUOrderMap(uiStartCUAddrSlice/rpcPic->getNumPartInCU()) ); uiCUAddrIncrement = 0; tileTotalCount = (rpcPic->getPicSym()->getNumColumnsMinus1()+1) * (rpcPic->getPicSym()->getNumRowsMinus1()+1); for(tileIdxIncrement = 0; tileIdxIncrement < m_pcCfg->getSliceArgument(); tileIdxIncrement++) { if((tileIdx + tileIdxIncrement) < tileTotalCount) { tileWidthInLcu = rpcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileWidth(); tileHeightInLcu = rpcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileHeight(); uiCUAddrIncrement += (tileWidthInLcu * tileHeightInLcu * rpcPic->getNumPartInCU()) >> (m_pcCfg->getSliceGranularity() << 1); } } uiBoundingCUAddrSlice = ((uiStartCUAddrSlice + uiCUAddrIncrement) < uiNumberOfCUsInFrame*rpcPic->getNumPartInCU()) ? (uiStartCUAddrSlice + uiCUAddrIncrement) : uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; #endif default: uiCUAddrIncrement = rpcPic->getNumCUsInFrame(); uiBoundingCUAddrSlice = uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; } pcSlice->setSliceCurEndCUAddr( uiBoundingCUAddrSlice ); } #if COMPLETE_SLICES_IN_TILE Bool tileBoundary = false; if ((m_pcCfg->getSliceMode() == AD_HOC_SLICES_FIXED_NUMBER_OF_LCU_IN_SLICE || m_pcCfg->getSliceMode() == AD_HOC_SLICES_FIXED_NUMBER_OF_BYTES_IN_SLICE) && (m_pcCfg->getNumRowsMinus1() > 0 || m_pcCfg->getNumColumnsMinus1() > 0)) { UInt lcuEncAddr = (uiStartCUAddrSlice+rpcPic->getNumPartInCU()-1)/rpcPic->getNumPartInCU(); UInt lcuAddr = rpcPic->getPicSym()->getCUOrderMap(lcuEncAddr); UInt startTileIdx = rpcPic->getPicSym()->getTileIdxMap(lcuAddr); UInt tileBoundingCUAddrSlice = 0; while (lcuEncAddr < uiNumberOfCUsInFrame && rpcPic->getPicSym()->getTileIdxMap(lcuAddr) == startTileIdx) { lcuEncAddr++; lcuAddr = rpcPic->getPicSym()->getCUOrderMap(lcuEncAddr); } tileBoundingCUAddrSlice = lcuEncAddr*rpcPic->getNumPartInCU(); if (tileBoundingCUAddrSlice < uiBoundingCUAddrSlice) { uiBoundingCUAddrSlice = tileBoundingCUAddrSlice; pcSlice->setSliceCurEndCUAddr( uiBoundingCUAddrSlice ); tileBoundary = true; } } #endif // Entropy slice UInt uiStartCUAddrEntropySlice, uiBoundingCUAddrEntropySlice; uiStartCUAddrEntropySlice = pcSlice->getEntropySliceCurStartCUAddr(); uiBoundingCUAddrEntropySlice = uiNumberOfCUsInFrame; if (bEncodeSlice) { UInt uiCUAddrIncrement; switch (m_pcCfg->getEntropySliceMode()) { case SHARP_FIXED_NUMBER_OF_LCU_IN_ENTROPY_SLICE: uiCUAddrIncrement = m_pcCfg->getEntropySliceArgument(); uiBoundingCUAddrEntropySlice = ((uiStartCUAddrEntropySlice + uiCUAddrIncrement) < uiNumberOfCUsInFrame*rpcPic->getNumPartInCU() ) ? (uiStartCUAddrEntropySlice + uiCUAddrIncrement) : uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; case SHARP_MULTIPLE_CONSTRAINT_BASED_ENTROPY_SLICE: uiCUAddrIncrement = rpcPic->getNumCUsInFrame(); uiBoundingCUAddrEntropySlice = pcSlice->getEntropySliceCurEndCUAddr(); break; default: uiCUAddrIncrement = rpcPic->getNumCUsInFrame(); uiBoundingCUAddrEntropySlice = uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; } pcSlice->setEntropySliceCurEndCUAddr( uiBoundingCUAddrEntropySlice ); } else { UInt uiCUAddrIncrement; switch (m_pcCfg->getEntropySliceMode()) { case SHARP_FIXED_NUMBER_OF_LCU_IN_ENTROPY_SLICE: uiCUAddrIncrement = m_pcCfg->getEntropySliceArgument(); uiBoundingCUAddrEntropySlice = ((uiStartCUAddrEntropySlice + uiCUAddrIncrement) < uiNumberOfCUsInFrame*rpcPic->getNumPartInCU() ) ? (uiStartCUAddrEntropySlice + uiCUAddrIncrement) : uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; default: uiCUAddrIncrement = rpcPic->getNumCUsInFrame(); uiBoundingCUAddrEntropySlice = uiNumberOfCUsInFrame*rpcPic->getNumPartInCU(); break; } pcSlice->setEntropySliceCurEndCUAddr( uiBoundingCUAddrEntropySlice ); } if(uiBoundingCUAddrEntropySlice>uiBoundingCUAddrSlice) { uiBoundingCUAddrEntropySlice = uiBoundingCUAddrSlice; pcSlice->setEntropySliceCurEndCUAddr(uiBoundingCUAddrSlice); } //calculate real entropy slice start address UInt uiInternalAddress = rpcPic->getPicSym()->getPicSCUAddr(pcSlice->getEntropySliceCurStartCUAddr()) % rpcPic->getNumPartInCU(); UInt uiExternalAddress = rpcPic->getPicSym()->getPicSCUAddr(pcSlice->getEntropySliceCurStartCUAddr()) / rpcPic->getNumPartInCU(); UInt uiPosX = ( uiExternalAddress % rpcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiPosY = ( uiExternalAddress / rpcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; UInt uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); UInt uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while((uiPosX>=uiWidth||uiPosY>=uiHeight)&&!(uiPosX>=uiWidth&&uiPosY>=uiHeight)) { uiInternalAddress++; if(uiInternalAddress>=rpcPic->getNumPartInCU()) { uiInternalAddress=0; uiExternalAddress = rpcPic->getPicSym()->getCUOrderMap(rpcPic->getPicSym()->getInverseCUOrderMap(uiExternalAddress)+1); } uiPosX = ( uiExternalAddress % rpcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / rpcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } UInt uiRealStartAddress = rpcPic->getPicSym()->getPicSCUEncOrder(uiExternalAddress*rpcPic->getNumPartInCU()+uiInternalAddress); pcSlice->setEntropySliceCurStartCUAddr(uiRealStartAddress); uiStartCUAddrEntropySlice=uiRealStartAddress; //calculate real slice start address uiInternalAddress = rpcPic->getPicSym()->getPicSCUAddr(pcSlice->getSliceCurStartCUAddr()) % rpcPic->getNumPartInCU(); uiExternalAddress = rpcPic->getPicSym()->getPicSCUAddr(pcSlice->getSliceCurStartCUAddr()) / rpcPic->getNumPartInCU(); uiPosX = ( uiExternalAddress % rpcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / rpcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); while((uiPosX>=uiWidth||uiPosY>=uiHeight)&&!(uiPosX>=uiWidth&&uiPosY>=uiHeight)) { uiInternalAddress++; if(uiInternalAddress>=rpcPic->getNumPartInCU()) { uiInternalAddress=0; uiExternalAddress = rpcPic->getPicSym()->getCUOrderMap(rpcPic->getPicSym()->getInverseCUOrderMap(uiExternalAddress)+1); } uiPosX = ( uiExternalAddress % rpcPic->getFrameWidthInCU() ) * g_uiMaxCUWidth+ g_auiRasterToPelX[ g_auiZscanToRaster[uiInternalAddress] ]; uiPosY = ( uiExternalAddress / rpcPic->getFrameWidthInCU() ) * g_uiMaxCUHeight+ g_auiRasterToPelY[ g_auiZscanToRaster[uiInternalAddress] ]; } uiRealStartAddress = rpcPic->getPicSym()->getPicSCUEncOrder(uiExternalAddress*rpcPic->getNumPartInCU()+uiInternalAddress); pcSlice->setSliceCurStartCUAddr(uiRealStartAddress); uiStartCUAddrSlice=uiRealStartAddress; // Make a joint decision based on reconstruction and entropy slice bounds uiStartCUAddr = max(uiStartCUAddrSlice , uiStartCUAddrEntropySlice ); uiBoundingCUAddr = min(uiBoundingCUAddrSlice, uiBoundingCUAddrEntropySlice); if (!bEncodeSlice) { // For fixed number of LCU within an entropy and reconstruction slice we already know whether we will encounter end of entropy and/or reconstruction slice // first. Set the flags accordingly. if ( (m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_LCU_IN_SLICE && m_pcCfg->getEntropySliceMode()==SHARP_FIXED_NUMBER_OF_LCU_IN_ENTROPY_SLICE) || (m_pcCfg->getSliceMode()==0 && m_pcCfg->getEntropySliceMode()==SHARP_FIXED_NUMBER_OF_LCU_IN_ENTROPY_SLICE) || (m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_LCU_IN_SLICE && m_pcCfg->getEntropySliceMode()==0) #if FIXED_NUMBER_OF_TILES_SLICE_MODE || (m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_TILES_IN_SLICE && m_pcCfg->getEntropySliceMode()==SHARP_FIXED_NUMBER_OF_LCU_IN_ENTROPY_SLICE) || (m_pcCfg->getSliceMode()==AD_HOC_SLICES_FIXED_NUMBER_OF_TILES_IN_SLICE && m_pcCfg->getEntropySliceMode()==0) #endif #if COMPLETE_SLICES_IN_TILE || tileBoundary #endif ) { if (uiBoundingCUAddrSlice < uiBoundingCUAddrEntropySlice) { pcSlice->setNextSlice ( true ); pcSlice->setNextEntropySlice( false ); } else if (uiBoundingCUAddrSlice > uiBoundingCUAddrEntropySlice) { pcSlice->setNextSlice ( false ); pcSlice->setNextEntropySlice( true ); } else { pcSlice->setNextSlice ( true ); pcSlice->setNextEntropySlice( true ); } } else { pcSlice->setNextSlice ( false ); pcSlice->setNextEntropySlice( false ); } } } //! \}