/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TDecCu.cpp \brief CU decoder class */ #include "TDecCu.h" //! \ingroup TLibDecoder //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== TDecCu::TDecCu() { m_ppcYuvResi = NULL; m_ppcYuvReco = NULL; m_ppcCU = NULL; #if H_3D_DBBP m_ppcYuvRecoDBBP = NULL; #endif } TDecCu::~TDecCu() { } Void TDecCu::init( TDecEntropy* pcEntropyDecoder, TComTrQuant* pcTrQuant, TComPrediction* pcPrediction) { m_pcEntropyDecoder = pcEntropyDecoder; m_pcTrQuant = pcTrQuant; m_pcPrediction = pcPrediction; } /** \param uiMaxDepth total number of allowable depth \param uiMaxWidth largest CU width \param uiMaxHeight largest CU height */ Void TDecCu::create( UInt uiMaxDepth, UInt uiMaxWidth, UInt uiMaxHeight ) { m_uiMaxDepth = uiMaxDepth+1; m_ppcYuvResi = new TComYuv*[m_uiMaxDepth-1]; m_ppcYuvReco = new TComYuv*[m_uiMaxDepth-1]; m_ppcCU = new TComDataCU*[m_uiMaxDepth-1]; #if H_3D_DBBP m_ppcYuvRecoDBBP = new TComYuv*[m_uiMaxDepth-1]; #endif UInt uiNumPartitions; for ( UInt ui = 0; ui < m_uiMaxDepth-1; ui++ ) { uiNumPartitions = 1<<( ( m_uiMaxDepth - ui - 1 )<<1 ); UInt uiWidth = uiMaxWidth >> ui; UInt uiHeight = uiMaxHeight >> ui; m_ppcYuvResi[ui] = new TComYuv; m_ppcYuvResi[ui]->create( uiWidth, uiHeight ); m_ppcYuvReco[ui] = new TComYuv; m_ppcYuvReco[ui]->create( uiWidth, uiHeight ); m_ppcCU [ui] = new TComDataCU; m_ppcCU [ui]->create( uiNumPartitions, uiWidth, uiHeight, true, uiMaxWidth >> (m_uiMaxDepth - 1) ); #if H_3D_DBBP m_ppcYuvRecoDBBP[ui] = new TComYuv; m_ppcYuvRecoDBBP[ui]->create( uiWidth, uiHeight ); #endif } m_bDecodeDQP = false; // initialize partition order. UInt* piTmp = &g_auiZscanToRaster[0]; initZscanToRaster(m_uiMaxDepth, 1, 0, piTmp); initRasterToZscan( uiMaxWidth, uiMaxHeight, m_uiMaxDepth ); // initialize conversion matrix from partition index to pel initRasterToPelXY( uiMaxWidth, uiMaxHeight, m_uiMaxDepth ); } Void TDecCu::destroy() { for ( UInt ui = 0; ui < m_uiMaxDepth-1; ui++ ) { m_ppcYuvResi[ui]->destroy(); delete m_ppcYuvResi[ui]; m_ppcYuvResi[ui] = NULL; m_ppcYuvReco[ui]->destroy(); delete m_ppcYuvReco[ui]; m_ppcYuvReco[ui] = NULL; m_ppcCU [ui]->destroy(); delete m_ppcCU [ui]; m_ppcCU [ui] = NULL; #if H_3D_DBBP m_ppcYuvRecoDBBP[ui]->destroy(); delete m_ppcYuvRecoDBBP[ui]; m_ppcYuvRecoDBBP[ui] = NULL; #endif } delete [] m_ppcYuvResi; m_ppcYuvResi = NULL; delete [] m_ppcYuvReco; m_ppcYuvReco = NULL; delete [] m_ppcCU ; m_ppcCU = NULL; #if H_3D_DBBP delete [] m_ppcYuvRecoDBBP; m_ppcYuvRecoDBBP = NULL; #endif } // ==================================================================================================================== // Public member functions // ==================================================================================================================== /** \param pcCU pointer of CU data \param ruiIsLast last data? */ Void TDecCu::decodeCU( TComDataCU* pcCU, UInt& ruiIsLast ) { if ( pcCU->getSlice()->getPPS()->getUseDQP() ) { setdQPFlag(true); } // start from the top level CU xDecodeCU( pcCU, 0, 0, ruiIsLast); } /** \param pcCU pointer of CU data */ Void TDecCu::decompressCU( TComDataCU* pcCU ) { #if !H_3D_IV_MERGE xDecompressCU( pcCU, 0, 0 ); #endif } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== /**decode end-of-slice flag * \param pcCU * \param uiAbsPartIdx * \param uiDepth * \returns Bool */ Bool TDecCu::xDecodeSliceEnd( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth) { UInt uiIsLast; TComPic* pcPic = pcCU->getPic(); TComSlice * pcSlice = pcPic->getSlice(pcPic->getCurrSliceIdx()); UInt uiCurNumParts = pcPic->getNumPartInCU() >> (uiDepth<<1); UInt uiWidth = pcSlice->getSPS()->getPicWidthInLumaSamples(); UInt uiHeight = pcSlice->getSPS()->getPicHeightInLumaSamples(); UInt uiGranularityWidth = g_uiMaxCUWidth; UInt uiPosX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiPosY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ]; if(((uiPosX+pcCU->getWidth(uiAbsPartIdx))%uiGranularityWidth==0||(uiPosX+pcCU->getWidth(uiAbsPartIdx)==uiWidth)) &&((uiPosY+pcCU->getHeight(uiAbsPartIdx))%uiGranularityWidth==0||(uiPosY+pcCU->getHeight(uiAbsPartIdx)==uiHeight))) { m_pcEntropyDecoder->decodeTerminatingBit( uiIsLast ); } else { uiIsLast=0; } if(uiIsLast) { if(pcSlice->isNextSliceSegment()&&!pcSlice->isNextSlice()) { pcSlice->setSliceSegmentCurEndCUAddr(pcCU->getSCUAddr()+uiAbsPartIdx+uiCurNumParts); } else { pcSlice->setSliceCurEndCUAddr(pcCU->getSCUAddr()+uiAbsPartIdx+uiCurNumParts); pcSlice->setSliceSegmentCurEndCUAddr(pcCU->getSCUAddr()+uiAbsPartIdx+uiCurNumParts); } } return uiIsLast>0; } /** decode CU block recursively * \param pcCU * \param uiAbsPartIdx * \param uiDepth * \returns Void */ Void TDecCu::xDecodeCU( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, UInt& ruiIsLast) { TComPic* pcPic = pcCU->getPic(); UInt uiCurNumParts = pcPic->getNumPartInCU() >> (uiDepth<<1); UInt uiQNumParts = uiCurNumParts>>2; Bool bBoundary = false; UInt uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiRPelX = uiLPelX + (g_uiMaxCUWidth>>uiDepth) - 1; UInt uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiBPelY = uiTPelY + (g_uiMaxCUHeight>>uiDepth) - 1; #if H_MV_ENC_DEC_TRAC DTRACE_CU_S("=========== coding_quadtree ===========\n") DTRACE_CU("x0", uiLPelX) DTRACE_CU("x1", uiTPelY) DTRACE_CU("log2CbSize", g_uiMaxCUWidth>>uiDepth) DTRACE_CU("cqtDepth" , uiDepth) #endif TComSlice * pcSlice = pcCU->getPic()->getSlice(pcCU->getPic()->getCurrSliceIdx()); Bool bStartInCU = pcCU->getSCUAddr()+uiAbsPartIdx+uiCurNumParts>pcSlice->getSliceSegmentCurStartCUAddr()&&pcCU->getSCUAddr()+uiAbsPartIdxgetSliceSegmentCurStartCUAddr(); if((!bStartInCU) && ( uiRPelX < pcSlice->getSPS()->getPicWidthInLumaSamples() ) && ( uiBPelY < pcSlice->getSPS()->getPicHeightInLumaSamples() ) ) { m_pcEntropyDecoder->decodeSplitFlag( pcCU, uiAbsPartIdx, uiDepth ); } else { bBoundary = true; } if( ( ( uiDepth < pcCU->getDepth( uiAbsPartIdx ) ) && ( uiDepth < g_uiMaxCUDepth - g_uiAddCUDepth ) ) || bBoundary ) { UInt uiIdx = uiAbsPartIdx; if( (g_uiMaxCUWidth>>uiDepth) == pcCU->getSlice()->getPPS()->getMinCuDQPSize() && pcCU->getSlice()->getPPS()->getUseDQP()) { setdQPFlag(true); pcCU->setQPSubParts( pcCU->getRefQP(uiAbsPartIdx), uiAbsPartIdx, uiDepth ); // set QP to default QP } for ( UInt uiPartUnitIdx = 0; uiPartUnitIdx < 4; uiPartUnitIdx++ ) { uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiIdx] ]; uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiIdx] ]; Bool bSubInSlice = pcCU->getSCUAddr()+uiIdx+uiQNumParts>pcSlice->getSliceSegmentCurStartCUAddr(); if ( bSubInSlice ) { if ( !ruiIsLast && ( uiLPelX < pcCU->getSlice()->getSPS()->getPicWidthInLumaSamples() ) && ( uiTPelY < pcCU->getSlice()->getSPS()->getPicHeightInLumaSamples() ) ) { xDecodeCU( pcCU, uiIdx, uiDepth+1, ruiIsLast ); } else { pcCU->setOutsideCUPart( uiIdx, uiDepth+1 ); } } uiIdx += uiQNumParts; } if( (g_uiMaxCUWidth>>uiDepth) == pcCU->getSlice()->getPPS()->getMinCuDQPSize() && pcCU->getSlice()->getPPS()->getUseDQP()) { if ( getdQPFlag() ) { UInt uiQPSrcPartIdx; if ( pcPic->getCU( pcCU->getAddr() )->getSliceSegmentStartCU(uiAbsPartIdx) != pcSlice->getSliceSegmentCurStartCUAddr() ) { uiQPSrcPartIdx = pcSlice->getSliceSegmentCurStartCUAddr() % pcPic->getNumPartInCU(); } else { uiQPSrcPartIdx = uiAbsPartIdx; } pcCU->setQPSubParts( pcCU->getRefQP( uiQPSrcPartIdx ), uiAbsPartIdx, uiDepth ); // set QP to default QP } } return; } #if H_MV_ENC_DEC_TRAC DTRACE_CU_S("=========== coding_unit ===========\n") #endif #if H_3D_DDD pcCU->setUseDDD( false, uiAbsPartIdx, uiDepth ); #endif if( (g_uiMaxCUWidth>>uiDepth) >= pcCU->getSlice()->getPPS()->getMinCuDQPSize() && pcCU->getSlice()->getPPS()->getUseDQP()) { setdQPFlag(true); pcCU->setQPSubParts( pcCU->getRefQP(uiAbsPartIdx), uiAbsPartIdx, uiDepth ); // set QP to default QP } #if H_3D_NBDV DisInfo DvInfo; DvInfo.bDV = false; DvInfo.m_acNBDV.setZero(); DvInfo.m_aVIdxCan = 0; #if H_3D_NBDV_REF DvInfo.m_acDoNBDV.setZero(); #endif if(!pcCU->getSlice()->isIntra()) { #if H_3D_ARP && H_3D_IV_MERGE if( pcCU->getSlice()->getVPS()->getUseAdvRP( pcCU->getSlice()->getLayerId() ) || pcCU->getSlice()->getVPS()->getIvMvPredFlag( pcCU->getSlice()->getLayerId() )) #else #if H_3D_ARP if( pcCU->getSlice()->getVPS()->getUseAdvRP(pcCU->getSlice()->getLayerId()) ) #else #if H_3D_IV_MERGE if( pcCU->getSlice()->getVPS()->getIvMvPredFlag(pcCU->getSlice()->getLayerId()) ) #else if (0) #endif #endif #endif { m_ppcCU[uiDepth]->copyInterPredInfoFrom( pcCU, uiAbsPartIdx, REF_PIC_LIST_0, true ); m_ppcCU[uiDepth]->copyDVInfoFrom( pcCU, uiAbsPartIdx); PartSize ePartTemp = m_ppcCU[uiDepth]->getPartitionSize(0); UChar cWidTemp = m_ppcCU[uiDepth]->getWidth(0); UChar cHeightTemp = m_ppcCU[uiDepth]->getHeight(0); m_ppcCU[uiDepth]->setWidth ( 0, pcCU->getSlice()->getSPS()->getMaxCUWidth ()/(1<setHeight ( 0, pcCU->getSlice()->getSPS()->getMaxCUHeight()/(1<setPartSizeSubParts( SIZE_2Nx2N, 0, uiDepth ); #if H_3D_IV_MERGE if( pcCU->getSlice()->getIsDepth()) { DvInfo.bDV = m_ppcCU[uiDepth]->getDispforDepth(0, 0, &DvInfo); } else { #endif #if H_3D_NBDV_REF if(pcCU->getSlice()->getVPS()->getDepthRefinementFlag( pcCU->getSlice()->getLayerIdInVps() )) //Notes from QC: please check the condition for DoNBDV. Remove this comment once it is done. { DvInfo.bDV = m_ppcCU[uiDepth]->getDisMvpCandNBDV(&DvInfo, true); } else #endif { DvInfo.bDV = m_ppcCU[uiDepth]->getDisMvpCandNBDV(&DvInfo); } #if H_3D_IV_MERGE } #endif #if ENC_DEC_TRACE && H_MV_ENC_DEC_TRAC if ( g_decTraceDispDer ) { DTRACE_CU( "RefViewIdx", DvInfo.m_aVIdxCan ); DTRACE_CU( "MvDisp[x]", DvInfo.m_acNBDV.getHor() ); DTRACE_CU( "MvDisp[y]", DvInfo.m_acNBDV.getVer() ); DTRACE_CU( "MvRefinedDisp[x]", DvInfo.m_acDoNBDV.getHor() ); DTRACE_CU( "MvRefinedDisp[y]", DvInfo.m_acDoNBDV.getVer() ); } #endif pcCU->setDvInfoSubParts(DvInfo, uiAbsPartIdx, uiDepth); m_ppcCU[uiDepth]->setPartSizeSubParts( ePartTemp, 0, uiDepth ); m_ppcCU[uiDepth]->setWidth ( 0, cWidTemp ); m_ppcCU[uiDepth]->setHeight ( 0, cHeightTemp ); } } #endif if (pcCU->getSlice()->getPPS()->getTransquantBypassEnableFlag()) { m_pcEntropyDecoder->decodeCUTransquantBypassFlag( pcCU, uiAbsPartIdx, uiDepth ); } // decode CU mode and the partition size if( !pcCU->getSlice()->isIntra()) { m_pcEntropyDecoder->decodeSkipFlag( pcCU, uiAbsPartIdx, uiDepth ); } if( pcCU->isSkipped(uiAbsPartIdx) ) { #if H_MV_ENC_DEC_TRAC DTRACE_PU_S("=========== prediction_unit ===========\n") DTRACE_PU("x0", uiLPelX) DTRACE_PU("x1", uiTPelY) #endif m_ppcCU[uiDepth]->copyInterPredInfoFrom( pcCU, uiAbsPartIdx, REF_PIC_LIST_0 ); m_ppcCU[uiDepth]->copyInterPredInfoFrom( pcCU, uiAbsPartIdx, REF_PIC_LIST_1 ); #if H_3D_IV_MERGE m_ppcCU[uiDepth]->copyDVInfoFrom(pcCU, uiAbsPartIdx); TComMvField cMvFieldNeighbours[MRG_MAX_NUM_CANDS_MEM << 1]; // double length for mv of both lists UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS_MEM]; #else TComMvField cMvFieldNeighbours[MRG_MAX_NUM_CANDS << 1]; // double length for mv of both lists UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS]; #endif Int numValidMergeCand = 0; for( UInt ui = 0; ui < m_ppcCU[uiDepth]->getSlice()->getMaxNumMergeCand(); ++ui ) { uhInterDirNeighbours[ui] = 0; } m_pcEntropyDecoder->decodeMergeIndex( pcCU, 0, uiAbsPartIdx, uiDepth ); UInt uiMergeIndex = pcCU->getMergeIndex(uiAbsPartIdx); #if H_3D_ARP m_pcEntropyDecoder->decodeARPW( pcCU , uiAbsPartIdx , uiDepth ); #endif #if H_3D_IC m_pcEntropyDecoder->decodeICFlag( pcCU, uiAbsPartIdx, uiDepth ); #endif #if H_3D_VSP Int vspFlag[MRG_MAX_NUM_CANDS_MEM]; memset(vspFlag, 0, sizeof(Int)*MRG_MAX_NUM_CANDS_MEM); InheritedVSPDisInfo inheritedVSPDisInfo[MRG_MAX_NUM_CANDS_MEM]; #if H_3D_SPIVMP Bool bSPIVMPFlag[MRG_MAX_NUM_CANDS_MEM]; memset(bSPIVMPFlag, false, sizeof(Bool)*MRG_MAX_NUM_CANDS_MEM); TComMvField* pcMvFieldSP; UChar* puhInterDirSP; pcMvFieldSP = new TComMvField[pcCU->getPic()->getPicSym()->getNumPartition()*2]; puhInterDirSP = new UChar[pcCU->getPic()->getPicSym()->getNumPartition()]; #endif m_ppcCU[uiDepth]->initAvailableFlags(); m_ppcCU[uiDepth]->getInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand, uiMergeIndex ); m_ppcCU[uiDepth]->xGetInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours , inheritedVSPDisInfo #if H_3D_SPIVMP , pcMvFieldSP, puhInterDirSP #endif , numValidMergeCand, uiMergeIndex ); m_ppcCU[uiDepth]->buildMCL( cMvFieldNeighbours, uhInterDirNeighbours, vspFlag #if H_3D_SPIVMP , bSPIVMPFlag #endif , numValidMergeCand ); pcCU->setVSPFlagSubParts( vspFlag[uiMergeIndex], uiAbsPartIdx, 0, uiDepth ); #else #if H_3D m_ppcCU[uiDepth]->initAvailableFlags(); m_ppcCU[uiDepth]->getInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand, uiMergeIndex ); m_ppcCU[uiDepth]->xGetInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand, uiMergeIndex ); #else m_ppcCU[uiDepth]->getInterMergeCandidates( 0, 0, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand, uiMergeIndex ); #endif #endif #if H_3D_VSP if(vspFlag[uiMergeIndex]) { pcCU->setDvInfoSubParts(inheritedVSPDisInfo[uiMergeIndex].m_acDvInfo, uiAbsPartIdx, 0, uiDepth); } #endif pcCU->setInterDirSubParts( uhInterDirNeighbours[uiMergeIndex], uiAbsPartIdx, 0, uiDepth ); #if H_3D_DDD if( uiMergeIndex == m_ppcCU[uiDepth]->getUseDDDCandIdx() ) { assert( pcCU->getSlice()->getViewIndex() != 0 ); pcCU->setUseDDD( true, uiAbsPartIdx, 0, uiDepth ); pcCU->setDDDepthSubParts( m_ppcCU[uiDepth]->getDDTmpDepth(),uiAbsPartIdx, 0, uiDepth ); } #endif TComMv cTmpMv( 0, 0 ); for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { if ( pcCU->getSlice()->getNumRefIdx( RefPicList( uiRefListIdx ) ) > 0 ) { pcCU->setMVPIdxSubParts( 0, RefPicList( uiRefListIdx ), uiAbsPartIdx, 0, uiDepth); pcCU->setMVPNumSubParts( 0, RefPicList( uiRefListIdx ), uiAbsPartIdx, 0, uiDepth); pcCU->getCUMvField( RefPicList( uiRefListIdx ) )->setAllMvd( cTmpMv, SIZE_2Nx2N, uiAbsPartIdx, uiDepth ); pcCU->getCUMvField( RefPicList( uiRefListIdx ) )->setAllMvField( cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ], SIZE_2Nx2N, uiAbsPartIdx, uiDepth ); #if H_3D_VSP if( pcCU->getVSPFlag( uiAbsPartIdx ) != 0 ) { if ( uhInterDirNeighbours[ uiMergeIndex ] & (1<getPartIndexAndSize( uiAbsPartIdx, dummy, width, height ); m_ppcCU[uiDepth]->setMvFieldPUForVSP( pcCU, uiAbsPartIdx, width, height, RefPicList( uiRefListIdx ), cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getRefIdx(), vspSize ); pcCU->setVSPFlag( uiAbsPartIdx, vspSize ); } } #endif #if ENC_DEC_TRACE && H_MV_ENC_DEC_TRAC if ( g_decTraceMvFromMerge ) { if ( uiRefListIdx == 0 ) { DTRACE_PU( "mvL0[0]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getHor()); DTRACE_PU( "mvL0[1]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getVer()); DTRACE_PU( "refIdxL0 ", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getRefIdx()); } else { DTRACE_PU( "mvL1[0]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getHor()); DTRACE_PU( "mvL1[1]", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getVer()); DTRACE_PU( "refIdxL1", cMvFieldNeighbours[ 2*uiMergeIndex + uiRefListIdx ].getRefIdx()); } } #endif } } #if H_3D_SPIVMP pcCU->setSPIVMPFlagSubParts(bSPIVMPFlag[uiMergeIndex], uiAbsPartIdx, 0, uiDepth ); if (bSPIVMPFlag[uiMergeIndex]) { UInt uiSPAddr; Int iWidth = pcCU->getWidth(uiAbsPartIdx); Int iHeight = pcCU->getHeight(uiAbsPartIdx); Int iNumSPInOneLine, iNumSP, iSPWidth, iSPHeight; pcCU->getSPPara(iWidth, iHeight, iNumSP, iNumSPInOneLine, iSPWidth, iSPHeight); for (Int iPartitionIdx = 0; iPartitionIdx < iNumSP; iPartitionIdx++) { pcCU->getSPAbsPartIdx(uiAbsPartIdx, iSPWidth, iSPHeight, iPartitionIdx, iNumSPInOneLine, uiSPAddr); pcCU->setInterDirSP(puhInterDirSP[iPartitionIdx], uiSPAddr, iSPWidth, iSPHeight); pcCU->getCUMvField( REF_PIC_LIST_0 )->setMvFieldSP(pcCU, uiSPAddr, pcMvFieldSP[2*iPartitionIdx], iSPWidth, iSPHeight); pcCU->getCUMvField( REF_PIC_LIST_1 )->setMvFieldSP(pcCU, uiSPAddr, pcMvFieldSP[2*iPartitionIdx + 1], iSPWidth, iSPHeight); } } delete[] pcMvFieldSP; delete[] puhInterDirSP; #endif xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, ruiIsLast ); #if H_3D_IV_MERGE xDecompressCU(pcCU, uiAbsPartIdx, uiDepth ); #endif return; } #if MTK_SINGLE_DEPTH_MODE_I0095 m_pcEntropyDecoder->decodeSingleDepthMode( pcCU, uiAbsPartIdx, uiDepth ); if(!pcCU->getSingleDepthFlag(uiAbsPartIdx)) { #endif m_pcEntropyDecoder->decodePredMode( pcCU, uiAbsPartIdx, uiDepth ); m_pcEntropyDecoder->decodePartSize( pcCU, uiAbsPartIdx, uiDepth ); #if H_3D_DIM_SDC m_pcEntropyDecoder->decodeSDCFlag( pcCU, uiAbsPartIdx, uiDepth ); #endif if (pcCU->isIntra( uiAbsPartIdx ) && pcCU->getPartitionSize( uiAbsPartIdx ) == SIZE_2Nx2N ) { m_pcEntropyDecoder->decodeIPCMInfo( pcCU, uiAbsPartIdx, uiDepth ); if(pcCU->getIPCMFlag(uiAbsPartIdx)) { xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, ruiIsLast ); #if H_3D_IV_MERGE xDecompressCU(pcCU, uiAbsPartIdx, uiDepth ); #endif return; } } UInt uiCurrWidth = pcCU->getWidth ( uiAbsPartIdx ); UInt uiCurrHeight = pcCU->getHeight( uiAbsPartIdx ); // prediction mode ( Intra : direction mode, Inter : Mv, reference idx ) m_pcEntropyDecoder->decodePredInfo( pcCU, uiAbsPartIdx, uiDepth, m_ppcCU[uiDepth]); // Coefficient decoding Bool bCodeDQP = getdQPFlag(); m_pcEntropyDecoder->decodeCoeff( pcCU, uiAbsPartIdx, uiDepth, uiCurrWidth, uiCurrHeight, bCodeDQP ); setdQPFlag( bCodeDQP ); #if MTK_SINGLE_DEPTH_MODE_I0095 } #endif xFinishDecodeCU( pcCU, uiAbsPartIdx, uiDepth, ruiIsLast ); #if H_3D_IV_MERGE xDecompressCU(pcCU, uiAbsPartIdx, uiDepth ); #endif } Void TDecCu::xFinishDecodeCU( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth, UInt& ruiIsLast) { if( pcCU->getSlice()->getPPS()->getUseDQP()) { pcCU->setQPSubParts( getdQPFlag()?pcCU->getRefQP(uiAbsPartIdx):pcCU->getCodedQP(), uiAbsPartIdx, uiDepth ); // set QP } ruiIsLast = xDecodeSliceEnd( pcCU, uiAbsPartIdx, uiDepth); } Void TDecCu::xDecompressCU( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { TComPic* pcPic = pcCU->getPic(); #if !H_3D_IV_MERGE Bool bBoundary = false; UInt uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiRPelX = uiLPelX + (g_uiMaxCUWidth>>uiDepth) - 1; UInt uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ]; UInt uiBPelY = uiTPelY + (g_uiMaxCUHeight>>uiDepth) - 1; UInt uiCurNumParts = pcPic->getNumPartInCU() >> (uiDepth<<1); TComSlice * pcSlice = pcCU->getPic()->getSlice(pcCU->getPic()->getCurrSliceIdx()); Bool bStartInCU = pcCU->getSCUAddr()+uiAbsPartIdx+uiCurNumParts>pcSlice->getSliceSegmentCurStartCUAddr()&&pcCU->getSCUAddr()+uiAbsPartIdxgetSliceSegmentCurStartCUAddr(); if(bStartInCU||( uiRPelX >= pcSlice->getSPS()->getPicWidthInLumaSamples() ) || ( uiBPelY >= pcSlice->getSPS()->getPicHeightInLumaSamples() ) ) { bBoundary = true; } if( ( ( uiDepth < pcCU->getDepth( uiAbsPartIdx ) ) && ( uiDepth < g_uiMaxCUDepth - g_uiAddCUDepth ) ) || bBoundary ) { UInt uiNextDepth = uiDepth + 1; UInt uiQNumParts = pcCU->getTotalNumPart() >> (uiNextDepth<<1); UInt uiIdx = uiAbsPartIdx; for ( UInt uiPartIdx = 0; uiPartIdx < 4; uiPartIdx++ ) { uiLPelX = pcCU->getCUPelX() + g_auiRasterToPelX[ g_auiZscanToRaster[uiIdx] ]; uiTPelY = pcCU->getCUPelY() + g_auiRasterToPelY[ g_auiZscanToRaster[uiIdx] ]; Bool binSlice = (pcCU->getSCUAddr()+uiIdx+uiQNumParts>pcSlice->getSliceSegmentCurStartCUAddr())&&(pcCU->getSCUAddr()+uiIdxgetSliceSegmentCurEndCUAddr()); if(binSlice&&( uiLPelX < pcSlice->getSPS()->getPicWidthInLumaSamples() ) && ( uiTPelY < pcSlice->getSPS()->getPicHeightInLumaSamples() ) ) { xDecompressCU(pcCU, uiIdx, uiNextDepth ); } uiIdx += uiQNumParts; } return; } #endif // Residual reconstruction m_ppcYuvResi[uiDepth]->clear(); m_ppcCU[uiDepth]->copySubCU( pcCU, uiAbsPartIdx, uiDepth ); #if H_MV_ENC_DEC_TRAC #if ENC_DEC_TRACE stopAtPos ( m_ppcCU[uiDepth]->getSlice()->getPOC(), m_ppcCU[uiDepth]->getSlice()->getLayerId(), m_ppcCU[uiDepth]->getCUPelX(), m_ppcCU[uiDepth]->getCUPelY(), m_ppcCU[uiDepth]->getWidth(0), m_ppcCU[uiDepth]->getHeight(0) ); #endif #endif switch( m_ppcCU[uiDepth]->getPredictionMode(0) ) { case MODE_INTER: #if H_3D_DBBP if( m_ppcCU[uiDepth]->getDBBPFlag(0) ) { xReconInterDBBP( m_ppcCU[uiDepth], uiAbsPartIdx, uiDepth ); } else { #endif #if H_3D_INTER_SDC if( m_ppcCU[uiDepth]->getSDCFlag( 0 ) ) { xReconInterSDC( m_ppcCU[uiDepth], uiAbsPartIdx, uiDepth ); } else { #endif xReconInter( m_ppcCU[uiDepth], uiDepth ); #if H_3D_INTER_SDC } #endif #if H_3D_DBBP } #endif break; case MODE_INTRA: #if MTK_SINGLE_DEPTH_MODE_I0095 if( m_ppcCU[uiDepth]->getSingleDepthFlag(0) ) xReconIntraSingleDepth( m_ppcCU[uiDepth], 0, uiDepth ); #if H_3D_DIM_SDC else if( m_ppcCU[uiDepth]->getSDCFlag(0) ) xReconIntraSDC( m_ppcCU[uiDepth], 0, uiDepth ); #endif else #else #if H_3D_DIM_SDC if( m_ppcCU[uiDepth]->getSDCFlag(0) ) xReconIntraSDC( m_ppcCU[uiDepth], 0, uiDepth ); else #endif #endif xReconIntraQT( m_ppcCU[uiDepth], uiDepth ); break; default: assert(0); break; } if ( m_ppcCU[uiDepth]->isLosslessCoded(0) && (m_ppcCU[uiDepth]->getIPCMFlag(0) == false)) { xFillPCMBuffer(m_ppcCU[uiDepth], uiDepth); } xCopyToPic( m_ppcCU[uiDepth], pcPic, uiAbsPartIdx, uiDepth ); } Void TDecCu::xReconInter( TComDataCU* pcCU, UInt uiDepth ) { // inter prediction m_pcPrediction->motionCompensation( pcCU, m_ppcYuvReco[uiDepth] ); // inter recon xDecodeInterTexture( pcCU, 0, uiDepth ); // clip for only non-zero cbp case if ( ( pcCU->getCbf( 0, TEXT_LUMA ) ) || ( pcCU->getCbf( 0, TEXT_CHROMA_U ) ) || ( pcCU->getCbf(0, TEXT_CHROMA_V ) ) ) { m_ppcYuvReco[uiDepth]->addClip( m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], 0, pcCU->getWidth( 0 ) ); } else { m_ppcYuvReco[uiDepth]->copyPartToPartYuv( m_ppcYuvReco[uiDepth],0, pcCU->getWidth( 0 ),pcCU->getHeight( 0 )); } } #if MTK_SINGLE_DEPTH_MODE_I0095 Void TDecCu::xReconIntraSingleDepth( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { UInt uiWidth = pcCU->getWidth ( 0 ); UInt uiHeight = pcCU->getHeight ( 0 ); TComYuv* pcRecoYuv = m_ppcYuvReco[uiDepth]; UInt uiStride = pcRecoYuv->getStride (); Pel* piReco = pcRecoYuv->getLumaAddr( uiAbsPartIdx ); AOF( uiWidth == uiHeight ); AOF( uiAbsPartIdx == 0 ); //construction of depth candidates Pel testDepth; Pel DepthNeighbours[5]; Int index =0; for( Int i = 0; (i < 5) && (indexgetNeighDepth (0, uiAbsPartIdx, &testDepth, i)) { continue; } DepthNeighbours[index]=testDepth; index++; for(Int j=0;jgetSingleDepthValue(uiAbsPartIdx)]; } piReco += uiStride; } // clear UV UInt uiStrideC = pcRecoYuv->getCStride(); Pel *pRecCb = pcRecoYuv->getCbAddr(); Pel *pRecCr = pcRecoYuv->getCrAddr(); for (Int y=0; ymotionCompensation( pcCU, m_ppcYuvReco[uiDepth] ); UInt uiWidth = pcCU->getWidth ( 0 ); UInt uiHeight = pcCU->getHeight( 0 ); Pel *pResi; UInt uiPelX, uiPelY; UInt uiResiStride = m_ppcYuvResi[uiDepth]->getStride(); pResi = m_ppcYuvResi[uiDepth]->getLumaAddr( 0 ); for( uiPelY = 0; uiPelY < uiHeight; uiPelY++ ) { for( uiPelX = 0; uiPelX < uiWidth; uiPelX++ ) { pResi[ uiPelX ] = pcCU->getSDCSegmentDCOffset( 0, 0 ); } pResi += uiResiStride; } m_ppcYuvReco[uiDepth]->addClip( m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], 0, pcCU->getWidth( 0 ) ); // clear UV UInt uiStrideC = m_ppcYuvReco[uiDepth]->getCStride(); Pel *pRecCb = m_ppcYuvReco[uiDepth]->getCbAddr(); Pel *pRecCr = m_ppcYuvReco[uiDepth]->getCrAddr(); for (Int y = 0; y < uiHeight/2; y++) { for (Int x = 0; x < uiWidth/2; x++) { pRecCb[x] = (Pel)( 1 << ( g_bitDepthC - 1 ) ); pRecCr[x] = (Pel)( 1 << ( g_bitDepthC - 1 ) ); } pRecCb += uiStrideC; pRecCr += uiStrideC; } } #endif #if H_3D_DBBP Void TDecCu::xReconInterDBBP( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { AOF(!pcCU->getSlice()->getIsDepth()); AOF(!pcCU->getSlice()->isIntra()); PartSize ePartSize = pcCU->getPartitionSize( 0 ); // get collocated depth block UInt uiDepthStride = 0; Pel* pDepthPels = pcCU->getVirtualDepthBlock(0, pcCU->getWidth(0), pcCU->getHeight(0), uiDepthStride); AOF( pDepthPels != NULL ); AOF( uiDepthStride != 0 ); // compute mask by segmenting depth block Bool pMask[MAX_CU_SIZE*MAX_CU_SIZE]; Bool bValidMask = m_pcPrediction->getSegmentMaskFromDepth(pDepthPels, uiDepthStride, pcCU->getWidth(0), pcCU->getHeight(0), pMask); AOF(bValidMask); DBBPTmpData* pDBBPTmpData = pcCU->getDBBPTmpData(); TComYuv* apSegPredYuv[2] = { m_ppcYuvReco[uiDepth], m_ppcYuvRecoDBBP[uiDepth] }; // first, extract the two sets of motion parameters UInt uiPUOffset = ( g_auiPUOffset[UInt( ePartSize )] << ( ( pcCU->getSlice()->getSPS()->getMaxCUDepth() - uiDepth ) << 1 ) ) >> 4; for( UInt uiSegment = 0; uiSegment < 2; uiSegment++ ) { UInt uiPartAddr = uiSegment*uiPUOffset; pDBBPTmpData->auhInterDir[uiSegment] = pcCU->getInterDir(uiPartAddr); for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { RefPicList eRefList = (RefPicList)uiRefListIdx; pcCU->getMvField(pcCU, uiPartAddr, eRefList, pDBBPTmpData->acMvField[uiSegment][eRefList]); } AOF( pcCU->getARPW(uiPartAddr) == 0 ); AOF( pcCU->getICFlag(uiPartAddr) == false ); AOF( pcCU->getSPIVMPFlag(uiPartAddr) == false ); AOF( pcCU->getVSPFlag(uiPartAddr) == 0 ); } // do motion compensation for each segment as 2Nx2N pcCU->setPartSizeSubParts( SIZE_2Nx2N, 0, uiDepth ); pcCU->setPredModeSubParts( MODE_INTER, 0, uiDepth ); for( UInt uiSegment = 0; uiSegment < 2; uiSegment++ ) { pcCU->setInterDirSubParts( pDBBPTmpData->auhInterDir[uiSegment], 0, 0, uiDepth ); for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { RefPicList eRefList = (RefPicList)uiRefListIdx; pcCU->getCUMvField( eRefList )->setAllMvField( pDBBPTmpData->acMvField[uiSegment][eRefList], SIZE_2Nx2N, 0, 0 ); } // inter prediction m_pcPrediction->motionCompensation( pcCU, apSegPredYuv[uiSegment] ); } // restore motion information in both segments again pcCU->setPartSizeSubParts( ePartSize, 0, uiDepth ); pcCU->setPredModeSubParts( MODE_INTER, 0, uiDepth ); for( UInt uiSegment = 0; uiSegment < 2; uiSegment++ ) { UInt uiPartAddr = uiSegment*uiPUOffset; pcCU->setDBBPFlagSubParts(true, uiPartAddr, uiSegment, uiDepth); pcCU->setInterDirSubParts(pDBBPTmpData->auhInterDir[uiSegment], uiPartAddr, uiSegment, uiDepth); // interprets depth relative to LCU level for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { RefPicList eRefList = (RefPicList)uiRefListIdx; pcCU->getCUMvField( eRefList )->setAllMvField( pDBBPTmpData->acMvField[uiSegment][eRefList], ePartSize, uiPartAddr, 0, uiSegment ); // interprets depth relative to rpcTempCU level } } // reconstruct final prediction signal by combining both segments #if SHARP_DBBP_SIMPLE_FLTER_I0109 m_pcPrediction->combineSegmentsWithMask(apSegPredYuv, m_ppcYuvReco[uiDepth], pMask, pcCU->getWidth(0), pcCU->getHeight(0), 0, ePartSize); #else m_pcPrediction->combineSegmentsWithMask(apSegPredYuv, m_ppcYuvReco[uiDepth], pMask, pcCU->getWidth(0), pcCU->getHeight(0)); #endif // inter recon xDecodeInterTexture( pcCU, 0, uiDepth ); // clip for only non-zero cbp case if ( ( pcCU->getCbf( 0, TEXT_LUMA ) ) || ( pcCU->getCbf( 0, TEXT_CHROMA_U ) ) || ( pcCU->getCbf(0, TEXT_CHROMA_V ) ) ) { m_ppcYuvReco[uiDepth]->addClip( m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth], 0, pcCU->getWidth( 0 ) ); } else { m_ppcYuvReco[uiDepth]->copyPartToPartYuv( m_ppcYuvReco[uiDepth],0, pcCU->getWidth( 0 ),pcCU->getHeight( 0 )); } } #endif Void TDecCu::xIntraRecLumaBlk( TComDataCU* pcCU, UInt uiTrDepth, UInt uiAbsPartIdx, TComYuv* pcRecoYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv ) { UInt uiWidth = pcCU ->getWidth ( 0 ) >> uiTrDepth; UInt uiHeight = pcCU ->getHeight ( 0 ) >> uiTrDepth; UInt uiStride = pcRecoYuv->getStride (); Pel* piReco = pcRecoYuv->getLumaAddr( uiAbsPartIdx ); Pel* piPred = pcPredYuv->getLumaAddr( uiAbsPartIdx ); Pel* piResi = pcResiYuv->getLumaAddr( uiAbsPartIdx ); UInt uiNumCoeffInc = ( pcCU->getSlice()->getSPS()->getMaxCUWidth() * pcCU->getSlice()->getSPS()->getMaxCUHeight() ) >> ( pcCU->getSlice()->getSPS()->getMaxCUDepth() << 1 ); TCoeff* pcCoeff = pcCU->getCoeffY() + ( uiNumCoeffInc * uiAbsPartIdx ); UInt uiLumaPredMode = pcCU->getLumaIntraDir ( uiAbsPartIdx ); UInt uiZOrder = pcCU->getZorderIdxInCU() + uiAbsPartIdx; Pel* piRecIPred = pcCU->getPic()->getPicYuvRec()->getLumaAddr( pcCU->getAddr(), uiZOrder ); UInt uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride (); Bool useTransformSkip = pcCU->getTransformSkip(uiAbsPartIdx, TEXT_LUMA); //===== init availability pattern ===== Bool bAboveAvail = false; Bool bLeftAvail = false; pcCU->getPattern()->initPattern ( pcCU, uiTrDepth, uiAbsPartIdx ); pcCU->getPattern()->initAdiPattern( pcCU, uiAbsPartIdx, uiTrDepth, m_pcPrediction->getPredicBuf (), m_pcPrediction->getPredicBufWidth (), m_pcPrediction->getPredicBufHeight (), bAboveAvail, bLeftAvail ); //===== get prediction signal ===== #if H_3D_DIM if( isDimMode( uiLumaPredMode ) ) { m_pcPrediction->predIntraLumaDepth( pcCU, uiAbsPartIdx, uiLumaPredMode, piPred, uiStride, uiWidth, uiHeight ); } else { #endif m_pcPrediction->predIntraLumaAng( pcCU->getPattern(), uiLumaPredMode, piPred, uiStride, uiWidth, uiHeight, bAboveAvail, bLeftAvail ); #if H_3D_DIM } #endif #if H_3D Bool useDltFlag = (isDimMode( uiLumaPredMode ) || uiLumaPredMode == HOR_IDX || uiLumaPredMode == VER_IDX || uiLumaPredMode == DC_IDX) && pcCU->getSlice()->getIsDepth() && pcCU->getSlice()->getPPS()->getDLT()->getUseDLTFlag(pcCU->getSlice()->getLayerIdInVps()); if ( pcCU->getCbf( uiAbsPartIdx, TEXT_LUMA, uiTrDepth ) || useDltFlag ) #else if ( pcCU->getCbf( uiAbsPartIdx, TEXT_LUMA, uiTrDepth ) ) #endif { //===== inverse transform ===== m_pcTrQuant->setQPforQuant ( pcCU->getQP(0), TEXT_LUMA, pcCU->getSlice()->getSPS()->getQpBDOffsetY(), 0 ); Int scalingListType = (pcCU->isIntra(uiAbsPartIdx) ? 0 : 3) + g_eTTable[(Int)TEXT_LUMA]; assert(scalingListType < SCALING_LIST_NUM); m_pcTrQuant->invtransformNxN( pcCU->getCUTransquantBypass(uiAbsPartIdx), TEXT_LUMA, pcCU->getLumaIntraDir( uiAbsPartIdx ), piResi, uiStride, pcCoeff, uiWidth, uiHeight, scalingListType, useTransformSkip ); //===== reconstruction ===== Pel* pPred = piPred; Pel* pResi = piResi; Pel* pReco = piReco; Pel* pRecIPred = piRecIPred; for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { pReco [ uiX ] = ClipY( pPred[ uiX ] + pResi[ uiX ] ); pRecIPred[ uiX ] = pReco[ uiX ]; } pPred += uiStride; pResi += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; } } else { //===== reconstruction ===== Pel* pPred = piPred; Pel* pReco = piReco; Pel* pRecIPred = piRecIPred; for ( Int y = 0; y < uiHeight; y++ ) { for ( Int x = 0; x < uiWidth; x++ ) { pReco [ x ] = pPred[ x ]; pRecIPred[ x ] = pReco[ x ]; } pPred += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; } } } Void TDecCu::xIntraRecChromaBlk( TComDataCU* pcCU, UInt uiTrDepth, UInt uiAbsPartIdx, TComYuv* pcRecoYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, UInt uiChromaId ) { UInt uiFullDepth = pcCU->getDepth( 0 ) + uiTrDepth; UInt uiLog2TrSize = g_aucConvertToBit[ pcCU->getSlice()->getSPS()->getMaxCUWidth() >> uiFullDepth ] + 2; if( uiLog2TrSize == 2 ) { assert( uiTrDepth > 0 ); uiTrDepth--; UInt uiQPDiv = pcCU->getPic()->getNumPartInCU() >> ( ( pcCU->getDepth( 0 ) + uiTrDepth ) << 1 ); Bool bFirstQ = ( ( uiAbsPartIdx % uiQPDiv ) == 0 ); if( !bFirstQ ) { return; } } TextType eText = ( uiChromaId > 0 ? TEXT_CHROMA_V : TEXT_CHROMA_U ); UInt uiWidth = pcCU ->getWidth ( 0 ) >> ( uiTrDepth + 1 ); UInt uiHeight = pcCU ->getHeight ( 0 ) >> ( uiTrDepth + 1 ); UInt uiStride = pcRecoYuv->getCStride (); Pel* piReco = ( uiChromaId > 0 ? pcRecoYuv->getCrAddr( uiAbsPartIdx ) : pcRecoYuv->getCbAddr( uiAbsPartIdx ) ); Pel* piPred = ( uiChromaId > 0 ? pcPredYuv->getCrAddr( uiAbsPartIdx ) : pcPredYuv->getCbAddr( uiAbsPartIdx ) ); Pel* piResi = ( uiChromaId > 0 ? pcResiYuv->getCrAddr( uiAbsPartIdx ) : pcResiYuv->getCbAddr( uiAbsPartIdx ) ); UInt uiNumCoeffInc = ( ( pcCU->getSlice()->getSPS()->getMaxCUWidth() * pcCU->getSlice()->getSPS()->getMaxCUHeight() ) >> ( pcCU->getSlice()->getSPS()->getMaxCUDepth() << 1 ) ) >> 2; TCoeff* pcCoeff = ( uiChromaId > 0 ? pcCU->getCoeffCr() : pcCU->getCoeffCb() ) + ( uiNumCoeffInc * uiAbsPartIdx ); UInt uiChromaPredMode = pcCU->getChromaIntraDir( 0 ); UInt uiZOrder = pcCU->getZorderIdxInCU() + uiAbsPartIdx; Pel* piRecIPred = ( uiChromaId > 0 ? pcCU->getPic()->getPicYuvRec()->getCrAddr( pcCU->getAddr(), uiZOrder ) : pcCU->getPic()->getPicYuvRec()->getCbAddr( pcCU->getAddr(), uiZOrder ) ); UInt uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getCStride(); Bool useTransformSkipChroma = pcCU->getTransformSkip(uiAbsPartIdx,eText); //===== init availability pattern ===== Bool bAboveAvail = false; Bool bLeftAvail = false; pcCU->getPattern()->initPattern ( pcCU, uiTrDepth, uiAbsPartIdx ); pcCU->getPattern()->initAdiPatternChroma( pcCU, uiAbsPartIdx, uiTrDepth, m_pcPrediction->getPredicBuf (), m_pcPrediction->getPredicBufWidth (), m_pcPrediction->getPredicBufHeight (), bAboveAvail, bLeftAvail ); Int* pPatChroma = ( uiChromaId > 0 ? pcCU->getPattern()->getAdiCrBuf( uiWidth, uiHeight, m_pcPrediction->getPredicBuf() ) : pcCU->getPattern()->getAdiCbBuf( uiWidth, uiHeight, m_pcPrediction->getPredicBuf() ) ); //===== get prediction signal ===== { if( uiChromaPredMode == DM_CHROMA_IDX ) { uiChromaPredMode = pcCU->getLumaIntraDir( 0 ); #if H_3D_DIM mapDepthModeToIntraDir( uiChromaPredMode ); #endif } m_pcPrediction->predIntraChromaAng( pPatChroma, uiChromaPredMode, piPred, uiStride, uiWidth, uiHeight, bAboveAvail, bLeftAvail ); } if ( pcCU->getCbf( uiAbsPartIdx, eText, uiTrDepth ) ) { //===== inverse transform ===== Int curChromaQpOffset; if(eText == TEXT_CHROMA_U) { curChromaQpOffset = pcCU->getSlice()->getPPS()->getChromaCbQpOffset() + pcCU->getSlice()->getSliceQpDeltaCb(); } else { curChromaQpOffset = pcCU->getSlice()->getPPS()->getChromaCrQpOffset() + pcCU->getSlice()->getSliceQpDeltaCr(); } m_pcTrQuant->setQPforQuant ( pcCU->getQP(0), eText, pcCU->getSlice()->getSPS()->getQpBDOffsetC(), curChromaQpOffset ); Int scalingListType = (pcCU->isIntra(uiAbsPartIdx) ? 0 : 3) + g_eTTable[(Int)eText]; assert(scalingListType < SCALING_LIST_NUM); m_pcTrQuant->invtransformNxN( pcCU->getCUTransquantBypass(uiAbsPartIdx), eText, REG_DCT, piResi, uiStride, pcCoeff, uiWidth, uiHeight, scalingListType, useTransformSkipChroma ); //===== reconstruction ===== Pel* pPred = piPred; Pel* pResi = piResi; Pel* pReco = piReco; Pel* pRecIPred = piRecIPred; for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { pReco [ uiX ] = ClipC( pPred[ uiX ] + pResi[ uiX ] ); pRecIPred[ uiX ] = pReco[ uiX ]; } pPred += uiStride; pResi += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; } } else { //===== reconstruction ===== Pel* pPred = piPred; Pel* pReco = piReco; Pel* pRecIPred = piRecIPred; for ( Int y = 0; y < uiHeight; y++ ) { for ( Int x = 0; x < uiWidth; x++ ) { pReco [ x ] = pPred[ x ]; pRecIPred[ x ] = pReco[ x ]; } pPred += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; } } } Void TDecCu::xReconIntraQT( TComDataCU* pcCU, UInt uiDepth ) { UInt uiInitTrDepth = ( pcCU->getPartitionSize(0) == SIZE_2Nx2N ? 0 : 1 ); UInt uiNumPart = pcCU->getNumPartitions(); UInt uiNumQParts = pcCU->getTotalNumPart() >> 2; if (pcCU->getIPCMFlag(0)) { xReconPCM( pcCU, uiDepth ); return; } for( UInt uiPU = 0; uiPU < uiNumPart; uiPU++ ) { xIntraLumaRecQT( pcCU, uiInitTrDepth, uiPU * uiNumQParts, m_ppcYuvReco[uiDepth], m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth] ); } for( UInt uiPU = 0; uiPU < uiNumPart; uiPU++ ) { xIntraChromaRecQT( pcCU, uiInitTrDepth, uiPU * uiNumQParts, m_ppcYuvReco[uiDepth], m_ppcYuvReco[uiDepth], m_ppcYuvResi[uiDepth] ); } } #if H_3D_DIM_SDC Void TDecCu::xReconIntraSDC( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { UInt uiWidth = pcCU->getWidth ( 0 ); UInt uiHeight = pcCU->getHeight ( 0 ); TComWedgelet* dmm4SegmentationOrg = new TComWedgelet( uiWidth, uiHeight ); UInt numParts = 1; UInt sdcDepth = 0; TComYuv* pcRecoYuv = m_ppcYuvReco[uiDepth]; TComYuv* pcPredYuv = m_ppcYuvReco[uiDepth]; TComYuv* pcResiYuv = m_ppcYuvResi[uiDepth]; UInt uiStride = 0; Pel* piReco; Pel* piPred; Pel* piResi; UInt uiZOrder; Pel* piRecIPred; UInt uiRecIPredStride; UInt uiLumaPredMode = 0; if ((uiWidth >> pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize()) > 1) { numParts = uiWidth * uiWidth >> (2 * pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize()); sdcDepth = g_aucConvertToBit[uiWidth] + 2 - pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize(); uiWidth = uiHeight = (1 << pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize()); } for ( Int i = 0; i < numParts; i++ ) { uiStride = pcRecoYuv->getStride (); piReco = pcRecoYuv->getLumaAddr( uiAbsPartIdx ); piPred = pcPredYuv->getLumaAddr( uiAbsPartIdx ); piResi = pcResiYuv->getLumaAddr( uiAbsPartIdx ); uiZOrder = pcCU->getZorderIdxInCU() + uiAbsPartIdx; piRecIPred = pcCU->getPic()->getPicYuvRec()->getLumaAddr( pcCU->getAddr(), uiZOrder ); uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride (); uiLumaPredMode = pcCU->getLumaIntraDir ( uiAbsPartIdx ); AOF( uiWidth == uiHeight ); //===== init availability pattern ===== Bool bAboveAvail = false; Bool bLeftAvail = false; pcCU->getPattern()->initPattern ( pcCU, sdcDepth, uiAbsPartIdx ); pcCU->getPattern()->initAdiPattern( pcCU, uiAbsPartIdx, sdcDepth, m_pcPrediction->getPredicBuf(), m_pcPrediction->getPredicBufWidth(), m_pcPrediction->getPredicBufHeight(), bAboveAvail, bLeftAvail ); TComWedgelet* dmm4Segmentation = new TComWedgelet( uiWidth, uiHeight ); //===== get prediction signal ===== if( isDimMode( uiLumaPredMode ) ) { m_pcPrediction->predIntraLumaDepth( pcCU, uiAbsPartIdx, uiLumaPredMode, piPred, uiStride, uiWidth, uiHeight, false, dmm4Segmentation ); Bool* dmm4PatternSplit = dmm4Segmentation->getPattern(); Bool* dmm4PatternOrg = dmm4SegmentationOrg->getPattern(); for( UInt k = 0; k < (uiWidth*uiHeight); k++ ) { dmm4PatternOrg[k+(uiAbsPartIdx<<4)] = dmm4PatternSplit[k]; } } else { m_pcPrediction->predIntraLumaAng( pcCU->getPattern(), uiLumaPredMode, piPred, uiStride, uiWidth, uiHeight, bAboveAvail, bLeftAvail ); } if ( numParts > 1 ) { for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { piReco [ uiX ] = ClipY( piPred[ uiX ] ); piRecIPred [ uiX ] = piReco[ uiX ]; } piPred += uiStride; piReco += uiStride; piRecIPred += uiRecIPredStride; } } uiAbsPartIdx += ( (uiWidth * uiWidth) >> 4 ); dmm4Segmentation->destroy(); delete dmm4Segmentation; } uiAbsPartIdx = 0; if ( numParts > 1 ) { uiWidth = pcCU->getWidth( 0 ); uiHeight = pcCU->getHeight( 0 ); } piReco = pcRecoYuv->getLumaAddr( uiAbsPartIdx ); piPred = pcPredYuv->getLumaAddr( uiAbsPartIdx ); piResi = pcResiYuv->getLumaAddr( uiAbsPartIdx ); uiZOrder = pcCU->getZorderIdxInCU() + uiAbsPartIdx; piRecIPred = pcCU->getPic()->getPicYuvRec()->getLumaAddr( pcCU->getAddr(), uiZOrder ); uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride (); // number of segments depends on prediction mode UInt uiNumSegments = 1; Bool* pbMask = NULL; UInt uiMaskStride = 0; if( getDimType( uiLumaPredMode ) == DMM1_IDX ) { Int uiTabIdx = pcCU->getDmmWedgeTabIdx(DMM1_IDX, uiAbsPartIdx); #if SHARP_DMM1_I0110 WedgeList* pacWedgeList = pcCU->isDMM1UpscaleMode(uiWidth) ? &g_dmmWedgeLists[(g_aucConvertToBit[pcCU->getDMM1BasePatternWidth(uiWidth)])] : &g_dmmWedgeLists[(g_aucConvertToBit[uiWidth])]; #else WedgeList* pacWedgeList = &g_dmmWedgeLists[(g_aucConvertToBit[uiWidth])]; #endif TComWedgelet* pcWedgelet = &(pacWedgeList->at( uiTabIdx )); uiNumSegments = 2; #if SHARP_DMM1_I0110 pbMask = pcCU->isDMM1UpscaleMode( uiWidth ) ? pcWedgelet->getScaledPattern(uiWidth) : pcWedgelet->getPattern(); uiMaskStride = pcCU->isDMM1UpscaleMode( uiWidth ) ? uiWidth : pcWedgelet->getStride(); #else pbMask = pcWedgelet->getPattern(); uiMaskStride = pcWedgelet->getStride(); #endif } if( getDimType( uiLumaPredMode ) == DMM4_IDX ) { uiNumSegments = 2; pbMask = dmm4SegmentationOrg->getPattern(); uiMaskStride = dmm4SegmentationOrg->getStride(); } // get DC prediction for each segment Pel apDCPredValues[2]; if ( getDimType( uiLumaPredMode ) == DMM1_IDX || getDimType( uiLumaPredMode ) == DMM4_IDX ) { apDCPredValues[0] = pcCU->getDmmPredictor( 0 ); apDCPredValues[1] = pcCU->getDmmPredictor( 1 ); } else { m_pcPrediction->analyzeSegmentsSDC(piPred, uiStride, uiWidth, apDCPredValues, uiNumSegments, pbMask, uiMaskStride, uiLumaPredMode); } // reconstruct residual based on mask + DC residuals Pel apDCResiValues[2]; for( UInt uiSegment = 0; uiSegment < uiNumSegments; uiSegment++ ) { #if H_3D_DIM_DLT Pel pPredIdx = pcCU->getSlice()->getPPS()->getDLT()->depthValue2idx( pcCU->getSlice()->getLayerIdInVps(), apDCPredValues[uiSegment] ); Pel pResiIdx = pcCU->getSDCSegmentDCOffset(uiSegment, uiAbsPartIdx); Pel pRecoValue = pcCU->getSlice()->getPPS()->getDLT()->idx2DepthValue( pcCU->getSlice()->getLayerIdInVps(), pPredIdx + pResiIdx ); apDCResiValues[uiSegment] = pRecoValue - apDCPredValues[uiSegment]; #else apDCResiValues[uiSegment] = pcCU->getSDCSegmentDCOffset(uiSegment, uiAbsPartIdx); #endif } //===== reconstruction ===== Bool*pMask = pbMask; Pel* pPred = piPred; Pel* pResi = piResi; Pel* pReco = piReco; Pel* pRecIPred = piRecIPred; for( UInt uiY = 0; uiY < uiHeight; uiY++ ) { for( UInt uiX = 0; uiX < uiWidth; uiX++ ) { UChar ucSegment = pMask?(UChar)pMask[uiX]:0; assert( ucSegment < uiNumSegments ); Pel pResiDC = apDCResiValues[ucSegment]; pReco [ uiX ] = ClipY( pPred[ uiX ] + pResiDC ); pRecIPred[ uiX ] = pReco[ uiX ]; } pPred += uiStride; pResi += uiStride; pReco += uiStride; pRecIPred += uiRecIPredStride; pMask += uiMaskStride; } // clear UV UInt uiStrideC = pcPredYuv->getCStride(); Pel *pRecCb = pcPredYuv->getCbAddr(); Pel *pRecCr = pcPredYuv->getCrAddr(); for (Int y=0; ydestroy(); delete dmm4SegmentationOrg; } #endif /** Function for deriving recontructed PU/CU Luma sample with QTree structure * \param pcCU pointer of current CU * \param uiTrDepth current tranform split depth * \param uiAbsPartIdx part index * \param pcRecoYuv pointer to reconstructed sample arrays * \param pcPredYuv pointer to prediction sample arrays * \param pcResiYuv pointer to residue sample arrays * \ This function dervies recontructed PU/CU Luma sample with recursive QTree structure */ Void TDecCu::xIntraLumaRecQT( TComDataCU* pcCU, UInt uiTrDepth, UInt uiAbsPartIdx, TComYuv* pcRecoYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv ) { UInt uiFullDepth = pcCU->getDepth(0) + uiTrDepth; UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx ); if( uiTrMode == uiTrDepth ) { xIntraRecLumaBlk ( pcCU, uiTrDepth, uiAbsPartIdx, pcRecoYuv, pcPredYuv, pcResiYuv ); } else { UInt uiNumQPart = pcCU->getPic()->getNumPartInCU() >> ( ( uiFullDepth + 1 ) << 1 ); for( UInt uiPart = 0; uiPart < 4; uiPart++ ) { xIntraLumaRecQT( pcCU, uiTrDepth + 1, uiAbsPartIdx + uiPart * uiNumQPart, pcRecoYuv, pcPredYuv, pcResiYuv ); } } } /** Function for deriving recontructed PU/CU chroma samples with QTree structure * \param pcCU pointer of current CU * \param uiTrDepth current tranform split depth * \param uiAbsPartIdx part index * \param pcRecoYuv pointer to reconstructed sample arrays * \param pcPredYuv pointer to prediction sample arrays * \param pcResiYuv pointer to residue sample arrays * \ This function dervies recontructed PU/CU chroma samples with QTree recursive structure */ Void TDecCu::xIntraChromaRecQT( TComDataCU* pcCU, UInt uiTrDepth, UInt uiAbsPartIdx, TComYuv* pcRecoYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv ) { UInt uiFullDepth = pcCU->getDepth(0) + uiTrDepth; UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx ); if( uiTrMode == uiTrDepth ) { xIntraRecChromaBlk( pcCU, uiTrDepth, uiAbsPartIdx, pcRecoYuv, pcPredYuv, pcResiYuv, 0 ); xIntraRecChromaBlk( pcCU, uiTrDepth, uiAbsPartIdx, pcRecoYuv, pcPredYuv, pcResiYuv, 1 ); } else { UInt uiNumQPart = pcCU->getPic()->getNumPartInCU() >> ( ( uiFullDepth + 1 ) << 1 ); for( UInt uiPart = 0; uiPart < 4; uiPart++ ) { xIntraChromaRecQT( pcCU, uiTrDepth + 1, uiAbsPartIdx + uiPart * uiNumQPart, pcRecoYuv, pcPredYuv, pcResiYuv ); } } } Void TDecCu::xCopyToPic( TComDataCU* pcCU, TComPic* pcPic, UInt uiZorderIdx, UInt uiDepth ) { UInt uiCUAddr = pcCU->getAddr(); m_ppcYuvReco[uiDepth]->copyToPicYuv ( pcPic->getPicYuvRec (), uiCUAddr, uiZorderIdx ); return; } Void TDecCu::xDecodeInterTexture ( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth ) { UInt uiWidth = pcCU->getWidth ( uiAbsPartIdx ); UInt uiHeight = pcCU->getHeight( uiAbsPartIdx ); TCoeff* piCoeff; Pel* pResi; UInt trMode = pcCU->getTransformIdx( uiAbsPartIdx ); // Y piCoeff = pcCU->getCoeffY(); pResi = m_ppcYuvResi[uiDepth]->getLumaAddr(); m_pcTrQuant->setQPforQuant( pcCU->getQP( uiAbsPartIdx ), TEXT_LUMA, pcCU->getSlice()->getSPS()->getQpBDOffsetY(), 0 ); m_pcTrQuant->invRecurTransformNxN ( pcCU, 0, TEXT_LUMA, pResi, 0, m_ppcYuvResi[uiDepth]->getStride(), uiWidth, uiHeight, trMode, 0, piCoeff ); // Cb and Cr Int curChromaQpOffset = pcCU->getSlice()->getPPS()->getChromaCbQpOffset() + pcCU->getSlice()->getSliceQpDeltaCb(); m_pcTrQuant->setQPforQuant( pcCU->getQP( uiAbsPartIdx ), TEXT_CHROMA, pcCU->getSlice()->getSPS()->getQpBDOffsetC(), curChromaQpOffset ); uiWidth >>= 1; uiHeight >>= 1; piCoeff = pcCU->getCoeffCb(); pResi = m_ppcYuvResi[uiDepth]->getCbAddr(); m_pcTrQuant->invRecurTransformNxN ( pcCU, 0, TEXT_CHROMA_U, pResi, 0, m_ppcYuvResi[uiDepth]->getCStride(), uiWidth, uiHeight, trMode, 0, piCoeff ); curChromaQpOffset = pcCU->getSlice()->getPPS()->getChromaCrQpOffset() + pcCU->getSlice()->getSliceQpDeltaCr(); m_pcTrQuant->setQPforQuant( pcCU->getQP( uiAbsPartIdx ), TEXT_CHROMA, pcCU->getSlice()->getSPS()->getQpBDOffsetC(), curChromaQpOffset ); piCoeff = pcCU->getCoeffCr(); pResi = m_ppcYuvResi[uiDepth]->getCrAddr(); m_pcTrQuant->invRecurTransformNxN ( pcCU, 0, TEXT_CHROMA_V, pResi, 0, m_ppcYuvResi[uiDepth]->getCStride(), uiWidth, uiHeight, trMode, 0, piCoeff ); } /** Function for deriving reconstructed luma/chroma samples of a PCM mode CU. * \param pcCU pointer to current CU * \param uiPartIdx part index * \param piPCM pointer to PCM code arrays * \param piReco pointer to reconstructed sample arrays * \param uiStride stride of reconstructed sample arrays * \param uiWidth CU width * \param uiHeight CU height * \param ttText texture component type * \returns Void */ Void TDecCu::xDecodePCMTexture( TComDataCU* pcCU, UInt uiPartIdx, Pel *piPCM, Pel* piReco, UInt uiStride, UInt uiWidth, UInt uiHeight, TextType ttText) { UInt uiX, uiY; Pel* piPicReco; UInt uiPicStride; UInt uiPcmLeftShiftBit; if( ttText == TEXT_LUMA ) { uiPicStride = pcCU->getPic()->getPicYuvRec()->getStride(); piPicReco = pcCU->getPic()->getPicYuvRec()->getLumaAddr(pcCU->getAddr(), pcCU->getZorderIdxInCU()+uiPartIdx); uiPcmLeftShiftBit = g_bitDepthY - pcCU->getSlice()->getSPS()->getPCMBitDepthLuma(); } else { uiPicStride = pcCU->getPic()->getPicYuvRec()->getCStride(); if( ttText == TEXT_CHROMA_U ) { piPicReco = pcCU->getPic()->getPicYuvRec()->getCbAddr(pcCU->getAddr(), pcCU->getZorderIdxInCU()+uiPartIdx); } else { piPicReco = pcCU->getPic()->getPicYuvRec()->getCrAddr(pcCU->getAddr(), pcCU->getZorderIdxInCU()+uiPartIdx); } uiPcmLeftShiftBit = g_bitDepthC - pcCU->getSlice()->getSPS()->getPCMBitDepthChroma(); } for( uiY = 0; uiY < uiHeight; uiY++ ) { for( uiX = 0; uiX < uiWidth; uiX++ ) { piReco[uiX] = (piPCM[uiX] << uiPcmLeftShiftBit); piPicReco[uiX] = piReco[uiX]; } piPCM += uiWidth; piReco += uiStride; piPicReco += uiPicStride; } } /** Function for reconstructing a PCM mode CU. * \param pcCU pointer to current CU * \param uiDepth CU Depth * \returns Void */ Void TDecCu::xReconPCM( TComDataCU* pcCU, UInt uiDepth ) { // Luma UInt uiWidth = (g_uiMaxCUWidth >> uiDepth); UInt uiHeight = (g_uiMaxCUHeight >> uiDepth); Pel* piPcmY = pcCU->getPCMSampleY(); Pel* piRecoY = m_ppcYuvReco[uiDepth]->getLumaAddr(0, uiWidth); UInt uiStride = m_ppcYuvResi[uiDepth]->getStride(); xDecodePCMTexture( pcCU, 0, piPcmY, piRecoY, uiStride, uiWidth, uiHeight, TEXT_LUMA); // Cb and Cr UInt uiCWidth = (uiWidth>>1); UInt uiCHeight = (uiHeight>>1); Pel* piPcmCb = pcCU->getPCMSampleCb(); Pel* piPcmCr = pcCU->getPCMSampleCr(); Pel* pRecoCb = m_ppcYuvReco[uiDepth]->getCbAddr(); Pel* pRecoCr = m_ppcYuvReco[uiDepth]->getCrAddr(); UInt uiCStride = m_ppcYuvReco[uiDepth]->getCStride(); xDecodePCMTexture( pcCU, 0, piPcmCb, pRecoCb, uiCStride, uiCWidth, uiCHeight, TEXT_CHROMA_U); xDecodePCMTexture( pcCU, 0, piPcmCr, pRecoCr, uiCStride, uiCWidth, uiCHeight, TEXT_CHROMA_V); } /** Function for filling the PCM buffer of a CU using its reconstructed sample array * \param pcCU pointer to current CU * \param uiDepth CU Depth * \returns Void */ Void TDecCu::xFillPCMBuffer(TComDataCU* pCU, UInt depth) { // Luma UInt width = (g_uiMaxCUWidth >> depth); UInt height = (g_uiMaxCUHeight >> depth); Pel* pPcmY = pCU->getPCMSampleY(); Pel* pRecoY = m_ppcYuvReco[depth]->getLumaAddr(0, width); UInt stride = m_ppcYuvReco[depth]->getStride(); for(Int y = 0; y < height; y++ ) { for(Int x = 0; x < width; x++ ) { pPcmY[x] = pRecoY[x]; } pPcmY += width; pRecoY += stride; } // Cb and Cr UInt widthC = (width>>1); UInt heightC = (height>>1); Pel* pPcmCb = pCU->getPCMSampleCb(); Pel* pPcmCr = pCU->getPCMSampleCr(); Pel* pRecoCb = m_ppcYuvReco[depth]->getCbAddr(); Pel* pRecoCr = m_ppcYuvReco[depth]->getCrAddr(); UInt strideC = m_ppcYuvReco[depth]->getCStride(); for(Int y = 0; y < heightC; y++ ) { for(Int x = 0; x < widthC; x++ ) { pPcmCb[x] = pRecoCb[x]; pPcmCr[x] = pRecoCr[x]; } pPcmCr += widthC; pPcmCb += widthC; pRecoCb += strideC; pRecoCr += strideC; } } //! \}