/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2015, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TDecCu.cpp \brief CU decoder class */ #include "TDecCu.h" #include "TLibCommon/TComTU.h" #include "TLibCommon/TComPrediction.h" //! \ingroup TLibDecoder //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== TDecCu::TDecCu() { m_ppcYuvResi = NULL; m_ppcYuvReco = NULL; m_ppcCU = NULL; #if NH_3D_DBBP m_ppcYuvRecoDBBP = NULL; #endif } TDecCu::~TDecCu() { } Void TDecCu::init( TDecEntropy* pcEntropyDecoder, TComTrQuant* pcTrQuant, TComPrediction* pcPrediction) { m_pcEntropyDecoder = pcEntropyDecoder; m_pcTrQuant = pcTrQuant; m_pcPrediction = pcPrediction; } /** \param uiMaxDepth total number of allowable depth \param uiMaxWidth largest CU width \param uiMaxHeight largest CU height \param chromaFormatIDC chroma format */ Void TDecCu::create( UInt uiMaxDepth, UInt uiMaxWidth, UInt uiMaxHeight, ChromaFormat chromaFormatIDC ) { m_uiMaxDepth = uiMaxDepth+1; m_ppcYuvResi = new TComYuv*[m_uiMaxDepth-1]; m_ppcYuvReco = new TComYuv*[m_uiMaxDepth-1]; m_ppcCU = new TComDataCU*[m_uiMaxDepth-1]; #if NH_3D_DBBP m_ppcYuvRecoDBBP = new TComYuv*[m_uiMaxDepth-1]; #endif for ( UInt ui = 0; ui < m_uiMaxDepth-1; ui++ ) { UInt uiNumPartitions = 1<<( ( m_uiMaxDepth - ui - 1 )<<1 ); UInt uiWidth = uiMaxWidth >> ui; UInt uiHeight = uiMaxHeight >> ui; // The following arrays (m_ppcYuvResi, m_ppcYuvReco and m_ppcCU) are only required for CU depths // although data is allocated for all possible depths of the CU/TU tree except the last. // Since the TU tree will always include at least one additional depth greater than the CU tree, // there will be enough entries for these arrays. // (Section 7.4.3.2: "The CVS shall not contain data that result in (Log2MinTrafoSize) MinTbLog2SizeY // greater than or equal to MinCbLog2SizeY") // TODO: tidy the array allocation given the above comment. m_ppcYuvResi[ui] = new TComYuv; m_ppcYuvResi[ui]->create( uiWidth, uiHeight, chromaFormatIDC ); m_ppcYuvReco[ui] = new TComYuv; m_ppcYuvReco[ui]->create( uiWidth, uiHeight, chromaFormatIDC ); m_ppcCU [ui] = new TComDataCU; m_ppcCU [ui]->create( chromaFormatIDC, uiNumPartitions, uiWidth, uiHeight, true, uiMaxWidth >> (m_uiMaxDepth - 1) ); #if NH_3D_DBBP m_ppcYuvRecoDBBP[ui] = new TComYuv; m_ppcYuvRecoDBBP[ui]->create( uiWidth, uiHeight, chromaFormatIDC ); #endif } m_bDecodeDQP = false; m_IsChromaQpAdjCoded = false; // initialize partition order. UInt* piTmp = &g_auiZscanToRaster[0]; initZscanToRaster(m_uiMaxDepth, 1, 0, piTmp); initRasterToZscan( uiMaxWidth, uiMaxHeight, m_uiMaxDepth ); // initialize conversion matrix from partition index to pel initRasterToPelXY( uiMaxWidth, uiMaxHeight, m_uiMaxDepth ); } Void TDecCu::destroy() { for ( UInt ui = 0; ui < m_uiMaxDepth-1; ui++ ) { m_ppcYuvResi[ui]->destroy(); delete m_ppcYuvResi[ui]; m_ppcYuvResi[ui] = NULL; m_ppcYuvReco[ui]->destroy(); delete m_ppcYuvReco[ui]; m_ppcYuvReco[ui] = NULL; m_ppcCU [ui]->destroy(); delete m_ppcCU [ui]; m_ppcCU [ui] = NULL; #if NH_3D_DBBP m_ppcYuvRecoDBBP[ui]->destroy(); delete m_ppcYuvRecoDBBP[ui]; m_ppcYuvRecoDBBP[ui] = NULL; #endif } delete [] m_ppcYuvResi; m_ppcYuvResi = NULL; delete [] m_ppcYuvReco; m_ppcYuvReco = NULL; delete [] m_ppcCU ; m_ppcCU = NULL; #if NH_3D_DBBP delete [] m_ppcYuvRecoDBBP; m_ppcYuvRecoDBBP = NULL; #endif } // ==================================================================================================================== // Public member functions // ==================================================================================================================== /** Parse a CTU. \param pCtu [in/out] pointer to CTU data structure \param isLastCtuOfSliceSegment [out] true, if last CTU of the slice segment */ Void TDecCu::decodeCtu( TComDataCU* pCtu, Bool& isLastCtuOfSliceSegment ) { if ( pCtu->getSlice()->getPPS()->getUseDQP() ) { setdQPFlag(true); } if ( pCtu->getSlice()->getUseChromaQpAdj() ) { setIsChromaQpAdjCoded(true); } // start from the top level CU xDecodeCU( pCtu, 0, 0, isLastCtuOfSliceSegment); } /** Decoding process for a CTU. \param pCtu [in/out] pointer to CTU data structure */ Void TDecCu::decompressCtu( TComDataCU* pCtu ) { #if !NH_3D_IV_MERGE xDecompressCU( pCtu, 0, 0 ); #endif } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== //! decode end-of-slice flag Bool TDecCu::xDecodeSliceEnd( TComDataCU* pcCU, UInt uiAbsPartIdx ) { UInt uiIsLastCtuOfSliceSegment; if (pcCU->isLastSubCUOfCtu(uiAbsPartIdx)) { m_pcEntropyDecoder->decodeTerminatingBit( uiIsLastCtuOfSliceSegment ); } else { uiIsLastCtuOfSliceSegment=0; } return uiIsLastCtuOfSliceSegment>0; } //! decode CU block recursively Void TDecCu::xDecodeCU( TComDataCU*const pcCU, const UInt uiAbsPartIdx, const UInt uiDepth, Bool &isLastCtuOfSliceSegment) { TComPic* pcPic = pcCU->getPic(); const TComSPS &sps = pcPic->getPicSym()->getSPS(); const TComPPS &pps = pcPic->getPicSym()->getPPS(); const UInt maxCuWidth = sps.getMaxCUWidth(); const UInt maxCuHeight= sps.getMaxCUHeight(); UInt uiCurNumParts = pcPic->getNumPartitionsInCtu() >> (uiDepth<<1); UInt uiQNumParts = uiCurNumParts>>2; Bool bBoundary = false; UInt uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiRPelX = uiLPelX + (maxCuWidth>>uiDepth) - 1; UInt uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiBPelY = uiTPelY + (maxCuHeight>>uiDepth) - 1; #if H_MV_ENC_DEC_TRAC DTRACE_CU_S("=========== coding_quadtree ===========\n") DTRACE_CU("x0", uiLPelX) DTRACE_CU("x1", uiTPelY) DTRACE_CU("log2CbSize", maxCuWidth>>uiDepth) DTRACE_CU("cqtDepth" , uiDepth) #endif if( ( uiRPelX < sps.getPicWidthInLumaSamples() ) && ( uiBPelY < sps.getPicHeightInLumaSamples() ) ) { m_pcEntropyDecoder->decodeSplitFlag( pcCU, uiAbsPartIdx, uiDepth ); } else { bBoundary = true; } if( ( ( uiDepth < pcCU->getDepth( uiAbsPartIdx ) ) && ( uiDepth < sps.getLog2DiffMaxMinCodingBlockSize() ) ) || bBoundary ) { UInt uiIdx = uiAbsPartIdx; if( uiDepth == pps.getMaxCuDQPDepth() && pps.getUseDQP()) { setdQPFlag(true); pcCU->setQPSubParts( pcCU->getRefQP(uiAbsPartIdx), uiAbsPartIdx, uiDepth ); // set QP to default QP } if( uiDepth == pps.getPpsRangeExtension().getDiffCuChromaQpOffsetDepth() && pcCU->getSlice()->getUseChromaQpAdj() ) { setIsChromaQpAdjCoded(true); } for ( UInt uiPartUnitIdx = 0; uiPartUnitIdx < 4; uiPartUnitIdx++ ) { uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiIdx] ]; uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiIdx] ]; if ( !isLastCtuOfSliceSegment && ( uiLPelX < sps.getPicWidthInLumaSamples() ) && ( uiTPelY < sps.getPicHeightInLumaSamples() ) ) { xDecodeCU( pcCU, uiIdx, uiDepth+1, isLastCtuOfSliceSegment ); } else { pcCU->setOutsideCUPart( uiIdx, uiDepth+1 ); } uiIdx += uiQNumParts; } if( uiDepth == pps.getMaxCuDQPDepth() && pps.getUseDQP()) { if ( getdQPFlag() ) { UInt uiQPSrcPartIdx = uiAbsPartIdx; pcCU->setQPSubParts( pcCU->getRefQP( uiQPSrcPartIdx ), uiAbsPartIdx, uiDepth ); // set QP to default QP } } return; } #if H_MV_ENC_DEC_TRAC DTRACE_CU_S("=========== coding_unit ===========\n") #if H_MV_ENC_DEC_TRAC #if ENC_DEC_TRACE stopAtPos ( pcCU->getSlice()->getPOC(), pcCU->getSlice()->getLayerId(), uiLPelX, uiTPelY, uiRPelX-uiLPelX+1, uiBPelY-uiTPelY+1); #endif #endif #endif if( uiDepth <= pps.getMaxCuDQPDepth() && pps.getUseDQP()) { setdQPFlag(true); pcCU->setQPSubParts( pcCU->getRefQP(uiAbsPartIdx), uiAbsPartIdx, uiDepth ); // set QP to default QP } #if NH_3D_NBDV DisInfo DvInfo; DvInfo.m_acNBDV.setZero(); DvInfo.m_aVIdxCan = 0; #if NH_3D_NBDV_REF DvInfo.m_acDoNBDV.setZero(); #endif if(!pcCU->getSlice()->isIntra()) { #if NH_3D_ARP && NH_3D_IV_MERGE && NH_3D_VSP if( pcCU->getSlice()->getIvResPredFlag() || pcCU->getSlice()->getIvMvPredFlag() || pcCU->getSlice()->getViewSynthesisPredFlag() ) #else #if NH_3D_IV_MERGE && NH_3D_VSP if( pcCU->getSlice()->getIvMvPredFlag() || pcCU->getSlice()->getViewSynthesisPredFlag() ) #else #if NH_3D_ARP && NH_3D_VSP if( pcCU->getSlice()->getIvResPredFlag() || pcCU->getSlice()->getViewSynthesisPredFlag() ) #else #if NH_3D_VSP if( pcCU->getSlice()->getViewSynthesisPredFlag() ) #else #if H_3D_ARP if( pcCU->getSlice()->getIvResPredFlag( ) ) #else #if H_3D_IV_MERGE if( pcCU->getSlice()->getVPS()->getIvMvPredFlag(pcCU->getSlice()->getLayerId()) ) #else #if NH_3D_DBBP if( pcCU->getSlice()->getDepthBasedBlkPartFlag() ) #else if (0) #endif #endif #endif #endif #endif #endif #endif { m_ppcCU[uiDepth]->copyInterPredInfoFrom(pcCU, uiAbsPartIdx, REF_PIC_LIST_0, true); m_ppcCU[uiDepth]->copyDVInfoFrom(pcCU, uiAbsPartIdx); PartSize ePartTemp = m_ppcCU[uiDepth]->getPartitionSize(0); UChar cWidTemp = m_ppcCU[uiDepth]->getWidth(0); UChar cHeightTemp = m_ppcCU[uiDepth]->getHeight(0); m_ppcCU[uiDepth]->setWidth (0, pcCU->getSlice()->getSPS()->getMaxCUWidth () / (1 << uiDepth)); m_ppcCU[uiDepth]->setHeight(0, pcCU->getSlice()->getSPS()->getMaxCUHeight() / (1 << uiDepth)); m_ppcCU[uiDepth]->setPartSizeSubParts(SIZE_2Nx2N, 0, uiDepth); #if NH_3D_IV_MERGE if( pcCU->getSlice()->getIsDepth()) { m_ppcCU[uiDepth]->getDispforDepth(0, 0, &DvInfo); } else { #endif #if NH_3D_NBDV_REF if( pcCU->getSlice()->getDepthBasedBlkPartFlag() ) //Notes from QC: please check the condition for DoNBDV. Remove this comment once it is done. { m_ppcCU[uiDepth]->getDisMvpCandNBDV(&DvInfo, true); } else #endif { m_ppcCU[uiDepth]->getDisMvpCandNBDV(&DvInfo); } #if NH_3D_IV_MERGE } #endif #if ENC_DEC_TRACE && H_MV_ENC_DEC_TRAC if ( g_decTraceDispDer ) { DTRACE_CU( "RefViewIdx", DvInfo.m_aVIdxCan ); DTRACE_CU( "MvDisp[x]", DvInfo.m_acNBDV.getHor() ); DTRACE_CU( "MvDisp[y]", DvInfo.m_acNBDV.getVer() ); DTRACE_CU( "MvRefinedDisp[x]", DvInfo.m_acDoNBDV.getHor() ); DTRACE_CU( "MvRefinedDisp[y]", DvInfo.m_acDoNBDV.getVer() ); } #endif pcCU->setDvInfoSubParts(DvInfo, uiAbsPartIdx, uiDepth); m_ppcCU[uiDepth]->setPartSizeSubParts(ePartTemp, 0, uiDepth); m_ppcCU[uiDepth]->setWidth(0, cWidTemp); m_ppcCU[uiDepth]->setHeight(0, cHeightTemp); } } #endif if( uiDepth <= pps.getPpsRangeExtension().getDiffCuChromaQpOffsetDepth() && pcCU->getSlice()->getUseChromaQpAdj() ) { setIsChromaQpAdjCoded(true); } if (pps.getTransquantBypassEnableFlag()) { m_pcEntropyDecoder->decodeCUTransquantBypassFlag( pcCU, uiAbsPartIdx, uiDepth ); } // decode CU mode and the partition size if( !pcCU->getSlice()->isIntra()) { m_pcEntropyDecoder->decodeSkipFlag( pcCU, uiAbsPartIdx, uiDepth ); } if( pcCU->isSkipped(uiAbsPartIdx) ) { #if H_MV_ENC_DEC_TRAC DTRACE_PU_S("=========== prediction_unit ===========\n") DTRACE_PU("x0", uiLPelX) DTRACE_PU("x1", uiTPelY) #endif m_ppcCU[uiDepth]->copyInterPredInfoFrom( pcCU, uiAbsPartIdx, REF_PIC_LIST_0 ); m_ppcCU[uiDepth]->copyInterPredInfoFrom( pcCU, uiAbsPartIdx, REF_PIC_LIST_1 ); #if NH_3D_IV_MERGE m_ppcCU[uiDepth]->copyDVInfoFrom(pcCU, uiAbsPartIdx); TComMvField cMvFieldNeighbours[MRG_MAX_NUM_CANDS_MEM << 1]; // double length for mv of both lists UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS_MEM]; #else #if NH_3D_MLC TComMvField cMvFieldNeighbours[MRG_MAX_NUM_CANDS_MEM << 1]; // double length for mv of both lists UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS_MEM]; #else TComMvField cMvFieldNeighbours[MRG_MAX_NUM_CANDS << 1]; // double length for mv of both lists UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS]; #endif #endif Int numValidMergeCand = 0; for( UInt ui = 0; ui < m_ppcCU[uiDepth]->getSlice()->getMaxNumMergeCand(); ++ui ) { uhInterDirNeighbours[ui] = 0; } m_pcEntropyDecoder->decodeMergeIndex( pcCU, 0, uiAbsPartIdx, uiDepth ); UInt uiMergeIndex = pcCU->getMergeIndex(uiAbsPartIdx); #if NH_3D_ARP m_pcEntropyDecoder->decodeARPW( pcCU , uiAbsPartIdx , uiDepth ); #endif #if NH_3D_IC m_pcEntropyDecoder->decodeICFlag( pcCU, uiAbsPartIdx, uiDepth ); #endif #if NH_3D_VSP Int vspFlag[MRG_MAX_NUM_CANDS_MEM]; memset(vspFlag, 0, sizeof(Int)*MRG_MAX_NUM_CANDS_MEM); #endif #if NH_3D_SPIVMP Bool bSPIVMPFlag[MRG_MAX_NUM_CANDS_MEM]; memset(bSPIVMPFlag, false, sizeof(Bool)*MRG_MAX_NUM_CANDS_MEM); TComMvField* pcMvFieldSP; UChar* puhInterDirSP; pcMvFieldSP = new TComMvField[pcCU->getPic()->getPicSym()->getNumPartitionsInCtu()*2]; puhInterDirSP = new UChar[pcCU->getPic()->getPicSym()->getNumPartitionsInCtu()]; #endif #if NH_3D_MLC m_ppcCU[uiDepth]->initAvailableFlags(); #endif m_ppcCU[uiDepth]->getInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand, uiMergeIndex ); #if NH_3D_MLC m_ppcCU[uiDepth]->xGetInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours #if NH_3D_SPIVMP , pcMvFieldSP, puhInterDirSP #endif , numValidMergeCand, uiMergeIndex ); m_ppcCU[uiDepth]->buildMCL( cMvFieldNeighbours, uhInterDirNeighbours #if NH_3D_VSP , vspFlag #endif #if NH_3D_SPIVMP , bSPIVMPFlag #endif , numValidMergeCand ); #endif #if NH_3D_VSP pcCU->setVSPFlagSubParts( vspFlag[uiMergeIndex], uiAbsPartIdx, 0, uiDepth ); #endif pcCU->setInterDirSubParts( uhInterDirNeighbours[uiMergeIndex], uiAbsPartIdx, 0, uiDepth ); TComMv cTmpMv( 0, 0 ); for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { if ( pcCU->getSlice()->getNumRefIdx( RefPicList( uiRefListIdx ) ) > 0 ) { pcCU->setMVPIdxSubParts( 0, RefPicList( uiRefListIdx ), uiAbsPartIdx, 0, uiDepth); pcCU->setMVPNumSubParts( 0, RefPicList( uiRefListIdx ), uiAbsPartIdx, 0, uiDepth); pcCU->getCUMvField( RefPicList( uiRefListIdx ) )->setAllMvd( cTmpMv, SIZE_2Nx2N, uiAbsPartIdx, uiDepth ); pcCU->getCUMvField( RefPicList( uiRefListIdx ) )->setAllMvField( cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ], SIZE_2Nx2N, uiAbsPartIdx, uiDepth ); #if NH_3D_VSP if( pcCU->getVSPFlag( uiAbsPartIdx ) != 0 ) { if ( uhInterDirNeighbours[ uiMergeIndex ] & (1<getPartIndexAndSize( uiAbsPartIdx, dummy, width, height ); m_ppcCU[uiDepth]->setMvFieldPUForVSP( pcCU, uiAbsPartIdx, width, height, RefPicList( uiRefListIdx ), cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getRefIdx(), vspSize ); pcCU->setVSPFlag( uiAbsPartIdx, vspSize ); } } #endif #if ENC_DEC_TRACE && H_MV_ENC_DEC_TRAC if ( g_decTraceMvFromMerge ) { if ( uiRefListIdx == 0 ) { DTRACE_PU( "mvL0[0]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getHor()); DTRACE_PU( "mvL0[1]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getVer()); DTRACE_PU( "refIdxL0 ", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getRefIdx()); } else { DTRACE_PU( "mvL1[0]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getHor()); DTRACE_PU( "mvL1[1]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getVer()); DTRACE_PU( "refIdxL1", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getRefIdx()); } } #endif } } #if NH_3D_SPIVMP pcCU->setSPIVMPFlagSubParts(bSPIVMPFlag[uiMergeIndex], uiAbsPartIdx, 0, uiDepth ); if (bSPIVMPFlag[uiMergeIndex]) { UInt uiSPAddr; Int iWidth = pcCU->getWidth(uiAbsPartIdx); Int iHeight = pcCU->getHeight(uiAbsPartIdx); Int iNumSPInOneLine, iNumSP, iSPWidth, iSPHeight; pcCU->getSPPara(iWidth, iHeight, iNumSP, iNumSPInOneLine, iSPWidth, iSPHeight); for (Int iPartitionIdx = 0; iPartitionIdx < iNumSP; iPartitionIdx++) { pcCU->getSPAbsPartIdx(uiAbsPartIdx, iSPWidth, iSPHeight, iPartitionIdx, iNumSPInOneLine, uiSPAddr); pcCU->setInterDirSP(puhInterDirSP[iPartitionIdx], uiSPAddr, iSPWidth, iSPHeight); pcCU->getCUMvField( REF_PIC_LIST_0 )->setMvFieldSP(pcCU, uiSPAddr, pcMvFieldSP[2*iPartitionIdx], iSPWidth, iSPHeight); pcCU->getCUMvField( REF_PIC_LIST_1 )->setMvFieldSP(pcCU, uiSPAddr, pcMvFieldSP[2*iPartitionIdx + 1], iSPWidth, iSPHeight); } } delete[] pcMvFieldSP; delete[] puhInterDirSP; #endif xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, isLastCtuOfSliceSegment ); #if NH_3D_IV_MERGE xDecompressCU(pcCU, uiAbsPartIdx, uiDepth ); #endif return; } #if NH_3D_DIS m_pcEntropyDecoder->decodeDIS( pcCU, uiAbsPartIdx, uiDepth ); if(!pcCU->getDISFlag(uiAbsPartIdx)) { #endif m_pcEntropyDecoder->decodePredMode( pcCU, uiAbsPartIdx, uiDepth ); m_pcEntropyDecoder->decodePartSize( pcCU, uiAbsPartIdx, uiDepth ); if (pcCU->isIntra( uiAbsPartIdx ) && pcCU->getPartitionSize( uiAbsPartIdx ) == SIZE_2Nx2N ) { m_pcEntropyDecoder->decodeIPCMInfo( pcCU, uiAbsPartIdx, uiDepth ); if(pcCU->getIPCMFlag(uiAbsPartIdx)) { #if NH_3D_SDC_INTRA m_pcEntropyDecoder->decodeSDCFlag( pcCU, uiAbsPartIdx, uiDepth ); #endif xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, isLastCtuOfSliceSegment ); #if NH_3D_IV_MERGE xDecompressCU(pcCU, uiAbsPartIdx, uiDepth ); #endif return; } } // prediction mode ( Intra : direction mode, Inter : Mv, reference idx ) m_pcEntropyDecoder->decodePredInfo( pcCU, uiAbsPartIdx, uiDepth, m_ppcCU[uiDepth]); // Coefficient decoding Bool bCodeDQP = getdQPFlag(); Bool isChromaQpAdjCoded = getIsChromaQpAdjCoded(); m_pcEntropyDecoder->decodeCoeff( pcCU, uiAbsPartIdx, uiDepth, bCodeDQP, isChromaQpAdjCoded ); setIsChromaQpAdjCoded( isChromaQpAdjCoded ); setdQPFlag( bCodeDQP ); #if NH_3D_DIS } #endif xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, isLastCtuOfSliceSegment ); #if NH_3D_IV_MERGE xDecompressCU(pcCU, uiAbsPartIdx, uiDepth ); #endif } Void TDecCu::xFinishDecodeCU( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, Bool &isLastCtuOfSliceSegment) { if( pcCU->getSlice()->getPPS()->getUseDQP()) { pcCU->setQPSubParts( getdQPFlag()?pcCU->getRefQP(uiAbsPartIdx):pcCU->getCodedQP(), uiAbsPartIdx, uiDepth ); // set QP } if (pcCU->getSlice()->getUseChromaQpAdj() && !getIsChromaQpAdjCoded()) { pcCU->setChromaQpAdjSubParts( pcCU->getCodedChromaQpAdj(), uiAbsPartIdx, uiDepth ); // set QP } isLastCtuOfSliceSegment = xDecodeSliceEnd( pcCU, uiAbsPartIdx ); } Void TDecCu::xDecompressCU( TComDataCU* pCtu, UInt uiAbsPartIdx, UInt uiDepth ) { TComPic* pcPic = pCtu->getPic(); #if !NH_3D_IV_MERGE TComSlice * pcSlice = pCtu->getSlice(); const TComSPS &sps=*(pcSlice->getSPS()); Bool bBoundary = false; UInt uiLPelX = pCtu->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiRPelX = uiLPelX + (sps.getMaxCUWidth()>>uiDepth) - 1; UInt uiTPelY = pCtu->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiBPelY = uiTPelY + (sps.getMaxCUHeight()>>uiDepth) - 1; if( ( uiRPelX >= sps.getPicWidthInLumaSamples() ) || ( uiBPelY >= sps.getPicHeightInLumaSamples() ) ) { bBoundary = true; } if( ( ( uiDepth < pCtu->getDepth( uiAbsPartIdx ) ) && ( uiDepth < sps.getLog2DiffMaxMinCodingBlockSize() ) ) || bBoundary ) { UInt uiNextDepth = uiDepth + 1; UInt uiQNumParts = pCtu->getTotalNumPart() >> (uiNextDepth<<1); UInt uiIdx = uiAbsPartIdx; for ( UInt uiPartIdx = 0; uiPartIdx < 4; uiPartIdx++ ) { uiLPelX = pCtu->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiIdx] ]; uiTPelY = pCtu->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiIdx] ]; if( ( uiLPelX < sps.getPicWidthInLumaSamples() ) && ( uiTPelY < sps.getPicHeightInLumaSamples() ) ) { xDecompressCU(pCtu, uiIdx, uiNextDepth ); } uiIdx += uiQNumParts; } return; } #endif // Residual reconstruction m_ppcYuvResi[uiDepth]->clear(); m_ppcCU[uiDepth]->copySubCU( pCtu, uiAbsPartIdx ); switch( m_ppcCU[uiDepth]->getPredictionMode(0) ) { case MODE_INTER: #if NH_3D_DBBP if( m_ppcCU[uiDepth]->getDBBPFlag(0) ) { xReconInterDBBP( m_ppcCU[uiDepth], uiAbsPartIdx, uiDepth ); } else { #endif #if NH_3D_SDC_INTER if( m_ppcCU[uiDepth]->getSDCFlag( 0 ) ) { xReconInterSDC( m_ppcCU[uiDepth], uiAbsPartIdx, uiDepth ); } else { #endif xReconInter( m_ppcCU[uiDepth], uiDepth ); #if NH_3D_SDC_INTER } #endif #if NH_3D_DBBP } #endif break; case MODE_INTRA: #if NH_3D #if NH_3D_DIS if( m_ppcCU[uiDepth]->getDISFlag(0) ) { xReconDIS( m_ppcCU[uiDepth], 0, uiDepth ); } #else if(false ) { // xReconDIS( m_ppcCU[uiDepth], 0, uiDepth ); } #endif #if NH_3D_SDC_INTRA else if( m_ppcCU[uiDepth]->getSDCFlag(0) ) { xReconIntraSDC( m_ppcCU[uiDepth], 0, uiDepth ); } #endif else #endif xReconIntraQT( m_ppcCU[uiDepth], uiDepth ); break; default: assert(0); break; } #if DEBUG_STRING const PredMode predMode=m_ppcCU[uiDepth]->getPredictionMode(0); if (DebugOptionList::DebugString_Structure.getInt()&DebugStringGetPredModeMask(predMode)) { PartSize eSize=m_ppcCU[uiDepth]->getPartitionSize(0); std::ostream &ss(std::cout); ss <<"###: " << (predMode==MODE_INTRA?"Intra ":"Inter ") << partSizeToString[eSize] << " CU at " << m_ppcCU[uiDepth]->getCUPelX() << ", " << m_ppcCU[uiDepth]->getCUPelY() << " width=" << UInt(m_ppcCU[uiDepth]->getWidth(0)) << std::endl; } #endif if ( m_ppcCU[uiDepth]->isLosslessCoded(0) && (m_ppcCU[uiDepth]->getIPCMFlag(0) == false)) { xFillPCMBuffer(m_ppcCU[uiDepth], uiDepth); } xCopyToPic( m_ppcCU[uiDepth], pcPic, uiAbsPartIdx, uiDepth ); } Void TDecCu::xReconInter( TComDataCU* pcCU, UInt uiDepth ) { // inter prediction m_pcPrediction->motionCompensation( pcCU, m_ppcYuvReco[uiDepth] ); #if DEBUG_STRING const Int debugPredModeMask=DebugStringGetPredModeMask(MODE_INTER); if (DebugOptionList::DebugString_Pred.getInt()&debugPredModeMask) { printBlockToStream(std::cout, "###inter-pred: ", *(m_ppcYuvReco[uiDepth])); } #endif // inter recon xDecodeInterTexture( pcCU, uiDepth ); #if DEBUG_STRING if (DebugOptionList::DebugString_Resi.getInt()&debugPredModeMask) { printBlockToStream(std::cout, "###inter-resi: ", *(m_ppcYuvResi[uiDepth])); } #endif // clip for only non-zero cbp case if ( pcCU->getQtRootCbf( 0) ) { m_ppcYuvReco[uiDepth]->addClip( m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], 0, pcCU->getWidth( 0 ), pcCU->getSlice()->getSPS()->getBitDepths() ); } else { m_ppcYuvReco[uiDepth]->copyPartToPartYuv( m_ppcYuvReco[uiDepth],0, pcCU->getWidth( 0 ),pcCU->getHeight( 0 )); } #if DEBUG_STRING if (DebugOptionList::DebugString_Reco.getInt()&debugPredModeMask) { printBlockToStream(std::cout, "###inter-reco: ", *(m_ppcYuvReco[uiDepth])); } #endif } #if NH_3D_DIS Void TDecCu::xReconDIS( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { UInt uiWidth = pcCU->getWidth ( 0 ); UInt uiHeight = pcCU->getHeight ( 0 ); TComYuv* pcRecoYuv = m_ppcYuvReco[uiDepth]; UInt uiStride = pcRecoYuv->getStride (COMPONENT_Y); Pel* piReco = pcRecoYuv->getAddr( COMPONENT_Y, uiAbsPartIdx ); AOF( uiWidth == uiHeight ); AOF( uiAbsPartIdx == 0 ); TComTURecurse rTu(pcCU, 0); const ChromaFormat chFmt = rTu.GetChromaFormat(); if ( pcCU->getDISType(uiAbsPartIdx) == 0 ) { const Bool bUseFilteredPredictions=TComPrediction::filteringIntraReferenceSamples(COMPONENT_Y, VER_IDX, uiWidth, uiHeight, chFmt, pcCU->getSlice()->getSPS()->getSpsRangeExtension().getIntraSmoothingDisabledFlag()); m_pcPrediction->initIntraPatternChType( rTu, COMPONENT_Y, bUseFilteredPredictions DEBUG_STRING_PASS_INTO(sTemp) ); m_pcPrediction->predIntraAng( COMPONENT_Y, VER_IDX, 0 /* Decoder does not have an original image */, 0, piReco, uiStride, rTu, bUseFilteredPredictions ); } else if ( pcCU->getDISType(uiAbsPartIdx) == 1 ) { const Bool bUseFilteredPredictions=TComPrediction::filteringIntraReferenceSamples(COMPONENT_Y, HOR_IDX, uiWidth, uiHeight, chFmt, pcCU->getSlice()->getSPS()->getSpsRangeExtension().getIntraSmoothingDisabledFlag()); m_pcPrediction->initIntraPatternChType( rTu, COMPONENT_Y, bUseFilteredPredictions DEBUG_STRING_PASS_INTO(sTemp) ); m_pcPrediction->predIntraAng( COMPONENT_Y, HOR_IDX, 0 /* Decoder does not have an original image */, 0, piReco, uiStride, rTu, bUseFilteredPredictions ); } else if ( pcCU->getDISType(uiAbsPartIdx) == 2 ) { Pel pSingleDepth = 1 << ( pcCU->getSlice()->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 1 ); pcCU->getNeighDepth ( 0, 0, &pSingleDepth, 0 ); for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { piReco[ uiX ] = pSingleDepth; } piReco+= uiStride; } } else if ( pcCU->getDISType(uiAbsPartIdx) == 3 ) { Pel pSingleDepth = 1 << ( pcCU->getSlice()->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 1 ); pcCU->getNeighDepth ( 0, 0, &pSingleDepth, 1 ); for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { piReco[ uiX ] = pSingleDepth; } piReco+= uiStride; } } // clear UV UInt uiStrideC = pcRecoYuv->getStride(COMPONENT_Cb); Pel *pRecCb = pcRecoYuv->getAddr(COMPONENT_Cb); Pel *pRecCr = pcRecoYuv->getAddr(COMPONENT_Cr); for (Int y=0; ygetSlice()->getSPS()->getBitDepth(CHANNEL_TYPE_CHROMA)-1); pRecCr[x] = 1<<(pcCU->getSlice()->getSPS()->getBitDepth(CHANNEL_TYPE_CHROMA)-1); } pRecCb += uiStrideC; pRecCr += uiStrideC; } } #endif #if NH_3D_SDC_INTER Void TDecCu::xReconInterSDC( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { // inter prediction m_pcPrediction->motionCompensation( pcCU, m_ppcYuvReco[uiDepth] ); UInt uiWidth = pcCU->getWidth ( 0 ); UInt uiHeight = pcCU->getHeight( 0 ); Pel *pResi; UInt uiPelX, uiPelY; UInt uiResiStride = m_ppcYuvResi[uiDepth]->getStride( COMPONENT_Y ); Int bitDepthC = pcCU->getSlice()->getSPS()->getBitDepth(CHANNEL_TYPE_CHROMA); pResi = m_ppcYuvResi[uiDepth]->getAddr( COMPONENT_Y ); for( uiPelY = 0; uiPelY < uiHeight; uiPelY++ ) { for( uiPelX = 0; uiPelX < uiWidth; uiPelX++ ) { pResi[ uiPelX ] = pcCU->getSDCSegmentDCOffset( 0, 0 ); } pResi += uiResiStride; } m_ppcYuvReco[uiDepth]->addClip( m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], 0, pcCU->getWidth( 0 ), pcCU->getSlice()->getSPS()->getBitDepths() ); // clear UV UInt uiStrideC = m_ppcYuvReco[uiDepth]->getStride( COMPONENT_Cb ); Pel *pRecCb = m_ppcYuvReco[uiDepth]->getAddr( COMPONENT_Cb ); Pel *pRecCr = m_ppcYuvReco[uiDepth]->getAddr( COMPONENT_Cr ); for (Int y = 0; y < uiHeight/2; y++) { for (Int x = 0; x < uiWidth/2; x++) { pRecCb[x] = (Pel)( 1 << ( bitDepthC - 1 ) ); pRecCr[x] = (Pel)( 1 << ( bitDepthC - 1 ) ); } pRecCb += uiStrideC; pRecCr += uiStrideC; } } #endif #if NH_3D_DBBP Void TDecCu::xReconInterDBBP( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { AOF(!pcCU->getSlice()->getIsDepth()); AOF(!pcCU->getSlice()->isIntra()); PartSize ePartSize = pcCU->getPartitionSize( 0 ); Int bitDepthY = pcCU->getSlice()->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA); // get collocated depth block UInt uiDepthStride = 0; #if H_3D_FCO Pel* pDepthPels = pcCU->getVirtualDepthBlock(pcCU->getZorderIdxInCU(), pcCU->getWidth(0), pcCU->getHeight(0), uiDepthStride); #else Pel* pDepthPels = pcCU->getVirtualDepthBlock(0, pcCU->getWidth(0), pcCU->getHeight(0), uiDepthStride); #endif AOF( pDepthPels != NULL ); AOF( uiDepthStride != 0 ); // compute mask by segmenting depth block Bool pMask[MAX_CU_SIZE*MAX_CU_SIZE]; Bool bValidMask = m_pcPrediction->getSegmentMaskFromDepth(pDepthPels, uiDepthStride, pcCU->getWidth(0), pcCU->getHeight(0), pMask, pcCU); AOF(bValidMask); DbbpTmpData* pDBBPTmpData = pcCU->getDBBPTmpData(); TComYuv* apSegPredYuv[2] = { m_ppcYuvReco[uiDepth], m_ppcYuvRecoDBBP[uiDepth] }; // first, extract the two sets of motion parameters UInt uiPUOffset = ( g_auiPUOffset[UInt( ePartSize )] << ( ( pcCU->getSlice()->getSPS()->getMaxTotalCUDepth() - uiDepth ) << 1 ) ) >> 4; for( UInt uiSegment = 0; uiSegment < 2; uiSegment++ ) { UInt uiPartAddr = uiSegment*uiPUOffset; pDBBPTmpData->auhInterDir[uiSegment] = pcCU->getInterDir(uiPartAddr); assert( pDBBPTmpData->auhInterDir[uiSegment] == 1 || pDBBPTmpData->auhInterDir[uiSegment] == 2 ); // only uni-prediction allowed for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { RefPicList eRefList = (RefPicList)uiRefListIdx; pcCU->getMvField(pcCU, uiPartAddr, eRefList, pDBBPTmpData->acMvField[uiSegment][eRefList]); } #if H_3D AOF( pcCU->getARPW(uiPartAddr) == 0 ); AOF( pcCU->getICFlag(uiPartAddr) == false ); AOF( pcCU->getSPIVMPFlag(uiPartAddr) == false ); AOF( pcCU->getVSPFlag(uiPartAddr) == 0 ); #endif } // do motion compensation for each segment as 2Nx2N pcCU->setPartSizeSubParts( SIZE_2Nx2N, 0, uiDepth ); pcCU->setPredModeSubParts( MODE_INTER, 0, uiDepth ); for( UInt uiSegment = 0; uiSegment < 2; uiSegment++ ) { pcCU->setInterDirSubParts( pDBBPTmpData->auhInterDir[uiSegment], 0, 0, uiDepth ); for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { RefPicList eRefList = (RefPicList)uiRefListIdx; pcCU->getCUMvField( eRefList )->setAllMvField( pDBBPTmpData->acMvField[uiSegment][eRefList], SIZE_2Nx2N, 0, 0 ); } // inter prediction m_pcPrediction->motionCompensation( pcCU, apSegPredYuv[uiSegment] ); } // restore motion information in both segments again pcCU->setPartSizeSubParts( ePartSize, 0, uiDepth ); pcCU->setPredModeSubParts( MODE_INTER, 0, uiDepth ); for( UInt uiSegment = 0; uiSegment < 2; uiSegment++ ) { UInt uiPartAddr = uiSegment*uiPUOffset; pcCU->setDBBPFlagSubParts(true, uiPartAddr, uiSegment, uiDepth); pcCU->setInterDirSubParts(pDBBPTmpData->auhInterDir[uiSegment], uiPartAddr, uiSegment, uiDepth); // interprets depth relative to LCU level for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { RefPicList eRefList = (RefPicList)uiRefListIdx; pcCU->getCUMvField( eRefList )->setAllMvField( pDBBPTmpData->acMvField[uiSegment][eRefList], ePartSize, uiPartAddr, 0, uiSegment ); // interprets depth relative to rpcTempCU level } } // reconstruct final prediction signal by combining both segments m_pcPrediction->combineSegmentsWithMask(apSegPredYuv, m_ppcYuvReco[uiDepth], pMask, pcCU->getWidth(0), pcCU->getHeight(0), 0, ePartSize, bitDepthY); // inter recon xDecodeInterTexture( pcCU, uiDepth ); // clip for only non-zero cbp case if ( ( pcCU->getCbf( 0, COMPONENT_Y ) ) || ( pcCU->getCbf( 0, COMPONENT_Cb ) ) || ( pcCU->getCbf(0, COMPONENT_Cr ) ) ) { m_ppcYuvReco[uiDepth]->addClip( m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], 0, pcCU->getWidth( 0 ), pcCU->getSlice()->getSPS()->getBitDepths() ); } else { m_ppcYuvReco[uiDepth]->copyPartToPartYuv( m_ppcYuvReco[uiDepth],0, pcCU->getWidth( 0 ),pcCU->getHeight( 0 )); } } #endif Void TDecCu::xIntraRecBlk( TComYuv* pcRecoYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, const ComponentID compID, TComTU &rTu) { if (!rTu.ProcessComponentSection(compID)) { return; } const Bool bIsLuma = isLuma(compID); TComDataCU *pcCU = rTu.getCU(); const TComSPS &sps=*(pcCU->getSlice()->getSPS()); const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(); const TComRectangle &tuRect =rTu.getRect(compID); const UInt uiWidth = tuRect.width; const UInt uiHeight = tuRect.height; const UInt uiStride = pcRecoYuv->getStride (compID); Pel* piPred = pcPredYuv->getAddr( compID, uiAbsPartIdx ); const ChromaFormat chFmt = rTu.GetChromaFormat(); if (uiWidth != uiHeight) { //------------------------------------------------ //split at current level if dividing into square sub-TUs TComTURecurse subTURecurse(rTu, false, TComTU::VERTICAL_SPLIT, true, compID); //recurse further do { xIntraRecBlk(pcRecoYuv, pcPredYuv, pcResiYuv, compID, subTURecurse); } while (subTURecurse.nextSection(rTu)); //------------------------------------------------ return; } const UInt uiChPredMode = pcCU->getIntraDir( toChannelType(compID), uiAbsPartIdx ); const UInt partsPerMinCU = 1<<(2*(sps.getMaxTotalCUDepth() - sps.getLog2DiffMaxMinCodingBlockSize())); const UInt uiChCodedMode = (uiChPredMode==DM_CHROMA_IDX && !bIsLuma) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, chFmt, partsPerMinCU)) : uiChPredMode; const UInt uiChFinalMode = ((chFmt == CHROMA_422) && !bIsLuma) ? g_chroma422IntraAngleMappingTable[uiChCodedMode] : uiChCodedMode; //===== init availability pattern ===== const Bool bUseFilteredPredictions=TComPrediction::filteringIntraReferenceSamples(compID, uiChFinalMode, uiWidth, uiHeight, chFmt, pcCU->getSlice()->getSPS()->getSpsRangeExtension().getIntraSmoothingDisabledFlag()); #if DEBUG_STRING std::ostream &ss(std::cout); #endif DEBUG_STRING_NEW(sTemp) m_pcPrediction->initIntraPatternChType( rTu, compID, bUseFilteredPredictions DEBUG_STRING_PASS_INTO(sTemp) ); //===== get prediction signal ===== #if NH_3D_DMM if( bIsLuma && isDmmMode( uiChFinalMode ) ) { m_pcPrediction->predIntraLumaDmm( pcCU, uiAbsPartIdx, getDmmType( uiChFinalMode ), piPred, uiStride, uiWidth, uiHeight ); } else { #endif m_pcPrediction->predIntraAng( compID, uiChFinalMode, 0 /* Decoder does not have an original image */, 0, piPred, uiStride, rTu, bUseFilteredPredictions ); #if NH_3D_DMM } #endif #if DEBUG_STRING ss << sTemp; #endif //===== inverse transform ===== Pel* piResi = pcResiYuv->getAddr( compID, uiAbsPartIdx ); TCoeff* pcCoeff = pcCU->getCoeff(compID) + rTu.getCoefficientOffset(compID);//( uiNumCoeffInc * uiAbsPartIdx ); const QpParam cQP(*pcCU, compID); DEBUG_STRING_NEW(sDebug); #if DEBUG_STRING const Int debugPredModeMask=DebugStringGetPredModeMask(MODE_INTRA); std::string *psDebug=(DebugOptionList::DebugString_InvTran.getInt()&debugPredModeMask) ? &sDebug : 0; #endif #if H_3D Bool useDltFlag = (isDmmMode( uiLumaPredMode ) || uiLumaPredMode == HOR_IDX || uiLumaPredMode == VER_IDX || uiLumaPredMode == DC_IDX) && pcCU->getSlice()->getIsDepth() && pcCU->getSlice()->getPPS()->getDLT()->getUseDLTFlag(pcCU->getSlice()->getLayerIdInVps()); if ( pcCU->getCbf( uiAbsPartIdx, TEXT_LUMA, uiTrDepth ) || useDltFlag ) #else if (pcCU->getCbf(uiAbsPartIdx, compID, rTu.GetTransformDepthRel()) != 0) #endif { m_pcTrQuant->invTransformNxN( rTu, compID, piResi, uiStride, pcCoeff, cQP DEBUG_STRING_PASS_INTO(psDebug) ); } else { for (UInt y = 0; y < uiHeight; y++) { for (UInt x = 0; x < uiWidth; x++) { piResi[(y * uiStride) + x] = 0; } } } #if DEBUG_STRING if (psDebug) { ss << (*psDebug); } #endif //===== reconstruction ===== const UInt uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride(compID); const Bool useCrossComponentPrediction = isChroma(compID) && (pcCU->getCrossComponentPredictionAlpha(uiAbsPartIdx, compID) != 0); const Pel* pResiLuma = pcResiYuv->getAddr( COMPONENT_Y, uiAbsPartIdx ); const Int strideLuma = pcResiYuv->getStride( COMPONENT_Y ); Pel* pPred = piPred; Pel* pResi = piResi; Pel* pReco = pcRecoYuv->getAddr( compID, uiAbsPartIdx ); Pel* pRecIPred = pcCU->getPic()->getPicYuvRec()->getAddr( compID, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu() + uiAbsPartIdx ); #if DEBUG_STRING const Bool bDebugPred=((DebugOptionList::DebugString_Pred.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID)); const Bool bDebugResi=((DebugOptionList::DebugString_Resi.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID)); const Bool bDebugReco=((DebugOptionList::DebugString_Reco.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID)); if (bDebugPred || bDebugResi || bDebugReco) { ss << "###: " << "CompID: " << compID << " pred mode (ch/fin): " << uiChPredMode << "/" << uiChFinalMode << " absPartIdx: " << rTu.GetAbsPartIdxTU() << std::endl; } #endif const Int clipbd = sps.getBitDepth(toChannelType(compID)); #if O0043_BEST_EFFORT_DECODING const Int bitDepthDelta = sps.getStreamBitDepth(toChannelType(compID)) - clipbd; #endif if( useCrossComponentPrediction ) { TComTrQuant::crossComponentPrediction( rTu, compID, pResiLuma, piResi, piResi, uiWidth, uiHeight, strideLuma, uiStride, uiStride, true ); } for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { #if DEBUG_STRING if (bDebugPred || bDebugResi || bDebugReco) { ss << "###: "; } if (bDebugPred) { ss << " - pred: "; for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { ss << pPred[ uiX ] << ", "; } } if (bDebugResi) { ss << " - resi: "; } #endif for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { #if DEBUG_STRING if (bDebugResi) { ss << pResi[ uiX ] << ", "; } #endif #if O0043_BEST_EFFORT_DECODING pReco [ uiX ] = ClipBD( rightShiftEvenRounding(pPred[ uiX ] + pResi[ uiX ], bitDepthDelta), clipbd ); #else pReco [ uiX ] = ClipBD( pPred[ uiX ] + pResi[ uiX ], clipbd ); #endif pRecIPred[ uiX ] = pReco[ uiX ]; } #if DEBUG_STRING if (bDebugReco) { ss << " - reco: "; for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { ss << pReco[ uiX ] << ", "; } } if (bDebugPred || bDebugResi || bDebugReco) { ss << "\n"; } #endif pPred += uiStride; pResi += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; } } Void TDecCu::xReconIntraQT( TComDataCU* pcCU, UInt uiDepth ) { if (pcCU->getIPCMFlag(0)) { xReconPCM( pcCU, uiDepth ); return; } const UInt numChType = pcCU->getPic()->getChromaFormat()!=CHROMA_400 ? 2 : 1; for (UInt chType=CHANNEL_TYPE_LUMA; chTypegetPic()->getChromaFormat()) : true; const UInt uiInitTrDepth = ( pcCU->getPartitionSize(0) != SIZE_2Nx2N && NxNPUHas4Parts ? 1 : 0 ); TComTURecurse tuRecurseCU(pcCU, 0); TComTURecurse tuRecurseWithPU(tuRecurseCU, false, (uiInitTrDepth==0)?TComTU::DONT_SPLIT : TComTU::QUAD_SPLIT); do { xIntraRecQT( m_ppcYuvReco[uiDepth], m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], chanType, tuRecurseWithPU ); } while (tuRecurseWithPU.nextSection(tuRecurseCU)); } } #if NH_3D_SDC_INTRA Void TDecCu::xReconIntraSDC( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { TComYuv* pcRecoYuv = m_ppcYuvReco[uiDepth]; TComYuv* pcPredYuv = m_ppcYuvReco[uiDepth]; TComYuv* pcResiYuv = m_ppcYuvResi[uiDepth]; UInt uiWidth = pcCU->getWidth ( 0 ); UInt uiHeight = pcCU->getHeight( 0 ); UInt uiLumaPredMode = pcCU->getIntraDir( CHANNEL_TYPE_LUMA, uiAbsPartIdx ); const Int bitDepthY = pcCU->getSlice()->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA); const TComSPS &sps = *(pcCU->getSlice()->getSPS()); const ChromaFormat chFmt = pcCU->getPic()->getChromaFormat(); UInt sdcDepth = 0; UInt uiStride; Pel* piReco; Pel* piPred; Pel* piResi; Pel* piRecIPred; UInt uiRecIPredStride; Pel apDCPredValues[2]; UInt uiNumSegments; Bool* pbMask = NULL; UInt uiMaskStride = 0; #if NH_3D_DMM if( isDmmMode( uiLumaPredMode ) ) { assert( uiWidth == uiHeight ); assert( uiWidth >= DMM_MIN_SIZE && uiWidth <= DMM_MAX_SIZE ); assert( !((uiWidth >> pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize()) > 1) ); uiNumSegments = 2; uiStride = pcRecoYuv->getStride( COMPONENT_Y ); piReco = pcRecoYuv->getAddr ( COMPONENT_Y, uiAbsPartIdx ); piPred = pcPredYuv->getAddr ( COMPONENT_Y, uiAbsPartIdx ); piResi = pcResiYuv->getAddr ( COMPONENT_Y, uiAbsPartIdx ); piRecIPred = pcCU->getPic()->getPicYuvRec()->getAddr ( COMPONENT_Y, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu() + uiAbsPartIdx ); uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride( COMPONENT_Y ); //===== init availability pattern ===== TComTURecurse tuRecurseCU(pcCU, 0); TComTURecurse tuRecurseWithPU(tuRecurseCU, false, TComTU::DONT_SPLIT); m_pcPrediction->initIntraPatternChType( tuRecurseWithPU, COMPONENT_Y, false DEBUG_STRING_PASS_INTO(sTemp) ); // get partition pbMask = new Bool[ uiWidth*uiHeight ]; uiMaskStride = uiWidth; switch( getDmmType( uiLumaPredMode ) ) { case( DMM1_IDX ): { (getWedgeListScaled( uiWidth )->at( pcCU->getDmm1WedgeTabIdx( uiAbsPartIdx ) )).getPatternScaledCopy( uiWidth, pbMask ); } break; case( DMM4_IDX ): { m_pcPrediction->predContourFromTex( pcCU, uiAbsPartIdx, uiWidth, uiHeight, pbMask ); } break; default: assert(0); } // get predicted partition values Pel predDC1 = 0, predDC2 = 0; m_pcPrediction->predBiSegDCs( pcCU, uiAbsPartIdx, uiWidth, uiHeight, pbMask, uiMaskStride, predDC1, predDC2 ); // set prediction signal Pel* pDst = piPred; m_pcPrediction->assignBiSegDCs( pDst, uiStride, pbMask, uiMaskStride, predDC1, predDC2 ); apDCPredValues[0] = predDC1; apDCPredValues[1] = predDC2; } else // regular HEVC intra modes { #endif uiNumSegments = 1; if( ( uiWidth >> pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() ) > 1 ) { sdcDepth = g_aucConvertToBit[uiWidth] + 2 - pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize(); } //===== loop over partitions ===== TComTURecurse tuRecurseCU(pcCU, 0); TComTURecurse tuRecurseWithPU(tuRecurseCU, false, (sdcDepth==0)?TComTU::DONT_SPLIT:TComTU::QUAD_SPLIT); do { const TComRectangle &puRect = tuRecurseWithPU.getRect(COMPONENT_Y); const UInt uiAbsPartIdxTU = tuRecurseWithPU.GetAbsPartIdxTU(); Pel* piPredTU = pcPredYuv->getAddr ( COMPONENT_Y, uiAbsPartIdxTU ); UInt uiStrideTU = pcPredYuv->getStride( COMPONENT_Y ); Pel* piRecIPredTU = pcCU->getPic()->getPicYuvRec()->getAddr( COMPONENT_Y, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu() + uiAbsPartIdxTU ); UInt uiRecIPredStrideTU = pcCU->getPic()->getPicYuvRec()->getStride(COMPONENT_Y); const Bool bUseFilter = TComPrediction::filteringIntraReferenceSamples(COMPONENT_Y, uiLumaPredMode, puRect.width, puRect.height, chFmt, sps.getSpsRangeExtension().getIntraSmoothingDisabledFlag()); //===== init pattern for luma prediction ===== m_pcPrediction->initIntraPatternChType( tuRecurseWithPU, COMPONENT_Y, bUseFilter DEBUG_STRING_PASS_INTO(sTemp) ); m_pcPrediction->predIntraAng( COMPONENT_Y, uiLumaPredMode, NULL, uiStrideTU, piPredTU, uiStrideTU, tuRecurseWithPU, bUseFilter ); // copy for prediction of next part for( UInt uiY = 0; uiY < puRect.height; uiY++ ) { for( UInt uiX = 0; uiX < puRect.width; uiX++ ) { piPredTU [ uiX ] = ClipBD( piPredTU[ uiX ], bitDepthY ); piRecIPredTU [ uiX ] = piPredTU[ uiX ]; } piPredTU += uiStrideTU; piRecIPredTU += uiRecIPredStrideTU; } } while (tuRecurseWithPU.nextSection(tuRecurseCU)); // reset to full block uiWidth = pcCU->getWidth( 0 ); uiHeight = pcCU->getHeight( 0 ); uiStride = pcRecoYuv->getStride( COMPONENT_Y ); piReco = pcRecoYuv->getAddr ( COMPONENT_Y, uiAbsPartIdx ); piPred = pcPredYuv->getAddr ( COMPONENT_Y, uiAbsPartIdx ); piResi = pcResiYuv->getAddr ( COMPONENT_Y, uiAbsPartIdx ); piRecIPred = pcCU->getPic()->getPicYuvRec()->getAddr ( COMPONENT_Y, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu() + uiAbsPartIdx ); uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride( COMPONENT_Y ); m_pcPrediction->predConstantSDC( piPred, uiStride, uiWidth, apDCPredValues[0] ); apDCPredValues[1] = 0; #if NH_3D_DMM } #endif // reconstruct residual based on mask + DC residuals Pel apDCResiValues[2]; for( UInt uiSegment = 0; uiSegment < uiNumSegments; uiSegment++ ) { #if NH_3D_DLT Pel pPredIdx = pcCU->getSlice()->getPPS()->getDLT()->depthValue2idx( pcCU->getSlice()->getLayerIdInVps(), apDCPredValues[uiSegment] ); Pel pResiIdx = pcCU->getSDCSegmentDCOffset(uiSegment, uiAbsPartIdx); Pel pRecoValue = pcCU->getSlice()->getPPS()->getDLT()->idx2DepthValue( pcCU->getSlice()->getLayerIdInVps(), pPredIdx + pResiIdx ); apDCResiValues[uiSegment] = pRecoValue - apDCPredValues[uiSegment]; #else apDCResiValues[uiSegment] = pcCU->getSDCSegmentDCOffset(uiSegment, uiAbsPartIdx); #endif } //===== reconstruction ===== Bool*pMask = pbMask; Pel* pPred = piPred; Pel* pResi = piResi; Pel* pReco = piReco; Pel* pRecIPred = piRecIPred; for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { UChar ucSegment = pMask?(UChar)pMask[uiX]:0; assert( ucSegment < uiNumSegments ); Pel pResiDC = apDCResiValues[ucSegment]; pReco [ uiX ] = ClipBD( pPred[ uiX ] + pResiDC, bitDepthY ); pRecIPred[ uiX ] = pReco[ uiX ]; } pPred += uiStride; pResi += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; pMask += uiMaskStride; } // clear chroma UInt uiStrideC = pcPredYuv->getStride( COMPONENT_Cb ); Pel *pRecCb = pcPredYuv->getAddr ( COMPONENT_Cb, uiAbsPartIdx ); Pel *pRecCr = pcPredYuv->getAddr ( COMPONENT_Cr, uiAbsPartIdx ); for (Int y=0; ygetTransformIdx( uiAbsPartIdx ); if( uiTrMode == uiTrDepth ) { if (isLuma(chType)) { xIntraRecBlk( pcRecoYuv, pcPredYuv, pcResiYuv, COMPONENT_Y, rTu ); } else { const UInt numValidComp=getNumberValidComponents(rTu.GetChromaFormat()); for(UInt compID=COMPONENT_Cb; compIDgetCtuRsAddr(); m_ppcYuvReco[uiDepth]->copyToPicYuv ( pcPic->getPicYuvRec (), uiCtuRsAddr, uiZorderIdx ); return; } Void TDecCu::xDecodeInterTexture ( TComDataCU* pcCU, UInt uiDepth ) { TComTURecurse tuRecur(pcCU, 0, uiDepth); for(UInt ch=0; chgetPic()->getNumberValidComponents(); ch++) { const ComponentID compID=ComponentID(ch); DEBUG_STRING_OUTPUT(std::cout, debug_reorder_data_inter_token[compID]) m_pcTrQuant->invRecurTransformNxN ( compID, m_ppcYuvResi[uiDepth], tuRecur ); } DEBUG_STRING_OUTPUT(std::cout, debug_reorder_data_inter_token[MAX_NUM_COMPONENT]) } /** Function for deriving reconstructed luma/chroma samples of a PCM mode CU. * \param pcCU pointer to current CU * \param uiPartIdx part index * \param piPCM pointer to PCM code arrays * \param piReco pointer to reconstructed sample arrays * \param uiStride stride of reconstructed sample arrays * \param uiWidth CU width * \param uiHeight CU height * \param compID colour component ID * \returns Void */ Void TDecCu::xDecodePCMTexture( TComDataCU* pcCU, const UInt uiPartIdx, const Pel *piPCM, Pel* piReco, const UInt uiStride, const UInt uiWidth, const UInt uiHeight, const ComponentID compID) { Pel* piPicReco = pcCU->getPic()->getPicYuvRec()->getAddr(compID, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu()+uiPartIdx); const UInt uiPicStride = pcCU->getPic()->getPicYuvRec()->getStride(compID); const TComSPS &sps = *(pcCU->getSlice()->getSPS()); const UInt uiPcmLeftShiftBit = sps.getBitDepth(toChannelType(compID)) - sps.getPCMBitDepth(toChannelType(compID)); for(UInt uiY = 0; uiY < uiHeight; uiY++ ) { for(UInt uiX = 0; uiX < uiWidth; uiX++ ) { piReco[uiX] = (piPCM[uiX] << uiPcmLeftShiftBit); piPicReco[uiX] = piReco[uiX]; } piPCM += uiWidth; piReco += uiStride; piPicReco += uiPicStride; } } /** Function for reconstructing a PCM mode CU. * \param pcCU pointer to current CU * \param uiDepth CU Depth * \returns Void */ Void TDecCu::xReconPCM( TComDataCU* pcCU, UInt uiDepth ) { const UInt maxCuWidth = pcCU->getSlice()->getSPS()->getMaxCUWidth(); const UInt maxCuHeight = pcCU->getSlice()->getSPS()->getMaxCUHeight(); for (UInt ch=0; ch < pcCU->getPic()->getNumberValidComponents(); ch++) { const ComponentID compID = ComponentID(ch); const UInt width = (maxCuWidth >>(uiDepth+m_ppcYuvResi[uiDepth]->getComponentScaleX(compID))); const UInt height = (maxCuHeight>>(uiDepth+m_ppcYuvResi[uiDepth]->getComponentScaleY(compID))); const UInt stride = m_ppcYuvResi[uiDepth]->getStride(compID); Pel * pPCMChannel = pcCU->getPCMSample(compID); Pel * pRecChannel = m_ppcYuvReco[uiDepth]->getAddr(compID); xDecodePCMTexture( pcCU, 0, pPCMChannel, pRecChannel, stride, width, height, compID ); } } /** Function for filling the PCM buffer of a CU using its reconstructed sample array * \param pCU pointer to current CU * \param depth CU Depth */ Void TDecCu::xFillPCMBuffer(TComDataCU* pCU, UInt depth) { const ChromaFormat format = pCU->getPic()->getChromaFormat(); const UInt numValidComp = getNumberValidComponents(format); const UInt maxCuWidth = pCU->getSlice()->getSPS()->getMaxCUWidth(); const UInt maxCuHeight = pCU->getSlice()->getSPS()->getMaxCUHeight(); for (UInt componentIndex = 0; componentIndex < numValidComp; componentIndex++) { const ComponentID component = ComponentID(componentIndex); const UInt width = maxCuWidth >> (depth + getComponentScaleX(component, format)); const UInt height = maxCuHeight >> (depth + getComponentScaleY(component, format)); Pel *source = m_ppcYuvReco[depth]->getAddr(component, 0, width); Pel *destination = pCU->getPCMSample(component); const UInt sourceStride = m_ppcYuvReco[depth]->getStride(component); for (Int line = 0; line < height; line++) { for (Int column = 0; column < width; column++) { destination[column] = source[column]; } source += sourceStride; destination += width; } } } //! \}