/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2015, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncSampleAdaptiveOffset.cpp \brief estimation part of sample adaptive offset class */ #include "TEncSampleAdaptiveOffset.h" #include #include #include #include //! \ingroup TLibEncoder //! \{ //! rounding with IBDI inline Double xRoundIbdi2(Int bitDepth, Double x) { return ((x)>0) ? (Int)(((Int)(x)+(1<<(bitDepth-8-1)))/(1<<(bitDepth-8))) : ((Int)(((Int)(x)-(1<<(bitDepth-8-1)))/(1<<(bitDepth-8)))); } inline Double xRoundIbdi(Int bitDepth, Double x) { return (bitDepth > 8 ? xRoundIbdi2(bitDepth, (x)) : ((x)>=0 ? ((Int)((x)+0.5)) : ((Int)((x)-0.5)))) ; } TEncSampleAdaptiveOffset::TEncSampleAdaptiveOffset() { m_pppcRDSbacCoder = NULL; m_pcRDGoOnSbacCoder = NULL; m_pppcBinCoderCABAC = NULL; m_statData = NULL; m_preDBFstatData = NULL; } TEncSampleAdaptiveOffset::~TEncSampleAdaptiveOffset() { destroyEncData(); } Void TEncSampleAdaptiveOffset::createEncData(Bool isPreDBFSamplesUsed) { //cabac coder for RDO m_pppcRDSbacCoder = new TEncSbac* [NUM_SAO_CABACSTATE_LABELS]; #if FAST_BIT_EST m_pppcBinCoderCABAC = new TEncBinCABACCounter* [NUM_SAO_CABACSTATE_LABELS]; #else m_pppcBinCoderCABAC = new TEncBinCABAC* [NUM_SAO_CABACSTATE_LABELS]; #endif for(Int cs=0; cs < NUM_SAO_CABACSTATE_LABELS; cs++) { m_pppcRDSbacCoder[cs] = new TEncSbac; #if FAST_BIT_EST m_pppcBinCoderCABAC[cs] = new TEncBinCABACCounter; #else m_pppcBinCoderCABAC[cs] = new TEncBinCABAC; #endif m_pppcRDSbacCoder [cs]->init( m_pppcBinCoderCABAC [cs] ); } //statistics m_statData = new SAOStatData**[m_numCTUsPic]; for(Int i=0; i< m_numCTUsPic; i++) { m_statData[i] = new SAOStatData*[MAX_NUM_COMPONENT]; for(Int compIdx=0; compIdx < MAX_NUM_COMPONENT; compIdx++) { m_statData[i][compIdx] = new SAOStatData[NUM_SAO_NEW_TYPES]; } } if(isPreDBFSamplesUsed) { m_preDBFstatData = new SAOStatData**[m_numCTUsPic]; for(Int i=0; i< m_numCTUsPic; i++) { m_preDBFstatData[i] = new SAOStatData*[MAX_NUM_COMPONENT]; for(Int compIdx=0; compIdx < MAX_NUM_COMPONENT; compIdx++) { m_preDBFstatData[i][compIdx] = new SAOStatData[NUM_SAO_NEW_TYPES]; } } } ::memset(m_saoDisabledRate, 0, sizeof(m_saoDisabledRate)); for(Int typeIdc=0; typeIdc < NUM_SAO_NEW_TYPES; typeIdc++) { m_skipLinesR[COMPONENT_Y ][typeIdc]= 5; m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 3; m_skipLinesB[COMPONENT_Y ][typeIdc]= 4; m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 2; if(isPreDBFSamplesUsed) { switch(typeIdc) { case SAO_TYPE_EO_0: { m_skipLinesR[COMPONENT_Y ][typeIdc]= 5; m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 3; m_skipLinesB[COMPONENT_Y ][typeIdc]= 3; m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 1; } break; case SAO_TYPE_EO_90: { m_skipLinesR[COMPONENT_Y ][typeIdc]= 4; m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 2; m_skipLinesB[COMPONENT_Y ][typeIdc]= 4; m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 2; } break; case SAO_TYPE_EO_135: case SAO_TYPE_EO_45: { m_skipLinesR[COMPONENT_Y ][typeIdc]= 5; m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 3; m_skipLinesB[COMPONENT_Y ][typeIdc]= 4; m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 2; } break; case SAO_TYPE_BO: { m_skipLinesR[COMPONENT_Y ][typeIdc]= 4; m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 2; m_skipLinesB[COMPONENT_Y ][typeIdc]= 3; m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 1; } break; default: { printf("Not a supported type"); assert(0); exit(-1); } } } } } Void TEncSampleAdaptiveOffset::destroyEncData() { if(m_pppcRDSbacCoder != NULL) { for (Int cs = 0; cs < NUM_SAO_CABACSTATE_LABELS; cs ++ ) { delete m_pppcRDSbacCoder[cs]; } delete[] m_pppcRDSbacCoder; m_pppcRDSbacCoder = NULL; } if(m_pppcBinCoderCABAC != NULL) { for (Int cs = 0; cs < NUM_SAO_CABACSTATE_LABELS; cs ++ ) { delete m_pppcBinCoderCABAC[cs]; } delete[] m_pppcBinCoderCABAC; m_pppcBinCoderCABAC = NULL; } if(m_statData != NULL) { for(Int i=0; i< m_numCTUsPic; i++) { for(Int compIdx=0; compIdx< MAX_NUM_COMPONENT; compIdx++) { delete[] m_statData[i][compIdx]; } delete[] m_statData[i]; } delete[] m_statData; m_statData = NULL; } if(m_preDBFstatData != NULL) { for(Int i=0; i< m_numCTUsPic; i++) { for(Int compIdx=0; compIdx< MAX_NUM_COMPONENT; compIdx++) { delete[] m_preDBFstatData[i][compIdx]; } delete[] m_preDBFstatData[i]; } delete[] m_preDBFstatData; m_preDBFstatData = NULL; } } Void TEncSampleAdaptiveOffset::initRDOCabacCoder(TEncSbac* pcRDGoOnSbacCoder, TComSlice* pcSlice) { m_pcRDGoOnSbacCoder = pcRDGoOnSbacCoder; m_pcRDGoOnSbacCoder->resetEntropy(pcSlice); m_pcRDGoOnSbacCoder->resetBits(); m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[SAO_CABACSTATE_PIC_INIT]); } Void TEncSampleAdaptiveOffset::SAOProcess(TComPic* pPic, Bool* sliceEnabled, const Double *lambdas, const Bool bTestSAODisableAtPictureLevel, const Double saoEncodingRate, const Double saoEncodingRateChroma, Bool isPreDBFSamplesUsed ) { TComPicYuv* orgYuv= pPic->getPicYuvOrg(); TComPicYuv* resYuv= pPic->getPicYuvRec(); memcpy(m_lambda, lambdas, sizeof(m_lambda)); TComPicYuv* srcYuv = m_tempPicYuv; resYuv->copyToPic(srcYuv); srcYuv->setBorderExtension(false); srcYuv->extendPicBorder(); //collect statistics getStatistics(m_statData, orgYuv, srcYuv, pPic); if(isPreDBFSamplesUsed) { addPreDBFStatistics(m_statData); } //slice on/off decidePicParams(sliceEnabled, pPic->getSlice(0)->getDepth(), saoEncodingRate, saoEncodingRateChroma); //block on/off SAOBlkParam* reconParams = new SAOBlkParam[m_numCTUsPic]; //temporary parameter buffer for storing reconstructed SAO parameters decideBlkParams(pPic, sliceEnabled, m_statData, srcYuv, resYuv, reconParams, pPic->getPicSym()->getSAOBlkParam(), bTestSAODisableAtPictureLevel, saoEncodingRate, saoEncodingRateChroma); delete[] reconParams; } Void TEncSampleAdaptiveOffset::getPreDBFStatistics(TComPic* pPic) { getStatistics(m_preDBFstatData, pPic->getPicYuvOrg(), pPic->getPicYuvRec(), pPic, true); } Void TEncSampleAdaptiveOffset::addPreDBFStatistics(SAOStatData*** blkStats) { for(Int n=0; n< m_numCTUsPic; n++) { for(Int compIdx=0; compIdx < MAX_NUM_COMPONENT; compIdx++) { for(Int typeIdc=0; typeIdc < NUM_SAO_NEW_TYPES; typeIdc++) { blkStats[n][compIdx][typeIdc] += m_preDBFstatData[n][compIdx][typeIdc]; } } } } Void TEncSampleAdaptiveOffset::getStatistics(SAOStatData*** blkStats, TComPicYuv* orgYuv, TComPicYuv* srcYuv, TComPic* pPic, Bool isCalculatePreDeblockSamples) { Bool isLeftAvail,isRightAvail,isAboveAvail,isBelowAvail,isAboveLeftAvail,isAboveRightAvail,isBelowLeftAvail,isBelowRightAvail; const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC); for(Int ctuRsAddr= 0; ctuRsAddr < m_numCTUsPic; ctuRsAddr++) { Int yPos = (ctuRsAddr / m_numCTUInWidth)*m_maxCUHeight; Int xPos = (ctuRsAddr % m_numCTUInWidth)*m_maxCUWidth; Int height = (yPos + m_maxCUHeight > m_picHeight)?(m_picHeight- yPos):m_maxCUHeight; Int width = (xPos + m_maxCUWidth > m_picWidth )?(m_picWidth - xPos):m_maxCUWidth; pPic->getPicSym()->deriveLoopFilterBoundaryAvailibility(ctuRsAddr, isLeftAvail,isRightAvail,isAboveAvail,isBelowAvail,isAboveLeftAvail,isAboveRightAvail,isBelowLeftAvail,isBelowRightAvail); //NOTE: The number of skipped lines during gathering CTU statistics depends on the slice boundary availabilities. //For simplicity, here only picture boundaries are considered. isRightAvail = (xPos + m_maxCUWidth < m_picWidth ); isBelowAvail = (yPos + m_maxCUHeight < m_picHeight); isBelowRightAvail = (isRightAvail && isBelowAvail); isBelowLeftAvail = ((xPos > 0) && (isBelowAvail)); isAboveRightAvail = ((yPos > 0) && (isRightAvail)); for(Int compIdx = 0; compIdx < numberOfComponents; compIdx++) { const ComponentID component = ComponentID(compIdx); const UInt componentScaleX = getComponentScaleX(component, pPic->getChromaFormat()); const UInt componentScaleY = getComponentScaleY(component, pPic->getChromaFormat()); Int srcStride = srcYuv->getStride(component); Pel* srcBlk = srcYuv->getAddr(component) + ((yPos >> componentScaleY) * srcStride) + (xPos >> componentScaleX); Int orgStride = orgYuv->getStride(component); Pel* orgBlk = orgYuv->getAddr(component) + ((yPos >> componentScaleY) * orgStride) + (xPos >> componentScaleX); getBlkStats(component, pPic->getPicSym()->getSPS().getBitDepth(toChannelType(component)), blkStats[ctuRsAddr][component] , srcBlk, orgBlk, srcStride, orgStride, (width >> componentScaleX), (height >> componentScaleY) , isLeftAvail, isRightAvail, isAboveAvail, isBelowAvail, isAboveLeftAvail, isAboveRightAvail , isCalculatePreDeblockSamples ); } } } Void TEncSampleAdaptiveOffset::decidePicParams(Bool* sliceEnabled, Int picTempLayer, const Double saoEncodingRate, const Double saoEncodingRateChroma) { //decide sliceEnabled[compIdx] const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC); for (Int compIdx = 0; compIdx < MAX_NUM_COMPONENT; compIdx++) { sliceEnabled[compIdx] = false; } for (Int compIdx = 0; compIdx < numberOfComponents; compIdx++) { // reset flags & counters sliceEnabled[compIdx] = true; if (saoEncodingRate>0.0) { if (saoEncodingRateChroma>0.0) { // decide slice-level on/off based on previous results if( (picTempLayer > 0) && (m_saoDisabledRate[compIdx][picTempLayer-1] > ((compIdx==COMPONENT_Y) ? saoEncodingRate : saoEncodingRateChroma)) ) { sliceEnabled[compIdx] = false; } } else { // decide slice-level on/off based on previous results if( (picTempLayer > 0) && (m_saoDisabledRate[COMPONENT_Y][0] > saoEncodingRate) ) { sliceEnabled[compIdx] = false; } } } } } Int64 TEncSampleAdaptiveOffset::getDistortion(const Int channelBitDepth, Int typeIdc, Int typeAuxInfo, Int* invQuantOffset, SAOStatData& statData) { Int64 dist = 0; Int shift = 2 * DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth - 8); switch(typeIdc) { case SAO_TYPE_EO_0: case SAO_TYPE_EO_90: case SAO_TYPE_EO_135: case SAO_TYPE_EO_45: { for (Int offsetIdx=0; offsetIdx> shift); } inline Int TEncSampleAdaptiveOffset::estIterOffset(Int typeIdx, Double lambda, Int offsetInput, Int64 count, Int64 diffSum, Int shift, Int bitIncrease, Int64& bestDist, Double& bestCost, Int offsetTh ) { Int iterOffset, tempOffset; Int64 tempDist, tempRate; Double tempCost, tempMinCost; Int offsetOutput = 0; iterOffset = offsetInput; // Assuming sending quantized value 0 results in zero offset and sending the value zero needs 1 bit. entropy coder can be used to measure the exact rate here. tempMinCost = lambda; while (iterOffset != 0) { // Calculate the bits required for signaling the offset tempRate = (typeIdx == SAO_TYPE_BO) ? (abs((Int)iterOffset)+2) : (abs((Int)iterOffset)+1); if (abs((Int)iterOffset)==offsetTh) //inclusive { tempRate --; } // Do the dequantization before distortion calculation tempOffset = iterOffset << bitIncrease; tempDist = estSaoDist( count, tempOffset, diffSum, shift); tempCost = ((Double)tempDist + lambda * (Double) tempRate); if(tempCost < tempMinCost) { tempMinCost = tempCost; offsetOutput = iterOffset; bestDist = tempDist; bestCost = tempCost; } iterOffset = (iterOffset > 0) ? (iterOffset-1):(iterOffset+1); } return offsetOutput; } Void TEncSampleAdaptiveOffset::deriveOffsets(ComponentID compIdx, const Int channelBitDepth, Int typeIdc, SAOStatData& statData, Int* quantOffsets, Int& typeAuxInfo) { Int bitDepth = channelBitDepth; Int shift = 2 * DISTORTION_PRECISION_ADJUSTMENT(bitDepth-8); Int offsetTh = TComSampleAdaptiveOffset::getMaxOffsetQVal(channelBitDepth); //inclusive ::memset(quantOffsets, 0, sizeof(Int)*MAX_NUM_SAO_CLASSES); //derive initial offsets Int numClasses = (typeIdc == SAO_TYPE_BO)?((Int)NUM_SAO_BO_CLASSES):((Int)NUM_SAO_EO_CLASSES); for(Int classIdx=0; classIdx< numClasses; classIdx++) { if( (typeIdc != SAO_TYPE_BO) && (classIdx==SAO_CLASS_EO_PLAIN) ) { continue; //offset will be zero } if(statData.count[classIdx] == 0) { continue; //offset will be zero } quantOffsets[classIdx] = (Int) xRoundIbdi(bitDepth, (Double)( statData.diff[classIdx]<<(bitDepth-8)) / (Double)( statData.count[classIdx]<< m_offsetStepLog2[compIdx]) ); quantOffsets[classIdx] = Clip3(-offsetTh, offsetTh, quantOffsets[classIdx]); } // adjust offsets switch(typeIdc) { case SAO_TYPE_EO_0: case SAO_TYPE_EO_90: case SAO_TYPE_EO_135: case SAO_TYPE_EO_45: { Int64 classDist; Double classCost; for(Int classIdx=0; classIdx 0) { quantOffsets[classIdx] =0; } if(classIdx==SAO_CLASS_EO_FULL_PEAK && quantOffsets[classIdx] > 0) { quantOffsets[classIdx] =0; } if( quantOffsets[classIdx] != 0 ) //iterative adjustment only when derived offset is not zero { quantOffsets[classIdx] = estIterOffset( typeIdc, m_lambda[compIdx], quantOffsets[classIdx], statData.count[classIdx], statData.diff[classIdx], shift, m_offsetStepLog2[compIdx], classDist , classCost , offsetTh ); } } typeAuxInfo =0; } break; case SAO_TYPE_BO: { Int64 distBOClasses[NUM_SAO_BO_CLASSES]; Double costBOClasses[NUM_SAO_BO_CLASSES]; ::memset(distBOClasses, 0, sizeof(Int64)*NUM_SAO_BO_CLASSES); for(Int classIdx=0; classIdx< NUM_SAO_BO_CLASSES; classIdx++) { costBOClasses[classIdx]= m_lambda[compIdx]; if( quantOffsets[classIdx] != 0 ) //iterative adjustment only when derived offset is not zero { quantOffsets[classIdx] = estIterOffset( typeIdc, m_lambda[compIdx], quantOffsets[classIdx], statData.count[classIdx], statData.diff[classIdx], shift, m_offsetStepLog2[compIdx], distBOClasses[classIdx], costBOClasses[classIdx], offsetTh ); } } //decide the starting band index Double minCost = MAX_DOUBLE, cost; for(Int band=0; band< NUM_SAO_BO_CLASSES- 4+ 1; band++) { cost = costBOClasses[band ]; cost += costBOClasses[band+1]; cost += costBOClasses[band+2]; cost += costBOClasses[band+3]; if(cost < minCost) { minCost = cost; typeAuxInfo = band; } } //clear those unused classes Int clearQuantOffset[NUM_SAO_BO_CLASSES]; ::memset(clearQuantOffset, 0, sizeof(Int)*NUM_SAO_BO_CLASSES); for(Int i=0; i< 4; i++) { Int band = (typeAuxInfo+i)%NUM_SAO_BO_CLASSES; clearQuantOffset[band] = quantOffsets[band]; } ::memcpy(quantOffsets, clearQuantOffset, sizeof(Int)*NUM_SAO_BO_CLASSES); } break; default: { printf("Not a supported type"); assert(0); exit(-1); } } } Void TEncSampleAdaptiveOffset::deriveModeNewRDO(const BitDepths &bitDepths, Int ctuRsAddr, SAOBlkParam* mergeList[NUM_SAO_MERGE_TYPES], Bool* sliceEnabled, SAOStatData*** blkStats, SAOBlkParam& modeParam, Double& modeNormCost, TEncSbac** cabacCoderRDO, Int inCabacLabel) { Double minCost, cost; UInt previousWrittenBits; const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC); Int64 dist[MAX_NUM_COMPONENT], modeDist[MAX_NUM_COMPONENT]; SAOOffset testOffset[MAX_NUM_COMPONENT]; Int invQuantOffset[MAX_NUM_SAO_CLASSES]; for(Int comp=0; comp < MAX_NUM_COMPONENT; comp++) { modeDist[comp] = 0; } //pre-encode merge flags modeParam[COMPONENT_Y].modeIdc = SAO_MODE_OFF; m_pcRDGoOnSbacCoder->load(cabacCoderRDO[inCabacLabel]); m_pcRDGoOnSbacCoder->codeSAOBlkParam(modeParam, bitDepths, sliceEnabled, (mergeList[SAO_MERGE_LEFT]!= NULL), (mergeList[SAO_MERGE_ABOVE]!= NULL), true); m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]); //------ luma --------// { const ComponentID compIdx = COMPONENT_Y; //"off" case as initial cost modeParam[compIdx].modeIdc = SAO_MODE_OFF; m_pcRDGoOnSbacCoder->resetBits(); m_pcRDGoOnSbacCoder->codeSAOOffsetParam(compIdx, modeParam[compIdx], sliceEnabled[compIdx], bitDepths.recon[CHANNEL_TYPE_LUMA]); modeDist[compIdx] = 0; minCost= m_lambda[compIdx]*((Double)m_pcRDGoOnSbacCoder->getNumberOfWrittenBits()); m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]); if(sliceEnabled[compIdx]) { for(Int typeIdc=0; typeIdc< NUM_SAO_NEW_TYPES; typeIdc++) { testOffset[compIdx].modeIdc = SAO_MODE_NEW; testOffset[compIdx].typeIdc = typeIdc; //derive coded offset deriveOffsets(compIdx, bitDepths.recon[CHANNEL_TYPE_LUMA], typeIdc, blkStats[ctuRsAddr][compIdx][typeIdc], testOffset[compIdx].offset, testOffset[compIdx].typeAuxInfo); //inversed quantized offsets invertQuantOffsets(compIdx, typeIdc, testOffset[compIdx].typeAuxInfo, invQuantOffset, testOffset[compIdx].offset); //get distortion dist[compIdx] = getDistortion(bitDepths.recon[CHANNEL_TYPE_LUMA], testOffset[compIdx].typeIdc, testOffset[compIdx].typeAuxInfo, invQuantOffset, blkStats[ctuRsAddr][compIdx][typeIdc]); //get rate m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]); m_pcRDGoOnSbacCoder->resetBits(); m_pcRDGoOnSbacCoder->codeSAOOffsetParam(compIdx, testOffset[compIdx], sliceEnabled[compIdx], bitDepths.recon[CHANNEL_TYPE_LUMA]); Int rate = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits(); cost = (Double)dist[compIdx] + m_lambda[compIdx]*((Double)rate); if(cost < minCost) { minCost = cost; modeDist[compIdx] = dist[compIdx]; modeParam[compIdx]= testOffset[compIdx]; m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]); } } } m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]); m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]); } //------ chroma --------// //"off" case as initial cost cost = 0; previousWrittenBits = 0; m_pcRDGoOnSbacCoder->resetBits(); for(UInt componentIndex = COMPONENT_Cb; componentIndex < numberOfComponents; componentIndex++) { const ComponentID component = ComponentID(componentIndex); modeParam[component].modeIdc = SAO_MODE_OFF; modeDist [component] = 0; m_pcRDGoOnSbacCoder->codeSAOOffsetParam(component, modeParam[component], sliceEnabled[component], bitDepths.recon[CHANNEL_TYPE_CHROMA]); const UInt currentWrittenBits = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits(); cost += m_lambda[component] * (currentWrittenBits - previousWrittenBits); previousWrittenBits = currentWrittenBits; } minCost = cost; //doesn't need to store cabac status here since the whole CTU parameters will be re-encoded at the end of this function for(Int typeIdc=0; typeIdc< NUM_SAO_NEW_TYPES; typeIdc++) { m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]); m_pcRDGoOnSbacCoder->resetBits(); previousWrittenBits = 0; cost = 0; for(UInt componentIndex = COMPONENT_Cb; componentIndex < numberOfComponents; componentIndex++) { const ComponentID component = ComponentID(componentIndex); if(!sliceEnabled[component]) { testOffset[component].modeIdc = SAO_MODE_OFF; dist[component]= 0; continue; } testOffset[component].modeIdc = SAO_MODE_NEW; testOffset[component].typeIdc = typeIdc; //derive offset & get distortion deriveOffsets(component, bitDepths.recon[CHANNEL_TYPE_CHROMA], typeIdc, blkStats[ctuRsAddr][component][typeIdc], testOffset[component].offset, testOffset[component].typeAuxInfo); invertQuantOffsets(component, typeIdc, testOffset[component].typeAuxInfo, invQuantOffset, testOffset[component].offset); dist[component] = getDistortion(bitDepths.recon[CHANNEL_TYPE_CHROMA], typeIdc, testOffset[component].typeAuxInfo, invQuantOffset, blkStats[ctuRsAddr][component][typeIdc]); m_pcRDGoOnSbacCoder->codeSAOOffsetParam(component, testOffset[component], sliceEnabled[component], bitDepths.recon[CHANNEL_TYPE_CHROMA]); const UInt currentWrittenBits = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits(); cost += dist[component] + (m_lambda[component] * (currentWrittenBits - previousWrittenBits)); previousWrittenBits = currentWrittenBits; } if(cost < minCost) { minCost = cost; for(UInt componentIndex = COMPONENT_Cb; componentIndex < numberOfComponents; componentIndex++) { modeDist[componentIndex] = dist[componentIndex]; modeParam[componentIndex] = testOffset[componentIndex]; } } } // SAO_TYPE loop //----- re-gen rate & normalized cost----// modeNormCost = 0; for(UInt componentIndex = COMPONENT_Y; componentIndex < numberOfComponents; componentIndex++) { modeNormCost += (Double)modeDist[componentIndex] / m_lambda[componentIndex]; } m_pcRDGoOnSbacCoder->load(cabacCoderRDO[inCabacLabel]); m_pcRDGoOnSbacCoder->resetBits(); m_pcRDGoOnSbacCoder->codeSAOBlkParam(modeParam, bitDepths, sliceEnabled, (mergeList[SAO_MERGE_LEFT]!= NULL), (mergeList[SAO_MERGE_ABOVE]!= NULL), false); modeNormCost += (Double)m_pcRDGoOnSbacCoder->getNumberOfWrittenBits(); } Void TEncSampleAdaptiveOffset::deriveModeMergeRDO(const BitDepths &bitDepths, Int ctuRsAddr, SAOBlkParam* mergeList[NUM_SAO_MERGE_TYPES], Bool* sliceEnabled, SAOStatData*** blkStats, SAOBlkParam& modeParam, Double& modeNormCost, TEncSbac** cabacCoderRDO, Int inCabacLabel) { modeNormCost = MAX_DOUBLE; Double cost; SAOBlkParam testBlkParam; const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC); for(Int mergeType=0; mergeType< NUM_SAO_MERGE_TYPES; mergeType++) { if(mergeList[mergeType] == NULL) { continue; } testBlkParam = *(mergeList[mergeType]); //normalized distortion Double normDist=0; for(Int compIdx = 0; compIdx < numberOfComponents; compIdx++) { testBlkParam[compIdx].modeIdc = SAO_MODE_MERGE; testBlkParam[compIdx].typeIdc = mergeType; SAOOffset& mergedOffsetParam = (*(mergeList[mergeType]))[compIdx]; if( mergedOffsetParam.modeIdc != SAO_MODE_OFF) { //offsets have been reconstructed. Don't call inversed quantization function. normDist += (((Double)getDistortion(bitDepths.recon[toChannelType(ComponentID(compIdx))], mergedOffsetParam.typeIdc, mergedOffsetParam.typeAuxInfo, mergedOffsetParam.offset, blkStats[ctuRsAddr][compIdx][mergedOffsetParam.typeIdc])) /m_lambda[compIdx] ); } } //rate m_pcRDGoOnSbacCoder->load(cabacCoderRDO[inCabacLabel]); m_pcRDGoOnSbacCoder->resetBits(); m_pcRDGoOnSbacCoder->codeSAOBlkParam(testBlkParam, bitDepths, sliceEnabled, (mergeList[SAO_MERGE_LEFT]!= NULL), (mergeList[SAO_MERGE_ABOVE]!= NULL), false); Int rate = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits(); cost = normDist+(Double)rate; if(cost < modeNormCost) { modeNormCost = cost; modeParam = testBlkParam; m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]); } } m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]); } Void TEncSampleAdaptiveOffset::decideBlkParams(TComPic* pic, Bool* sliceEnabled, SAOStatData*** blkStats, TComPicYuv* srcYuv, TComPicYuv* resYuv, SAOBlkParam* reconParams, SAOBlkParam* codedParams, const Bool bTestSAODisableAtPictureLevel, const Double saoEncodingRate, const Double saoEncodingRateChroma) { Bool allBlksDisabled = true; const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC); for(Int compId = COMPONENT_Y; compId < numberOfComponents; compId++) { if (sliceEnabled[compId]) { allBlksDisabled = false; } } m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[ SAO_CABACSTATE_PIC_INIT ]); SAOBlkParam modeParam; Double minCost, modeCost; Double totalCost = 0; // Used if bTestSAODisableAtPictureLevel==true for(Int ctuRsAddr=0; ctuRsAddr< m_numCTUsPic; ctuRsAddr++) { if(allBlksDisabled) { codedParams[ctuRsAddr].reset(); continue; } m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[ SAO_CABACSTATE_BLK_CUR ]); //get merge list SAOBlkParam* mergeList[NUM_SAO_MERGE_TYPES] = { NULL }; getMergeList(pic, ctuRsAddr, reconParams, mergeList); minCost = MAX_DOUBLE; for(Int mode=0; mode < NUM_SAO_MODES; mode++) { switch(mode) { case SAO_MODE_OFF: { continue; //not necessary, since all-off case will be tested in SAO_MODE_NEW case. } break; case SAO_MODE_NEW: { deriveModeNewRDO(pic->getPicSym()->getSPS().getBitDepths(), ctuRsAddr, mergeList, sliceEnabled, blkStats, modeParam, modeCost, m_pppcRDSbacCoder, SAO_CABACSTATE_BLK_CUR); } break; case SAO_MODE_MERGE: { deriveModeMergeRDO(pic->getPicSym()->getSPS().getBitDepths(), ctuRsAddr, mergeList, sliceEnabled, blkStats , modeParam, modeCost, m_pppcRDSbacCoder, SAO_CABACSTATE_BLK_CUR); } break; default: { printf("Not a supported SAO mode\n"); assert(0); exit(-1); } } D_PRINT_INDENT( g_traceSAOCost, "SAO mode " + n2s( mode ) + " Cost: " + n2s( modeCost) ); if(modeCost < minCost) { minCost = modeCost; codedParams[ctuRsAddr] = modeParam; m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[ SAO_CABACSTATE_BLK_NEXT ]); } } //mode totalCost += minCost; m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[ SAO_CABACSTATE_BLK_NEXT ]); //apply reconstructed offsets reconParams[ctuRsAddr] = codedParams[ctuRsAddr]; reconstructBlkSAOParam(reconParams[ctuRsAddr], mergeList); offsetCTU(ctuRsAddr, srcYuv, resYuv, reconParams[ctuRsAddr], pic); } //ctuRsAddr if (!allBlksDisabled && (totalCost >= 0) && bTestSAODisableAtPictureLevel) //SAO has not beneficial in this case - disable it { for(Int ctuRsAddr = 0; ctuRsAddr < m_numCTUsPic; ctuRsAddr++) { codedParams[ctuRsAddr].reset(); } for (UInt componentIndex = 0; componentIndex < MAX_NUM_COMPONENT; componentIndex++) { sliceEnabled[componentIndex] = false; } m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[ SAO_CABACSTATE_PIC_INIT ]); } if (saoEncodingRate > 0.0) { Int picTempLayer = pic->getSlice(0)->getDepth(); Int numCtusForSAOOff[MAX_NUM_COMPONENT]; for (Int compIdx = 0; compIdx < numberOfComponents; compIdx++) { numCtusForSAOOff[compIdx] = 0; for(Int ctuRsAddr=0; ctuRsAddr< m_numCTUsPic; ctuRsAddr++) { if( reconParams[ctuRsAddr][compIdx].modeIdc == SAO_MODE_OFF) { numCtusForSAOOff[compIdx]++; } } } if (saoEncodingRateChroma > 0.0) { for (Int compIdx = 0; compIdx < numberOfComponents; compIdx++) { m_saoDisabledRate[compIdx][picTempLayer] = (Double)numCtusForSAOOff[compIdx]/(Double)m_numCTUsPic; } } else if (picTempLayer == 0) { m_saoDisabledRate[COMPONENT_Y][0] = (Double)(numCtusForSAOOff[COMPONENT_Y]+numCtusForSAOOff[COMPONENT_Cb]+numCtusForSAOOff[COMPONENT_Cr])/(Double)(m_numCTUsPic*3); } } } Void TEncSampleAdaptiveOffset::getBlkStats(const ComponentID compIdx, const Int channelBitDepth, SAOStatData* statsDataTypes , Pel* srcBlk, Pel* orgBlk, Int srcStride, Int orgStride, Int width, Int height , Bool isLeftAvail, Bool isRightAvail, Bool isAboveAvail, Bool isBelowAvail, Bool isAboveLeftAvail, Bool isAboveRightAvail , Bool isCalculatePreDeblockSamples ) { if(m_lineBufWidth != m_maxCUWidth) { m_lineBufWidth = m_maxCUWidth; if (m_signLineBuf1) { delete[] m_signLineBuf1; m_signLineBuf1 = NULL; } m_signLineBuf1 = new Char[m_lineBufWidth+1]; if (m_signLineBuf2) { delete[] m_signLineBuf2; m_signLineBuf2 = NULL; } m_signLineBuf2 = new Char[m_lineBufWidth+1]; } Int x,y, startX, startY, endX, endY, edgeType, firstLineStartX, firstLineEndX; Char signLeft, signRight, signDown; Int64 *diff, *count; Pel *srcLine, *orgLine; Int* skipLinesR = m_skipLinesR[compIdx]; Int* skipLinesB = m_skipLinesB[compIdx]; for(Int typeIdx=0; typeIdx< NUM_SAO_NEW_TYPES; typeIdx++) { SAOStatData& statsData= statsDataTypes[typeIdx]; statsData.reset(); srcLine = srcBlk; orgLine = orgBlk; diff = statsData.diff; count = statsData.count; switch(typeIdx) { case SAO_TYPE_EO_0: { diff +=2; count+=2; endY = (isBelowAvail) ? (height - skipLinesB[typeIdx]) : height; startX = (!isCalculatePreDeblockSamples) ? (isLeftAvail ? 0 : 1) : (isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1)) ; endX = (!isCalculatePreDeblockSamples) ? (isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1)) : (isRightAvail ? width : (width - 1)) ; for (y=0; y> shiftBits; diff [bandIdx] += (orgLine[x] - srcLine[x]); count[bandIdx] ++; } srcLine += srcStride; orgLine += orgStride; } if(isCalculatePreDeblockSamples) { if(isBelowAvail) { startX = 0; endX = width; for(y= 0; y< skipLinesB[typeIdx]; y++) { for (x=startX; x< endX; x++) { Int bandIdx= srcLine[x] >> shiftBits; diff [bandIdx] += (orgLine[x] - srcLine[x]); count[bandIdx] ++; } srcLine += srcStride; orgLine += orgStride; } } } } break; default: { printf("Not a supported SAO types\n"); assert(0); exit(-1); } } } } //! \}