/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TComSlice.cpp \brief slice header and SPS class */ #include "CommonDef.h" #include "TComSlice.h" #include "TComPic.h" #include "TLibEncoder/TEncSbac.h" #include "TLibDecoder/TDecSbac.h" //! \ingroup TLibCommon //! \{ TComSlice::TComSlice() : m_iPPSId ( -1 ) , m_iPOC ( 0 ) , m_iLastIDR ( 0 ) , m_eNalUnitType ( NAL_UNIT_CODED_SLICE_IDR_W_RADL ) , m_eSliceType ( I_SLICE ) , m_iSliceQp ( 0 ) , m_dependentSliceSegmentFlag ( false ) #if ADAPTIVE_QP_SELECTION , m_iSliceQpBase ( 0 ) #endif , m_deblockingFilterDisable ( false ) , m_deblockingFilterOverrideFlag ( false ) , m_deblockingFilterBetaOffsetDiv2 ( 0 ) , m_deblockingFilterTcOffsetDiv2 ( 0 ) , m_bCheckLDC ( false ) , m_iSliceQpDelta ( 0 ) , m_iSliceQpDeltaCb ( 0 ) , m_iSliceQpDeltaCr ( 0 ) , m_iDepth ( 0 ) , m_bRefenced ( false ) , m_pcSPS ( NULL ) , m_pcPPS ( NULL ) , m_pcPic ( NULL ) , m_colFromL0Flag ( 1 ) , m_colRefIdx ( 0 ) , m_uiTLayer ( 0 ) , m_bTLayerSwitchingFlag ( false ) , m_sliceMode ( 0 ) , m_sliceArgument ( 0 ) , m_sliceCurStartCUAddr ( 0 ) , m_sliceCurEndCUAddr ( 0 ) , m_sliceIdx ( 0 ) , m_sliceSegmentMode ( 0 ) , m_sliceSegmentArgument ( 0 ) , m_sliceSegmentCurStartCUAddr ( 0 ) , m_sliceSegmentCurEndCUAddr ( 0 ) , m_nextSlice ( false ) , m_nextSliceSegment ( false ) , m_sliceBits ( 0 ) , m_sliceSegmentBits ( 0 ) , m_bFinalized ( false ) , m_uiTileOffstForMultES ( 0 ) , m_puiSubstreamSizes ( NULL ) , m_cabacInitFlag ( false ) , m_bLMvdL1Zero ( false ) , m_numEntryPointOffsets ( 0 ) , m_temporalLayerNonReferenceFlag ( false ) , m_enableTMVPFlag ( true ) #if H_MV , m_refPicSetInterLayer0 ( NULL ) , m_refPicSetInterLayer1 ( NULL ) , m_layerId (0) , m_viewId (0) , m_viewIndex (0) #if H_3D , m_isDepth (false) #endif #if !H_MV_HLS7_GEN , m_pocResetFlag (false) #endif #if H_MV , m_crossLayerBlaFlag (false) #endif , m_discardableFlag (false) , m_interLayerPredEnabledFlag (false) , m_numInterLayerRefPicsMinus1 (0) #if H_MV , m_sliceSegmentHeaderExtensionLength (0) , m_pocResetIdc (0) , m_pocResetPeriodId (0) , m_fullPocResetFlag (false) , m_pocLsbVal (0) , m_pocMsbValPresentFlag (false) , m_pocMsbVal (0) , m_pocMsbValRequiredFlag ( false ) #endif #if H_3D_IC , m_bApplyIC ( false ) , m_icSkipParseFlag ( false ) #endif #if H_3D , m_depthToDisparityB ( NULL ) , m_depthToDisparityF ( NULL ) #endif #endif { m_aiNumRefIdx[0] = m_aiNumRefIdx[1] = 0; initEqualRef(); for (Int component = 0; component < 3; component++) { m_lambdas[component] = 0.0; } for ( Int idx = 0; idx < MAX_NUM_REF; idx++ ) { m_list1IdxToList0Idx[idx] = -1; } for(Int iNumCount = 0; iNumCount < MAX_NUM_REF; iNumCount++) { m_apcRefPicList [0][iNumCount] = NULL; m_apcRefPicList [1][iNumCount] = NULL; m_aiRefPOCList [0][iNumCount] = 0; m_aiRefPOCList [1][iNumCount] = 0; #if H_MV m_aiRefLayerIdList[0][iNumCount] = 0; m_aiRefLayerIdList[1][iNumCount] = 0; #endif } resetWpScaling(); initWpAcDcParam(); m_saoEnabledFlag = false; m_saoEnabledFlagChroma = false; #if H_MV for (Int i = 0; i < MAX_NUM_LAYERS; i++ ) { m_interLayerPredLayerIdc[ i ] = -1; } #endif } TComSlice::~TComSlice() { delete[] m_puiSubstreamSizes; m_puiSubstreamSizes = NULL; #if H_3D for( UInt i = 0; i < getViewIndex(); i++ ) { if ( m_depthToDisparityB && m_depthToDisparityB[ i ] ) { delete[] m_depthToDisparityB [ i ]; } if ( m_depthToDisparityF && m_depthToDisparityF[ i ] ) { delete[] m_depthToDisparityF [ i ]; } } if ( m_depthToDisparityF ) { delete[] m_depthToDisparityF; } m_depthToDisparityF = NULL; if ( m_depthToDisparityB ) delete[] m_depthToDisparityB; m_depthToDisparityB = NULL; #endif } Void TComSlice::initSlice() { m_aiNumRefIdx[0] = 0; m_aiNumRefIdx[1] = 0; m_colFromL0Flag = 1; m_colRefIdx = 0; initEqualRef(); m_bCheckLDC = false; m_iSliceQpDeltaCb = 0; m_iSliceQpDeltaCr = 0; #if H_3D_IV_MERGE m_maxNumMergeCand = MRG_MAX_NUM_CANDS_MEM; #else m_maxNumMergeCand = MRG_MAX_NUM_CANDS; #endif m_bFinalized=false; m_tileByteLocation.clear(); m_cabacInitFlag = false; m_numEntryPointOffsets = 0; m_enableTMVPFlag = true; #if H_3D_TMVP m_aiAlterRefIdx[0] = -1; m_aiAlterRefIdx[1] = -1; #endif } Bool TComSlice::getRapPicFlag() { return getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP || getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA; } /** - allocate table to contain substream sizes to be written to the slice header. . \param uiNumSubstreams Number of substreams -- the allocation will be this value - 1. */ Void TComSlice::allocSubstreamSizes(UInt uiNumSubstreams) { delete[] m_puiSubstreamSizes; m_puiSubstreamSizes = new UInt[uiNumSubstreams > 0 ? uiNumSubstreams-1 : 0]; } Void TComSlice::sortPicList (TComList& rcListPic) { TComPic* pcPicExtract; TComPic* pcPicInsert; TComList::iterator iterPicExtract; TComList::iterator iterPicExtract_1; TComList::iterator iterPicInsert; for (Int i = 1; i < (Int)(rcListPic.size()); i++) { iterPicExtract = rcListPic.begin(); for (Int j = 0; j < i; j++) iterPicExtract++; pcPicExtract = *(iterPicExtract); pcPicExtract->setCurrSliceIdx(0); iterPicInsert = rcListPic.begin(); while (iterPicInsert != iterPicExtract) { pcPicInsert = *(iterPicInsert); pcPicInsert->setCurrSliceIdx(0); if (pcPicInsert->getPOC() >= pcPicExtract->getPOC()) { break; } iterPicInsert++; } iterPicExtract_1 = iterPicExtract; iterPicExtract_1++; // swap iterPicExtract and iterPicInsert, iterPicExtract = curr. / iterPicInsert = insertion position rcListPic.insert (iterPicInsert, iterPicExtract, iterPicExtract_1); rcListPic.erase (iterPicExtract); } } TComPic* TComSlice::xGetRefPic (TComList& rcListPic, Int poc) { TComList::iterator iterPic = rcListPic.begin(); TComPic* pcPic = *(iterPic); while ( iterPic != rcListPic.end() ) { if(pcPic->getPOC() == poc) { break; } iterPic++; pcPic = *(iterPic); } return pcPic; } TComPic* TComSlice::xGetLongTermRefPic(TComList& rcListPic, Int poc, Bool pocHasMsb) { TComList::iterator iterPic = rcListPic.begin(); TComPic* pcPic = *(iterPic); TComPic* pcStPic = pcPic; Int pocCycle = 1 << getSPS()->getBitsForPOC(); if (!pocHasMsb) { poc = poc & (pocCycle - 1); } while ( iterPic != rcListPic.end() ) { pcPic = *(iterPic); if (pcPic && pcPic->getPOC()!=this->getPOC() && pcPic->getSlice( 0 )->isReferenced()) { Int picPoc = pcPic->getPOC(); if (!pocHasMsb) { picPoc = picPoc & (pocCycle - 1); } if (poc == picPoc) { if(pcPic->getIsLongTerm()) { return pcPic; } else { pcStPic = pcPic; } break; } } iterPic++; } return pcStPic; } Void TComSlice::setRefPOCList () { for (Int iDir = 0; iDir < 2; iDir++) { for (Int iNumRefIdx = 0; iNumRefIdx < m_aiNumRefIdx[iDir]; iNumRefIdx++) { m_aiRefPOCList[iDir][iNumRefIdx] = m_apcRefPicList[iDir][iNumRefIdx]->getPOC(); #if H_MV m_aiRefLayerIdList[iDir][iNumRefIdx] = m_apcRefPicList[iDir][iNumRefIdx]->getLayerId(); #endif } } } Void TComSlice::setList1IdxToList0Idx() { Int idxL0, idxL1; for ( idxL1 = 0; idxL1 < getNumRefIdx( REF_PIC_LIST_1 ); idxL1++ ) { m_list1IdxToList0Idx[idxL1] = -1; for ( idxL0 = 0; idxL0 < getNumRefIdx( REF_PIC_LIST_0 ); idxL0++ ) { if ( m_apcRefPicList[REF_PIC_LIST_0][idxL0]->getPOC() == m_apcRefPicList[REF_PIC_LIST_1][idxL1]->getPOC() ) { m_list1IdxToList0Idx[idxL1] = idxL0; break; } } } } #if !H_MV Void TComSlice::setRefPicList( TComList& rcListPic, Bool checkNumPocTotalCurr ) { if (!checkNumPocTotalCurr) { if (m_eSliceType == I_SLICE) { ::memset( m_apcRefPicList, 0, sizeof (m_apcRefPicList)); ::memset( m_aiNumRefIdx, 0, sizeof ( m_aiNumRefIdx )); return; } m_aiNumRefIdx[0] = getNumRefIdx(REF_PIC_LIST_0); m_aiNumRefIdx[1] = getNumRefIdx(REF_PIC_LIST_1); } TComPic* pcRefPic= NULL; TComPic* RefPicSetStCurr0[16]; TComPic* RefPicSetStCurr1[16]; TComPic* RefPicSetLtCurr[16]; UInt NumPocStCurr0 = 0; UInt NumPocStCurr1 = 0; UInt NumPocLtCurr = 0; Int i; for(i=0; i < m_pcRPS->getNumberOfNegativePictures(); i++) { if(m_pcRPS->getUsed(i)) { pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pcRPS->getDeltaPOC(i)); pcRefPic->setIsLongTerm(0); pcRefPic->getPicYuvRec()->extendPicBorder(); RefPicSetStCurr0[NumPocStCurr0] = pcRefPic; NumPocStCurr0++; pcRefPic->setCheckLTMSBPresent(false); } } for(; i < m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures(); i++) { if(m_pcRPS->getUsed(i)) { pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pcRPS->getDeltaPOC(i)); pcRefPic->setIsLongTerm(0); pcRefPic->getPicYuvRec()->extendPicBorder(); RefPicSetStCurr1[NumPocStCurr1] = pcRefPic; NumPocStCurr1++; pcRefPic->setCheckLTMSBPresent(false); } } for(i = m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures()+m_pcRPS->getNumberOfLongtermPictures()-1; i > m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures()-1 ; i--) { if(m_pcRPS->getUsed(i)) { pcRefPic = xGetLongTermRefPic(rcListPic, m_pcRPS->getPOC(i), m_pcRPS->getCheckLTMSBPresent(i)); pcRefPic->setIsLongTerm(1); pcRefPic->getPicYuvRec()->extendPicBorder(); RefPicSetLtCurr[NumPocLtCurr] = pcRefPic; NumPocLtCurr++; } if(pcRefPic==NULL) { pcRefPic = xGetLongTermRefPic(rcListPic, m_pcRPS->getPOC(i), m_pcRPS->getCheckLTMSBPresent(i)); } pcRefPic->setCheckLTMSBPresent(m_pcRPS->getCheckLTMSBPresent(i)); } // ref_pic_list_init TComPic* rpsCurrList0[MAX_NUM_REF+1]; TComPic* rpsCurrList1[MAX_NUM_REF+1]; Int numPocTotalCurr = NumPocStCurr0 + NumPocStCurr1 + NumPocLtCurr; if (checkNumPocTotalCurr) { // The variable NumPocTotalCurr is derived as specified in subclause 7.4.7.2. It is a requirement of bitstream conformance that the following applies to the value of NumPocTotalCurr: // ?If the current picture is a BLA or CRA picture, the value of NumPocTotalCurr shall be equal to 0. // ?Otherwise, when the current picture contains a P or B slice, the value of NumPocTotalCurr shall not be equal to 0. if (getRapPicFlag()) { assert(numPocTotalCurr == 0); } if (m_eSliceType == I_SLICE) { ::memset( m_apcRefPicList, 0, sizeof (m_apcRefPicList)); ::memset( m_aiNumRefIdx, 0, sizeof ( m_aiNumRefIdx )); return; } assert(numPocTotalCurr > 0); m_aiNumRefIdx[0] = getNumRefIdx(REF_PIC_LIST_0); m_aiNumRefIdx[1] = getNumRefIdx(REF_PIC_LIST_1); } Int cIdx = 0; for ( i=0; i= 0 && cIdx < numPocTotalCurr); m_apcRefPicList[0][rIdx] = rpsCurrList0[ cIdx ]; m_bIsUsedAsLongTerm[0][rIdx] = ( cIdx >= NumPocStCurr0 + NumPocStCurr1 ); } if ( m_eSliceType != B_SLICE ) { m_aiNumRefIdx[1] = 0; ::memset( m_apcRefPicList[1], 0, sizeof(m_apcRefPicList[1])); } else { for (Int rIdx = 0; rIdx < m_aiNumRefIdx[1]; rIdx ++) { cIdx = m_RefPicListModification.getRefPicListModificationFlagL1() ? m_RefPicListModification.getRefPicSetIdxL1(rIdx) : rIdx % numPocTotalCurr; assert(cIdx >= 0 && cIdx < numPocTotalCurr); m_apcRefPicList[1][rIdx] = rpsCurrList1[ cIdx ]; m_bIsUsedAsLongTerm[1][rIdx] = ( cIdx >= NumPocStCurr0 + NumPocStCurr1 ); } } } #else Void TComSlice::getTempRefPicLists( TComList& rcListPic, std::vector& refPicSetInterLayer0, std::vector& refPicSetInterLayer1, std::vector rpsCurrList[2], std::vector usedAsLongTerm[2], Int& numPocTotalCurr, Bool checkNumPocTotalCurr ) { if (!checkNumPocTotalCurr) { if (m_eSliceType == I_SLICE) { return; } } TComPic* pcRefPic= NULL; TComPic* RefPicSetStCurr0[16]; TComPic* RefPicSetStCurr1[16]; TComPic* RefPicSetLtCurr[16]; UInt NumPocStCurr0 = 0; UInt NumPocStCurr1 = 0; UInt NumPocLtCurr = 0; Int i; for(i=0; i < m_pcRPS->getNumberOfNegativePictures(); i++) { if(m_pcRPS->getUsed(i)) { pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pcRPS->getDeltaPOC(i)); pcRefPic->setIsLongTerm(0); pcRefPic->getPicYuvRec()->extendPicBorder(); RefPicSetStCurr0[NumPocStCurr0] = pcRefPic; NumPocStCurr0++; pcRefPic->setCheckLTMSBPresent(false); } } for(; i < m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures(); i++) { if(m_pcRPS->getUsed(i)) { pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pcRPS->getDeltaPOC(i)); pcRefPic->setIsLongTerm(0); pcRefPic->getPicYuvRec()->extendPicBorder(); RefPicSetStCurr1[NumPocStCurr1] = pcRefPic; NumPocStCurr1++; pcRefPic->setCheckLTMSBPresent(false); } } for(i = m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures()+m_pcRPS->getNumberOfLongtermPictures()-1; i > m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures()-1 ; i--) { if(m_pcRPS->getUsed(i)) { pcRefPic = xGetLongTermRefPic(rcListPic, m_pcRPS->getPOC(i), m_pcRPS->getCheckLTMSBPresent(i)); pcRefPic->setIsLongTerm(1); pcRefPic->getPicYuvRec()->extendPicBorder(); RefPicSetLtCurr[NumPocLtCurr] = pcRefPic; NumPocLtCurr++; } if(pcRefPic==NULL) { pcRefPic = xGetLongTermRefPic(rcListPic, m_pcRPS->getPOC(i), m_pcRPS->getCheckLTMSBPresent(i)); } pcRefPic->setCheckLTMSBPresent(m_pcRPS->getCheckLTMSBPresent(i)); } Int numPocInterCurr = NumPocStCurr0 + NumPocStCurr1 + NumPocLtCurr; numPocTotalCurr = numPocInterCurr + getNumActiveRefLayerPics( ); assert( numPocTotalCurr == getNumRpsCurrTempList() ); if (checkNumPocTotalCurr) { // The variable NumPocTotalCurr is derived as specified in subclause 7.4.7.2. It is a requirement of bitstream conformance that the following applies to the value of NumPocTotalCurr: // - If nuh_layer_id is equal to 0 and the current picture is a BLA picture or a CRA picture, the value of NumPocTotalCurr shall be equal to 0. // - Otherwise, when the current picture contains a P or B slice, the value of NumPocTotalCurr shall not be equal to 0. if ( getRapPicFlag() && m_layerId == 0 ) { assert(numPocTotalCurr == 0); } if (m_eSliceType == I_SLICE) { ::memset( m_apcRefPicList, 0, sizeof (m_apcRefPicList)); ::memset( m_aiNumRefIdx, 0, sizeof ( m_aiNumRefIdx )); return; } assert(numPocTotalCurr > 0); m_aiNumRefIdx[0] = getNumRefIdx(REF_PIC_LIST_0); m_aiNumRefIdx[1] = getNumRefIdx(REF_PIC_LIST_1); } std::vector* refPicSetInterLayer[2] = { &refPicSetInterLayer0, &refPicSetInterLayer1}; Int numPocInterLayer[2] = { getNumActiveRefLayerPics0( ), getNumActiveRefLayerPics1( ) }; TComPic** refPicSetStCurr [2] = { RefPicSetStCurr0, RefPicSetStCurr1 }; Int numPocStCurr[2] = { NumPocStCurr0, NumPocStCurr1 }; for (Int li = 0; li < ((m_eSliceType==B_SLICE) ? 2 : 1); li++) { rpsCurrList [li].resize(MAX_NUM_REF+1,NULL ); usedAsLongTerm[li].resize(MAX_NUM_REF+1,false); Int cIdx = 0; for ( i=0; i < numPocStCurr[li]; i++, cIdx++) { rpsCurrList[li][cIdx] = refPicSetStCurr[li][i]; usedAsLongTerm [li][cIdx] = false; } for ( i=0; i < numPocInterLayer[li]; i++, cIdx++) { rpsCurrList[li][cIdx] = (*refPicSetInterLayer[li])[i]; usedAsLongTerm [li][cIdx] = true; } for ( i=0; i < numPocStCurr[1-li]; i++, cIdx++) { rpsCurrList[li][cIdx] = refPicSetStCurr[1-li][i]; usedAsLongTerm [li][cIdx] = false; } for ( i=0; i rpsCurrList[2], std::vector usedAsLongTerm[2], Int numPocTotalCurr, Bool checkNumPocTotalCurr ) { if (!checkNumPocTotalCurr) { if (m_eSliceType == I_SLICE) { ::memset( m_apcRefPicList, 0, sizeof (m_apcRefPicList)); ::memset( m_aiNumRefIdx, 0, sizeof ( m_aiNumRefIdx )); return; } } ::memset(m_bIsUsedAsLongTerm, 0, sizeof(m_bIsUsedAsLongTerm)); for (Int li = 0; li < 2; li++) { if ( m_eSliceType == P_SLICE && li == 1 ) { m_aiNumRefIdx[1] = 0; ::memset( m_apcRefPicList[1], 0, sizeof(m_apcRefPicList[1])); } else { for (Int rIdx = 0; rIdx <= (m_aiNumRefIdx[ li ] - 1 ); rIdx ++) { Bool listModified = m_RefPicListModification.getRefPicListModificationFlagL( li ); Int orgIdx = listModified ? m_RefPicListModification.getRefPicSetIdxL(li, rIdx) : (rIdx % numPocTotalCurr); assert( rpsCurrList[li][ orgIdx ] != NULL ); m_apcRefPicList [li][rIdx] = rpsCurrList [li][ orgIdx ]; m_bIsUsedAsLongTerm[li][rIdx] = usedAsLongTerm [li][ orgIdx ] ; } } } } #endif Int TComSlice::getNumRpsCurrTempList() { Int numRpsCurrTempList = 0; if (m_eSliceType == I_SLICE) { return 0; } for(UInt i=0; i < m_pcRPS->getNumberOfNegativePictures()+ m_pcRPS->getNumberOfPositivePictures() + m_pcRPS->getNumberOfLongtermPictures(); i++) { if(m_pcRPS->getUsed(i)) { numRpsCurrTempList++; } } #if H_MV numRpsCurrTempList = numRpsCurrTempList + getNumActiveRefLayerPics(); #endif return numRpsCurrTempList; } Void TComSlice::initEqualRef() { for (Int iDir = 0; iDir < 2; iDir++) { for (Int iRefIdx1 = 0; iRefIdx1 < MAX_NUM_REF; iRefIdx1++) { for (Int iRefIdx2 = iRefIdx1; iRefIdx2 < MAX_NUM_REF; iRefIdx2++) { m_abEqualRef[iDir][iRefIdx1][iRefIdx2] = m_abEqualRef[iDir][iRefIdx2][iRefIdx1] = (iRefIdx1 == iRefIdx2? true : false); } } } } #if H_3D #if H_3D_TMVP Void TComSlice::generateAlterRefforTMVP() { for ( UInt uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++ ) { if ( this->getNumRefIdx( RefPicList( uiRefListIdx ) ) == 0) { continue; } Bool bZeroIdxLtFlag = this->getRefPic(RefPicList(uiRefListIdx), 0)->getIsLongTerm(); for(Int i = 1; i < this->getNumRefIdx(RefPicList(uiRefListIdx)); i++ ) { if ( ( bZeroIdxLtFlag && !this->getRefPic(RefPicList(uiRefListIdx), i)->getIsLongTerm() ) || (!bZeroIdxLtFlag && this->getRefPic(RefPicList(uiRefListIdx), i)->getIsLongTerm() ) ) { this->setAlterRefIdx(RefPicList(uiRefListIdx),i); break; } } } } #endif Void TComSlice::setCamparaSlice( Int** aaiScale, Int** aaiOffset ) { if( m_pcVPS->hasCamParInSliceHeader( m_viewIndex ) ) { for( UInt uiBaseViewIndex = 0; uiBaseViewIndex < m_viewIndex; uiBaseViewIndex++ ) { m_aaiCodedScale [ 0 ][ uiBaseViewIndex ] = aaiScale [ uiBaseViewIndex ][ m_viewIndex ]; m_aaiCodedScale [ 1 ][ uiBaseViewIndex ] = aaiScale [ m_viewIndex ][ uiBaseViewIndex ]; m_aaiCodedOffset[ 0 ][ uiBaseViewIndex ] = aaiOffset[ uiBaseViewIndex ][ m_viewIndex ]; m_aaiCodedOffset[ 1 ][ uiBaseViewIndex ] = aaiOffset[ m_viewIndex ][ uiBaseViewIndex ]; } } } #endif Void TComSlice::checkColRefIdx(UInt curSliceIdx, TComPic* pic) { Int i; TComSlice* curSlice = pic->getSlice(curSliceIdx); Int currColRefPOC = curSlice->getRefPOC( RefPicList(1-curSlice->getColFromL0Flag()), curSlice->getColRefIdx()); TComSlice* preSlice; Int preColRefPOC; for(i=curSliceIdx-1; i>=0; i--) { preSlice = pic->getSlice(i); if(preSlice->getSliceType() != I_SLICE) { preColRefPOC = preSlice->getRefPOC( RefPicList(1-preSlice->getColFromL0Flag()), preSlice->getColRefIdx()); if(currColRefPOC != preColRefPOC) { printf("Collocated_ref_idx shall always be the same for all slices of a coded picture!\n"); exit(EXIT_FAILURE); } else { break; } } } } Void TComSlice::checkCRA(TComReferencePictureSet *pReferencePictureSet, Int& pocCRA, NalUnitType& associatedIRAPType, TComList& rcListPic) { for(Int i = 0; i < pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures(); i++) { if(pocCRA < MAX_UINT && getPOC() > pocCRA) { assert(getPOC()+pReferencePictureSet->getDeltaPOC(i) >= pocCRA); } } for(Int i = pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures(); i < pReferencePictureSet->getNumberOfPictures(); i++) { if(pocCRA < MAX_UINT && getPOC() > pocCRA) { if (!pReferencePictureSet->getCheckLTMSBPresent(i)) { assert(xGetLongTermRefPic(rcListPic, pReferencePictureSet->getPOC(i), false)->getPOC() >= pocCRA); } else { assert(pReferencePictureSet->getPOC(i) >= pocCRA); } } } if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ) // IDR picture found { pocCRA = getPOC(); associatedIRAPType = getNalUnitType(); } else if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // CRA picture found { pocCRA = getPOC(); associatedIRAPType = getNalUnitType(); } else if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ) // BLA picture found { pocCRA = getPOC(); associatedIRAPType = getNalUnitType(); } } /** Function for marking the reference pictures when an IDR/CRA/CRANT/BLA/BLANT is encountered. * \param pocCRA POC of the CRA/CRANT/BLA/BLANT picture * \param bRefreshPending flag indicating if a deferred decoding refresh is pending * \param rcListPic reference to the reference picture list * This function marks the reference pictures as "unused for reference" in the following conditions. * If the nal_unit_type is IDR/BLA/BLANT, all pictures in the reference picture list * are marked as "unused for reference" * If the nal_unit_type is BLA/BLANT, set the pocCRA to the temporal reference of the current picture. * Otherwise * If the bRefreshPending flag is true (a deferred decoding refresh is pending) and the current * temporal reference is greater than the temporal reference of the latest CRA/CRANT/BLA/BLANT picture (pocCRA), * mark all reference pictures except the latest CRA/CRANT/BLA/BLANT picture as "unused for reference" and set * the bRefreshPending flag to false. * If the nal_unit_type is CRA/CRANT, set the bRefreshPending flag to true and pocCRA to the temporal * reference of the current picture. * Note that the current picture is already placed in the reference list and its marking is not changed. * If the current picture has a nal_ref_idc that is not 0, it will remain marked as "used for reference". */ Void TComSlice::decodingRefreshMarking(Int& pocCRA, Bool& bRefreshPending, TComList& rcListPic) { TComPic* rpcPic; #if !FIX1172 setAssociatedIRAPPOC(pocCRA); #endif Int pocCurr = getPOC(); if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP || getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ) // IDR or BLA picture { // mark all pictures as not used for reference TComList::iterator iterPic = rcListPic.begin(); while (iterPic != rcListPic.end()) { rpcPic = *(iterPic); rpcPic->setCurrSliceIdx(0); if (rpcPic->getPOC() != pocCurr) rpcPic->getSlice(0)->setReferenced(false); iterPic++; } if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ) { pocCRA = pocCurr; } } else // CRA or No DR { if (bRefreshPending==true && pocCurr > pocCRA) // CRA reference marking pending { TComList::iterator iterPic = rcListPic.begin(); while (iterPic != rcListPic.end()) { rpcPic = *(iterPic); if (rpcPic->getPOC() != pocCurr && rpcPic->getPOC() != pocCRA) { rpcPic->getSlice(0)->setReferenced(false); } iterPic++; } bRefreshPending = false; } if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // CRA picture found { bRefreshPending = true; pocCRA = pocCurr; } } } Void TComSlice::copySliceInfo(TComSlice *pSrc) { assert( pSrc != NULL ); Int i, j, k; m_iPOC = pSrc->m_iPOC; m_eNalUnitType = pSrc->m_eNalUnitType; #if H_MV m_layerId = pSrc->m_layerId; // GT: Copying of several other values might be be missing here, or is above not necessary? #endif m_eSliceType = pSrc->m_eSliceType; m_iSliceQp = pSrc->m_iSliceQp; #if ADAPTIVE_QP_SELECTION m_iSliceQpBase = pSrc->m_iSliceQpBase; #endif m_deblockingFilterDisable = pSrc->m_deblockingFilterDisable; m_deblockingFilterOverrideFlag = pSrc->m_deblockingFilterOverrideFlag; m_deblockingFilterBetaOffsetDiv2 = pSrc->m_deblockingFilterBetaOffsetDiv2; m_deblockingFilterTcOffsetDiv2 = pSrc->m_deblockingFilterTcOffsetDiv2; for (i = 0; i < 2; i++) { m_aiNumRefIdx[i] = pSrc->m_aiNumRefIdx[i]; } for (i = 0; i < MAX_NUM_REF; i++) { m_list1IdxToList0Idx[i] = pSrc->m_list1IdxToList0Idx[i]; } m_bCheckLDC = pSrc->m_bCheckLDC; m_iSliceQpDelta = pSrc->m_iSliceQpDelta; m_iSliceQpDeltaCb = pSrc->m_iSliceQpDeltaCb; m_iSliceQpDeltaCr = pSrc->m_iSliceQpDeltaCr; for (i = 0; i < 2; i++) { for (j = 0; j < MAX_NUM_REF; j++) { m_apcRefPicList[i][j] = pSrc->m_apcRefPicList[i][j]; m_aiRefPOCList[i][j] = pSrc->m_aiRefPOCList[i][j]; #if H_MV m_aiRefLayerIdList[i][j] = pSrc->m_aiRefLayerIdList[i][j]; #endif } } for (i = 0; i < 2; i++) { for (j = 0; j < MAX_NUM_REF + 1; j++) { m_bIsUsedAsLongTerm[i][j] = pSrc->m_bIsUsedAsLongTerm[i][j]; } } m_iDepth = pSrc->m_iDepth; // referenced slice m_bRefenced = pSrc->m_bRefenced; // access channel #if H_MV m_pcVPS = pSrc->m_pcVPS; #endif m_pcSPS = pSrc->m_pcSPS; m_pcPPS = pSrc->m_pcPPS; m_pcRPS = pSrc->m_pcRPS; m_iLastIDR = pSrc->m_iLastIDR; m_pcPic = pSrc->m_pcPic; m_colFromL0Flag = pSrc->m_colFromL0Flag; m_colRefIdx = pSrc->m_colRefIdx; setLambdas(pSrc->getLambdas()); for (i = 0; i < 2; i++) { for (j = 0; j < MAX_NUM_REF; j++) { for (k =0; k < MAX_NUM_REF; k++) { m_abEqualRef[i][j][k] = pSrc->m_abEqualRef[i][j][k]; } } } m_uiTLayer = pSrc->m_uiTLayer; m_bTLayerSwitchingFlag = pSrc->m_bTLayerSwitchingFlag; m_sliceMode = pSrc->m_sliceMode; m_sliceArgument = pSrc->m_sliceArgument; m_sliceCurStartCUAddr = pSrc->m_sliceCurStartCUAddr; m_sliceCurEndCUAddr = pSrc->m_sliceCurEndCUAddr; m_sliceIdx = pSrc->m_sliceIdx; m_sliceSegmentMode = pSrc->m_sliceSegmentMode; m_sliceSegmentArgument = pSrc->m_sliceSegmentArgument; m_sliceSegmentCurStartCUAddr = pSrc->m_sliceSegmentCurStartCUAddr; m_sliceSegmentCurEndCUAddr = pSrc->m_sliceSegmentCurEndCUAddr; m_nextSlice = pSrc->m_nextSlice; m_nextSliceSegment = pSrc->m_nextSliceSegment; for ( Int e=0 ; e<2 ; e++ ) { for ( Int n=0 ; nm_weightPredTable[e][n], sizeof(wpScalingParam)*3 ); } } m_saoEnabledFlag = pSrc->m_saoEnabledFlag; m_saoEnabledFlagChroma = pSrc->m_saoEnabledFlagChroma; m_cabacInitFlag = pSrc->m_cabacInitFlag; m_numEntryPointOffsets = pSrc->m_numEntryPointOffsets; m_bLMvdL1Zero = pSrc->m_bLMvdL1Zero; m_LFCrossSliceBoundaryFlag = pSrc->m_LFCrossSliceBoundaryFlag; m_enableTMVPFlag = pSrc->m_enableTMVPFlag; m_maxNumMergeCand = pSrc->m_maxNumMergeCand; #if H_MV // Additional slice header syntax elements #if !H_MV_HLS7_GEN m_pocResetFlag = pSrc->m_pocResetFlag; #endif m_discardableFlag = pSrc->m_discardableFlag; m_interLayerPredEnabledFlag = pSrc->m_interLayerPredEnabledFlag; m_numInterLayerRefPicsMinus1 = pSrc->m_numInterLayerRefPicsMinus1; for (Int layer = 0; layer < MAX_NUM_LAYERS; layer++ ) { m_interLayerPredLayerIdc[ layer ] = pSrc->m_interLayerPredLayerIdc[ layer ]; } #endif #if H_3D_IC m_bApplyIC = pSrc->m_bApplyIC; m_icSkipParseFlag = pSrc->m_icSkipParseFlag; #endif } Int TComSlice::m_prevTid0POC = 0; /** Function for setting the slice's temporal layer ID and corresponding temporal_layer_switching_point_flag. * \param uiTLayer Temporal layer ID of the current slice * The decoder calls this function to set temporal_layer_switching_point_flag for each temporal layer based on * the SPS's temporal_id_nesting_flag and the parsed PPS. Then, current slice's temporal layer ID and * temporal_layer_switching_point_flag is set accordingly. */ Void TComSlice::setTLayerInfo( UInt uiTLayer ) { m_uiTLayer = uiTLayer; } /** Function for checking if this is a switching-point */ Bool TComSlice::isTemporalLayerSwitchingPoint( TComList& rcListPic ) { TComPic* rpcPic; // loop through all pictures in the reference picture buffer TComList::iterator iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { rpcPic = *(iterPic++); if(rpcPic->getSlice(0)->isReferenced() && rpcPic->getPOC() != getPOC()) { if(rpcPic->getTLayer() >= getTLayer()) { return false; } } } return true; } /** Function for checking if this is a STSA candidate */ Bool TComSlice::isStepwiseTemporalLayerSwitchingPointCandidate( TComList& rcListPic ) { TComPic* rpcPic; TComList::iterator iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { rpcPic = *(iterPic++); if(rpcPic->getSlice(0)->isReferenced() && (rpcPic->getUsedByCurr()==true) && rpcPic->getPOC() != getPOC()) { if(rpcPic->getTLayer() >= getTLayer()) { return false; } } } return true; } Void TComSlice::checkLeadingPictureRestrictions(TComList& rcListPic) { TComPic* rpcPic; Int nalUnitType = this->getNalUnitType(); // When a picture is a leading picture, it shall be a RADL or RASL picture. if(this->getAssociatedIRAPPOC() > this->getPOC()) { // Do not check IRAP pictures since they may get a POC lower than their associated IRAP if(nalUnitType < NAL_UNIT_CODED_SLICE_BLA_W_LP || nalUnitType > NAL_UNIT_RESERVED_IRAP_VCL23) { assert(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R || nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R); } } // When a picture is a trailing picture, it shall not be a RADL or RASL picture. if(this->getAssociatedIRAPPOC() < this->getPOC()) { assert(nalUnitType != NAL_UNIT_CODED_SLICE_RASL_N && nalUnitType != NAL_UNIT_CODED_SLICE_RASL_R && nalUnitType != NAL_UNIT_CODED_SLICE_RADL_N && nalUnitType != NAL_UNIT_CODED_SLICE_RADL_R); } // No RASL pictures shall be present in the bitstream that are associated // with a BLA picture having nal_unit_type equal to BLA_W_RADL or BLA_N_LP. if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R) { assert(this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_BLA_W_RADL && this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_BLA_N_LP); } // No RASL pictures shall be present in the bitstream that are associated with // an IDR picture. if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R) { assert(this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_IDR_N_LP && this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_IDR_W_RADL); } // No RADL pictures shall be present in the bitstream that are associated with // a BLA picture having nal_unit_type equal to BLA_N_LP or that are associated // with an IDR picture having nal_unit_type equal to IDR_N_LP. if(nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R) { assert(this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_BLA_N_LP && this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_IDR_N_LP); } // loop through all pictures in the reference picture buffer TComList::iterator iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { rpcPic = *(iterPic++); #if BUGFIX_INTRAPERIOD if(!rpcPic->getReconMark()) { continue; } #endif if (rpcPic->getPOC() == this->getPOC()) { continue; } // Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture // in decoding order shall precede the IRAP picture in output order. // (Note that any picture following in output order would be present in the DPB) if(rpcPic->getSlice(0)->getPicOutputFlag() == 1) { if(nalUnitType == NAL_UNIT_CODED_SLICE_BLA_N_LP || nalUnitType == NAL_UNIT_CODED_SLICE_BLA_W_LP || nalUnitType == NAL_UNIT_CODED_SLICE_BLA_W_RADL || nalUnitType == NAL_UNIT_CODED_SLICE_CRA || nalUnitType == NAL_UNIT_CODED_SLICE_IDR_N_LP || nalUnitType == NAL_UNIT_CODED_SLICE_IDR_W_RADL) { assert(rpcPic->getPOC() < this->getPOC()); } } // Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture // in decoding order shall precede any RADL picture associated with the IRAP // picture in output order. if(rpcPic->getSlice(0)->getPicOutputFlag() == 1) { if((nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R)) { // rpcPic precedes the IRAP in decoding order if(this->getAssociatedIRAPPOC() > rpcPic->getSlice(0)->getAssociatedIRAPPOC()) { // rpcPic must not be the IRAP picture if(this->getAssociatedIRAPPOC() != rpcPic->getPOC()) { assert(rpcPic->getPOC() < this->getPOC()); } } } } // When a picture is a leading picture, it shall precede, in decoding order, // all trailing pictures that are associated with the same IRAP picture. if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R || nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R) { if(rpcPic->getSlice(0)->getAssociatedIRAPPOC() == this->getAssociatedIRAPPOC()) { // rpcPic is a picture that preceded the leading in decoding order since it exist in the DPB // rpcPic would violate the constraint if it was a trailing picture assert(rpcPic->getPOC() <= this->getAssociatedIRAPPOC()); } } // Any RASL picture associated with a CRA or BLA picture shall precede any // RADL picture associated with the CRA or BLA picture in output order if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R) { if((this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_N_LP || this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_W_LP || this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL || this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_CRA) && this->getAssociatedIRAPPOC() == rpcPic->getSlice(0)->getAssociatedIRAPPOC()) { if(rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_N || rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_R) { assert(rpcPic->getPOC() > this->getPOC()); } } } // Any RASL picture associated with a CRA picture shall follow, in output // order, any IRAP picture that precedes the CRA picture in decoding order. if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N || nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R) { if(this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_CRA) { if(rpcPic->getSlice(0)->getPOC() < this->getAssociatedIRAPPOC() && (rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP || rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP || rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL || rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP || rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL || rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA)) { assert(this->getPOC() > rpcPic->getSlice(0)->getPOC()); } } } } } /** Function for applying picture marking based on the Reference Picture Set in pReferencePictureSet. */ Void TComSlice::applyReferencePictureSet( TComList& rcListPic, TComReferencePictureSet *pReferencePictureSet) { TComPic* rpcPic; Int i, isReference; checkLeadingPictureRestrictions(rcListPic); // loop through all pictures in the reference picture buffer TComList::iterator iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { rpcPic = *(iterPic++); if(!rpcPic->getSlice( 0 )->isReferenced()) { continue; } isReference = 0; // loop through all pictures in the Reference Picture Set // to see if the picture should be kept as reference picture for(i=0;igetNumberOfPositivePictures()+pReferencePictureSet->getNumberOfNegativePictures();i++) { if(!rpcPic->getIsLongTerm() && rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i)) { isReference = 1; rpcPic->setUsedByCurr(pReferencePictureSet->getUsed(i)); rpcPic->setIsLongTerm(0); } } for(;igetNumberOfPictures();i++) { if(pReferencePictureSet->getCheckLTMSBPresent(i)==true) { if(rpcPic->getIsLongTerm() && (rpcPic->getPicSym()->getSlice(0)->getPOC()) == pReferencePictureSet->getPOC(i)) { isReference = 1; rpcPic->setUsedByCurr(pReferencePictureSet->getUsed(i)); } } else { Int pocCycle = 1<getPicSym()->getSlice(0)->getSPS()->getBitsForPOC(); Int curPoc = rpcPic->getPicSym()->getSlice(0)->getPOC() & (pocCycle-1); Int refPoc = pReferencePictureSet->getPOC(i) & (pocCycle-1); if(rpcPic->getIsLongTerm() && curPoc == refPoc) { isReference = 1; rpcPic->setUsedByCurr(pReferencePictureSet->getUsed(i)); } } } #if H_MV if( isReference ) // Current picture is in the temporal RPS { assert( rpcPic->getSlice(0)->getDiscardableFlag() == 0 ); // Temporal RPS shall not contain picture with discardable_flag equal to 1 } #endif // mark the picture as "unused for reference" if it is not in // the Reference Picture Set if(rpcPic->getPicSym()->getSlice(0)->getPOC() != this->getPOC() && isReference == 0) { rpcPic->getSlice( 0 )->setReferenced( false ); rpcPic->setUsedByCurr(0); rpcPic->setIsLongTerm(0); } //check that pictures of higher temporal layers are not used assert(rpcPic->getSlice( 0 )->isReferenced()==0||rpcPic->getUsedByCurr()==0||rpcPic->getTLayer()<=this->getTLayer()); //check that pictures of higher or equal temporal layer are not in the RPS if the current picture is a TSA picture if(this->getNalUnitType() == NAL_UNIT_CODED_SLICE_TSA_R || this->getNalUnitType() == NAL_UNIT_CODED_SLICE_TSA_N) { assert(rpcPic->getSlice( 0 )->isReferenced()==0||rpcPic->getTLayer()getTLayer()); } //check that pictures marked as temporal layer non-reference pictures are not used for reference if(rpcPic->getPicSym()->getSlice(0)->getPOC() != this->getPOC() && rpcPic->getTLayer()==this->getTLayer()) { assert(rpcPic->getSlice( 0 )->isReferenced()==0||rpcPic->getUsedByCurr()==0||rpcPic->getSlice( 0 )->getTemporalLayerNonReferenceFlag()==false); } } } /** Function for applying picture marking based on the Reference Picture Set in pReferencePictureSet. */ Int TComSlice::checkThatAllRefPicsAreAvailable( TComList& rcListPic, TComReferencePictureSet *pReferencePictureSet, Bool printErrors, Int pocRandomAccess) { TComPic* rpcPic; Int i, isAvailable; Int atLeastOneLost = 0; Int atLeastOneRemoved = 0; Int iPocLost = 0; // loop through all long-term pictures in the Reference Picture Set // to see if the picture should be kept as reference picture for(i=pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures();igetNumberOfPictures();i++) { isAvailable = 0; // loop through all pictures in the reference picture buffer TComList::iterator iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { rpcPic = *(iterPic++); if(pReferencePictureSet->getCheckLTMSBPresent(i)==true) { if(rpcPic->getIsLongTerm() && (rpcPic->getPicSym()->getSlice(0)->getPOC()) == pReferencePictureSet->getPOC(i) && rpcPic->getSlice(0)->isReferenced()) { isAvailable = 1; } } else { Int pocCycle = 1<getPicSym()->getSlice(0)->getSPS()->getBitsForPOC(); Int curPoc = rpcPic->getPicSym()->getSlice(0)->getPOC() & (pocCycle-1); Int refPoc = pReferencePictureSet->getPOC(i) & (pocCycle-1); if(rpcPic->getIsLongTerm() && curPoc == refPoc && rpcPic->getSlice(0)->isReferenced()) { isAvailable = 1; } } } // if there was no such long-term check the short terms if(!isAvailable) { iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { rpcPic = *(iterPic++); Int pocCycle = 1 << rpcPic->getPicSym()->getSlice(0)->getSPS()->getBitsForPOC(); Int curPoc = rpcPic->getPicSym()->getSlice(0)->getPOC(); Int refPoc = pReferencePictureSet->getPOC(i); if (!pReferencePictureSet->getCheckLTMSBPresent(i)) { curPoc = curPoc & (pocCycle - 1); refPoc = refPoc & (pocCycle - 1); } if (rpcPic->getSlice(0)->isReferenced() && curPoc == refPoc) { isAvailable = 1; rpcPic->setIsLongTerm(1); break; } } } // report that a picture is lost if it is in the Reference Picture Set // but not available as reference picture if(isAvailable == 0) { if (this->getPOC() + pReferencePictureSet->getDeltaPOC(i) >= pocRandomAccess) { if(!pReferencePictureSet->getUsed(i) ) { if(printErrors) { printf("\nLong-term reference picture with POC = %3d seems to have been removed or not correctly decoded.", this->getPOC() + pReferencePictureSet->getDeltaPOC(i)); } atLeastOneRemoved = 1; } else { if(printErrors) { printf("\nLong-term reference picture with POC = %3d is lost or not correctly decoded!", this->getPOC() + pReferencePictureSet->getDeltaPOC(i)); } atLeastOneLost = 1; iPocLost=this->getPOC() + pReferencePictureSet->getDeltaPOC(i); } } } } // loop through all short-term pictures in the Reference Picture Set // to see if the picture should be kept as reference picture for(i=0;igetNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures();i++) { isAvailable = 0; // loop through all pictures in the reference picture buffer TComList::iterator iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { rpcPic = *(iterPic++); if(!rpcPic->getIsLongTerm() && rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i) && rpcPic->getSlice(0)->isReferenced()) { isAvailable = 1; } } // report that a picture is lost if it is in the Reference Picture Set // but not available as reference picture if(isAvailable == 0) { if (this->getPOC() + pReferencePictureSet->getDeltaPOC(i) >= pocRandomAccess) { if(!pReferencePictureSet->getUsed(i) ) { if(printErrors) { printf("\nShort-term reference picture with POC = %3d seems to have been removed or not correctly decoded.", this->getPOC() + pReferencePictureSet->getDeltaPOC(i)); } atLeastOneRemoved = 1; } else { if(printErrors) { printf("\nShort-term reference picture with POC = %3d is lost or not correctly decoded!", this->getPOC() + pReferencePictureSet->getDeltaPOC(i)); } atLeastOneLost = 1; iPocLost=this->getPOC() + pReferencePictureSet->getDeltaPOC(i); } } } } if(atLeastOneLost) { return iPocLost+1; } if(atLeastOneRemoved) { return -2; } else { return 0; } } /** Function for constructing an explicit Reference Picture Set out of the available pictures in a referenced Reference Picture Set */ Void TComSlice::createExplicitReferencePictureSetFromReference( TComList& rcListPic, TComReferencePictureSet *pReferencePictureSet, Bool isRAP) { TComPic* rpcPic; Int i, j; Int k = 0; Int nrOfNegativePictures = 0; Int nrOfPositivePictures = 0; TComReferencePictureSet* pcRPS = this->getLocalRPS(); // loop through all pictures in the Reference Picture Set for(i=0;igetNumberOfPictures();i++) { j = 0; // loop through all pictures in the reference picture buffer TComList::iterator iterPic = rcListPic.begin(); while ( iterPic != rcListPic.end()) { j++; rpcPic = *(iterPic++); if(rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i) && rpcPic->getSlice(0)->isReferenced()) { // This picture exists as a reference picture // and should be added to the explicit Reference Picture Set pcRPS->setDeltaPOC(k, pReferencePictureSet->getDeltaPOC(i)); pcRPS->setUsed(k, pReferencePictureSet->getUsed(i) && (!isRAP)); if(pcRPS->getDeltaPOC(k) < 0) { nrOfNegativePictures++; } else { nrOfPositivePictures++; } k++; } } } pcRPS->setNumberOfNegativePictures(nrOfNegativePictures); pcRPS->setNumberOfPositivePictures(nrOfPositivePictures); pcRPS->setNumberOfPictures(nrOfNegativePictures+nrOfPositivePictures); // This is a simplistic inter rps example. A smarter encoder will look for a better reference RPS to do the // inter RPS prediction with. Here we just use the reference used by pReferencePictureSet. // If pReferencePictureSet is not inter_RPS_predicted, then inter_RPS_prediction is for the current RPS also disabled. if (!pReferencePictureSet->getInterRPSPrediction()) { pcRPS->setInterRPSPrediction(false); pcRPS->setNumRefIdc(0); } else { Int rIdx = this->getRPSidx() - pReferencePictureSet->getDeltaRIdxMinus1() - 1; Int deltaRPS = pReferencePictureSet->getDeltaRPS(); TComReferencePictureSet* pcRefRPS = this->getSPS()->getRPSList()->getReferencePictureSet(rIdx); Int iRefPics = pcRefRPS->getNumberOfPictures(); Int iNewIdc=0; for(i=0; i<= iRefPics; i++) { Int deltaPOC = ((i != iRefPics)? pcRefRPS->getDeltaPOC(i) : 0); // check if the reference abs POC is >= 0 Int iRefIdc = 0; for (j=0; j < pcRPS->getNumberOfPictures(); j++) // loop through the pictures in the new RPS { if ( (deltaPOC + deltaRPS) == pcRPS->getDeltaPOC(j)) { if (pcRPS->getUsed(j)) { iRefIdc = 1; } else { iRefIdc = 2; } } } pcRPS->setRefIdc(i, iRefIdc); iNewIdc++; } pcRPS->setInterRPSPrediction(true); pcRPS->setNumRefIdc(iNewIdc); pcRPS->setDeltaRPS(deltaRPS); pcRPS->setDeltaRIdxMinus1(pReferencePictureSet->getDeltaRIdxMinus1() + this->getSPS()->getRPSList()->getNumberOfReferencePictureSets() - this->getRPSidx()); } this->setRPS(pcRPS); this->setRPSidx(-1); } /** get AC and DC values for weighted pred * \param *wp * \returns Void */ Void TComSlice::getWpAcDcParam(wpACDCParam *&wp) { wp = m_weightACDCParam; } /** init AC and DC values for weighted pred * \returns Void */ Void TComSlice::initWpAcDcParam() { for(Int iComp = 0; iComp < 3; iComp++ ) { m_weightACDCParam[iComp].iAC = 0; m_weightACDCParam[iComp].iDC = 0; } } /** get WP tables for weighted pred * \param RefPicList * \param iRefIdx * \param *&wpScalingParam * \returns Void */ Void TComSlice::getWpScaling( RefPicList e, Int iRefIdx, wpScalingParam *&wp ) { wp = m_weightPredTable[e][iRefIdx]; } /** reset Default WP tables settings : no weight. * \param wpScalingParam * \returns Void */ Void TComSlice::resetWpScaling() { for ( Int e=0 ; e<2 ; e++ ) { for ( Int i=0 ; ibPresentFlag = false; pwp->uiLog2WeightDenom = 0; pwp->uiLog2WeightDenom = 0; pwp->iWeight = 1; pwp->iOffset = 0; } } } } /** init WP table * \returns Void */ Void TComSlice::initWpScaling() { for ( Int e=0 ; e<2 ; e++ ) { for ( Int i=0 ; ibPresentFlag ) { // Inferring values not present : pwp->iWeight = (1 << pwp->uiLog2WeightDenom); pwp->iOffset = 0; } pwp->w = pwp->iWeight; Int bitDepth = yuv ? g_bitDepthC : g_bitDepthY; pwp->o = pwp->iOffset << (bitDepth-8); pwp->shift = pwp->uiLog2WeightDenom; pwp->round = (pwp->uiLog2WeightDenom>=1) ? (1 << (pwp->uiLog2WeightDenom-1)) : (0); } } } } // ------------------------------------------------------------------------------------------------ // Video parameter set (VPS) // ------------------------------------------------------------------------------------------------ TComVPS::TComVPS() : m_VPSId ( 0) , m_uiMaxTLayers ( 1) #if H_MV , m_uiMaxLayersMinus1 ( 0) #else , m_uiMaxLayers ( 1) #endif , m_bTemporalIdNestingFlag (false) , m_numHrdParameters ( 0) #if H_MV , m_maxLayerId ( 0) #else , m_maxNuhReservedZeroLayerId ( 0) #endif , m_hrdParameters (NULL) , m_hrdOpSetIdx (NULL) , m_cprmsPresentFlag (NULL) #if H_MV , m_dpbSize (NULL) , m_vpsVUI ( NULL ) #endif { for( Int i = 0; i < MAX_TLAYER; i++) { m_numReorderPics[i] = 0; m_uiMaxDecPicBuffering[i] = 1; m_uiMaxLatencyIncrease[i] = 0; } #if H_MV for (Int lsIdx = 0; lsIdx < MAX_VPS_OP_SETS_PLUS1; lsIdx++ ) { for( Int layerId = 0; layerId < MAX_VPS_NUH_LAYER_ID_PLUS1; layerId++ ) { m_layerIdIncludedFlag[lsIdx][layerId] = (( lsIdx == 0 ) && ( layerId == 0 )) ; } } m_vpsNumProfileTierLevelMinus1 = -1; m_numAddOutputLayerSets = -1; m_defaultTargetOutputLayerIdc = 0; for ( Int i = 0; i < MAX_VPS_OUTPUTLAYER_SETS; i++) { m_outputLayerSetIdxMinus1[i] = -1; m_profileLevelTierIdx[i] = 0; for ( Int j = 0; j < MAX_VPS_NUH_LAYER_ID_PLUS1; j++) { m_outputLayerFlag[i][j] = false; } m_altOutputLayerFlag[ i ] = false; } m_maxOneActiveRefLayerFlag = false; m_directDepTypeLenMinus2 = 0; m_avcBaseLayerFlag = false; m_vpsNonVuiExtensionLength = 0; m_splittingFlag = false; for( Int i = 0; i < MAX_NUM_SCALABILITY_TYPES; i++ ) { m_scalabilityMaskFlag[i] = false; m_dimensionIdLen [i] = -1; } m_vpsNuhLayerIdPresentFlag = false; for( Int i = 0; i < MAX_VPS_OP_SETS_PLUS1; i++ ) { m_vpsProfilePresentFlag [i] = false; m_outputLayerSetIdxMinus1 [i] = 0; for( Int j = 0; j < MAX_VPS_NUH_LAYER_ID_PLUS1; j++ ) { m_outputLayerFlag[i][j] = false; } } for( Int i = 0; i < MAX_NUM_LAYER_IDS; i++ ) { m_layerIdInVps[i] = (i == 0 ) ? 0 : -1; } for( Int i = 0; i < MAX_NUM_LAYERS; i++ ) { m_layerIdInNuh [i] = ( i == 0 ) ? 0 : -1; m_numDirectRefLayers[i] = 0; m_vpsRepFormatIdx [i] = 0; m_pocLsbNotPresentFlag[i] = 0; m_repFormat [i] = NULL; m_viewIdVal [i] = 0; #if H_3D m_viewIndex [i] = -1; m_vpsDepthModesFlag [i] = false; m_ivMvScalingFlag = true; #endif for( Int j = 0; j < MAX_NUM_LAYERS; j++ ) { m_directDependencyFlag[i][j] = false; m_directDependencyType[i][j] = -1; m_refLayerId[i][j] = -1; m_maxTidIlRefPicsPlus1[i][j] = 7; } for( Int j = 0; j < MAX_NUM_SCALABILITY_TYPES; j++ ) { m_dimensionId[i][j] = 0; } #if H_3D_ARP m_uiUseAdvResPred[i] = 0; m_uiARPStepNum[i] = 1; #endif } m_vpsVUI = new TComVPSVUI; m_dpbSize = new TComDpbSize; #if H_3D for( Int i = 0; i < MAX_NUM_LAYERS; i++ ) { #if H_3D_IV_MERGE m_ivMvPredFlag [ i ] = false; #if H_3D_SPIVMP m_iSubPULog2Size [ i ] = 0; #endif #endif #if H_3D_VSP m_viewSynthesisPredFlag[ i ] = false; #endif #if H_3D_NBDV_REF m_depthRefinementFlag [ i ] = false; #endif #if H_3D_INTER_SDC m_bInterSDCFlag [ i ] = false; #endif #if H_3D_DBBP m_dbbpFlag [ i ] = false; #endif #if H_3D_IV_MERGE m_bMPIFlag [ i ] = false; #endif } #endif #endif } TComVPS::~TComVPS() { if( m_hrdParameters != NULL ) delete[] m_hrdParameters; if( m_hrdOpSetIdx != NULL ) delete[] m_hrdOpSetIdx; if( m_cprmsPresentFlag != NULL ) delete[] m_cprmsPresentFlag; #if H_MV if ( m_vpsVUI != NULL ) delete m_vpsVUI; if ( m_dpbSize != NULL ) delete m_dpbSize; for( Int i = 0; i < MAX_NUM_LAYERS; i++ ) { if (m_repFormat[ i ] != NULL ) delete m_repFormat[ i ]; } #endif #if H_3D deleteCamPars(); #endif } #if H_MV Bool TComVPS::checkVPSExtensionSyntax() { for( Int layer = 1; layer <= getMaxLayersMinus1(); layer++ ) { // check layer_id_in_nuh constraint assert( getLayerIdInNuh( layer ) > getLayerIdInNuh( layer -1 ) ); } return true; } Int TComVPS::getNumScalabilityTypes() { return scalTypeToScalIdx( ScalabilityType(MAX_NUM_SCALABILITY_TYPES) ); } Int TComVPS::scalTypeToScalIdx( ScalabilityType scalType ) { assert( scalType >= 0 && scalType <= MAX_NUM_SCALABILITY_TYPES ); assert( scalType == MAX_NUM_SCALABILITY_TYPES || getScalabilityMaskFlag( scalType ) ); Int scalIdx = 0; for( Int curScalType = 0; curScalType < scalType; curScalType++ ) { scalIdx += ( getScalabilityMaskFlag( curScalType ) ? 1 : 0 ); } return scalIdx; } Void TComVPS::setScalabilityMaskFlag( UInt val ) { for ( Int scalType = 0; scalType < MAX_NUM_SCALABILITY_TYPES; scalType++ ) { setScalabilityMaskFlag( scalType, ( val & (1 << scalType ) ) != 0 ); } } Void TComVPS::setRefLayers() { for( Int i = 0; i <= getMaxLayersMinus1(); i++ ) { Int iNuhLId = getLayerIdInNuh( i ); m_numDirectRefLayers[ iNuhLId ] = 0; for( Int j = 0; j < i; j++ ) { if( getDirectDependencyFlag(i , j) ) { m_refLayerId[ iNuhLId ][m_numDirectRefLayers[ iNuhLId ]++ ] = getLayerIdInNuh( j ); } } } } Int TComVPS::getRefLayerId( Int layerIdInNuh, Int idx ) { assert( idx >= 0 && idx < m_numDirectRefLayers[layerIdInNuh] ); Int refLayerIdInNuh = m_refLayerId[ layerIdInNuh ][ idx ]; assert ( refLayerIdInNuh >= 0 ); return refLayerIdInNuh; } Int TComVPS::getScalabilityId( Int layerIdInVps, ScalabilityType scalType ) { return getScalabilityMaskFlag( scalType ) ? getDimensionId( layerIdInVps, scalTypeToScalIdx( scalType ) ) : 0; } #if H_3D Int TComVPS::getLayerIdInNuh( Int viewIndex, Bool depthFlag ) { Int foundLayerIdinNuh = -1; for (Int layerIdInVps = 0 ; layerIdInVps <= getMaxLayersMinus1(); layerIdInVps++ ) { Int layerIdInNuh = getLayerIdInNuh( layerIdInVps ); if( ( getViewIndex( layerIdInNuh ) == viewIndex ) && ( getDepthId( layerIdInNuh ) == ( depthFlag ? 1 : 0 ) ) ) { foundLayerIdinNuh = layerIdInNuh; break; } } assert( foundLayerIdinNuh != -1 ); return foundLayerIdinNuh; } Void TComVPS::createCamPars(Int iNumViews) { Int i = 0, j = 0; m_bCamParPresent = new Bool[ iNumViews ]; m_bCamParInSliceHeader = new Bool[ iNumViews ]; m_aaaiCodedScale = new Int**[ iNumViews ]; m_aaaiCodedOffset = new Int**[ iNumViews ]; for ( i = 0; i < iNumViews ; i++ ) { m_bCamParInSliceHeader[i] = false; m_aaaiCodedScale[i] = new Int*[ 2 ]; m_aaaiCodedOffset[i] = new Int*[ 2 ]; for ( j = 0; j < 2; j++ ) { m_aaaiCodedScale[i][j] = new Int[ MAX_NUM_LAYERS ]; m_aaaiCodedOffset[i][j] = new Int[ MAX_NUM_LAYERS ]; for ( Int k = 0; k < MAX_NUM_LAYERS; k++ ) { m_aaaiCodedScale[i][j][k] = 0; m_aaaiCodedOffset[i][j][k] = 0; } } } } Void TComVPS::deleteCamPars() { Int iNumViews = getNumViews(); Int i = 0, j = 0; if ( m_bCamParPresent != NULL ) { delete [] m_bCamParPresent; } if ( m_bCamParInSliceHeader != NULL ) { delete [] m_bCamParInSliceHeader; } if ( m_aaaiCodedScale != NULL ) { for ( i = 0; i < iNumViews ; i++ ) { for ( j = 0; j < 2; j++ ) { delete [] m_aaaiCodedScale[i][j]; } delete [] m_aaaiCodedScale[i]; } delete [] m_aaaiCodedScale; } if ( m_aaaiCodedOffset != NULL ) { for ( i = 0; i < iNumViews ; i++ ) { for ( j = 0; j < 2; j++ ) { delete [] m_aaaiCodedOffset[i][j]; } delete [] m_aaaiCodedOffset[i]; } delete [] m_aaaiCodedOffset; } } Void TComVPS::initCamParaVPS( UInt uiViewIndex, Bool bCamParPresent, UInt uiCamParPrecision, Bool bCamParSlice, Int** aaiScale, Int** aaiOffset ) { AOT( uiViewIndex != 0 && !bCamParSlice && ( aaiScale == 0 || aaiOffset == 0 ) ); m_uiCamParPrecision = ( ( uiViewIndex != 0 )? uiCamParPrecision : 0 ); m_bCamParPresent[ uiViewIndex ] = (( uiViewIndex != 0 )? bCamParPresent : false ); m_bCamParInSliceHeader[ uiViewIndex ] = ( (uiViewIndex != 0)? bCamParSlice : false ); if( !m_bCamParInSliceHeader[ uiViewIndex ] ) { for( UInt uiBaseViewIndex = 0; uiBaseViewIndex < uiViewIndex; uiBaseViewIndex++ ) { m_aaaiCodedScale [ uiViewIndex ][ 0 ][ uiBaseViewIndex ] = aaiScale [ uiBaseViewIndex ][ uiViewIndex ]; m_aaaiCodedScale [ uiViewIndex ][ 1 ][ uiBaseViewIndex ] = aaiScale [ uiViewIndex ][ uiBaseViewIndex ]; m_aaaiCodedOffset[ uiViewIndex ][ 0 ][ uiBaseViewIndex ] = aaiOffset[ uiBaseViewIndex ][ uiViewIndex ]; m_aaaiCodedOffset[ uiViewIndex ][ 1 ][ uiBaseViewIndex ] = aaiOffset[ uiViewIndex ][ uiBaseViewIndex ]; } } } #endif // H_3D Int TComVPS::xGetDimBitOffset( Int j ) { Int dimBitOffset = 0; if ( getSplittingFlag() && j == getNumScalabilityTypes() ) { dimBitOffset = 6; } else { for (Int dimIdx = 0; dimIdx <= j-1; dimIdx++) { dimBitOffset += getDimensionIdLen( dimIdx ); } } return dimBitOffset; } Int TComVPS::inferDimensionId( Int i, Int j ) { return ( ( getLayerIdInNuh( i ) & ( (1 << xGetDimBitOffset( j + 1 ) ) - 1) ) >> xGetDimBitOffset( j ) ); } Int TComVPS::inferLastDimsionIdLenMinus1() { return ( 5 - xGetDimBitOffset( getNumScalabilityTypes() - 1 ) ); } Int TComVPS::getNumLayersInIdList( Int lsIdx ) { assert( lsIdx >= 0 ); assert( lsIdx <= getVpsNumLayerSetsMinus1() ); return (Int) m_layerSetLayerIdList[ lsIdx ].size(); } Int TComVPS::getNumOutputLayerSets() { return getNumAddOutputLayerSets() + getVpsNumLayerSetsMinus1() + 1; } Int TComVPS::getNumViews() { Int numViews = 1; for( Int i = 0; i <= getMaxLayersMinus1(); i++ ) { Int lId = getLayerIdInNuh( i ); if ( i > 0 && ( getViewIndex( lId ) != getScalabilityId( i - 1, VIEW_ORDER_INDEX ) ) ) { numViews++; } } return numViews; } Bool TComVPS::getInDirectDependencyFlag( Int depLayeridInVps, Int refLayeridInVps, Int depth /*= 0 */ ) { assert( depth < 65 ); Bool dependentFlag = getDirectDependencyFlag( depLayeridInVps, refLayeridInVps ); for( Int i = 0; i < depLayeridInVps && !dependentFlag; i++ ) { if ( getDirectDependencyFlag( depLayeridInVps, i ) ) { dependentFlag = getInDirectDependencyFlag( i, refLayeridInVps, depth++ ); } } return dependentFlag; } Void TComVPS::deriveLayerSetLayerIdList() { m_layerSetLayerIdList.resize( getVpsNumLayerSetsMinus1() + 1 ); for (Int i = 0; i <= getVpsNumLayerSetsMinus1(); i++ ) { for( Int m = 0; m <= getVpsMaxLayerId(); m++ ) { if( getLayerIdIncludedFlag( i, m) ) { m_layerSetLayerIdList[ i ].push_back( m ); } } } } Void TComVPS::initTargetLayerIdLists() { m_targetDecLayerIdLists.resize( getNumOutputLayerSets() ); m_targetOptLayerIdLists.resize( getNumOutputLayerSets() ); } Void TComVPS::deriveTargetLayerIdList( Int i ) { Int lsIdx = getLayerSetIdxForOutputLayerSet( i ); for( Int j = 0; j < getNumLayersInIdList( lsIdx ); j++ ) { m_targetDecLayerIdLists[i].push_back( m_layerSetLayerIdList[ lsIdx ][ j ] ); if( getOutputLayerFlag( i, j )) { m_targetOptLayerIdLists[i].push_back( m_layerSetLayerIdList[ lsIdx ][ j ] ); } } } Bool TComVPS::inferOutputLayerFlag( Int i, Int j ) { Bool outputLayerFlag; switch ( getDefaultTargetOutputLayerIdc( ) ) { case 0: outputLayerFlag = true; break; case 1: outputLayerFlag = ( j == m_layerSetLayerIdList[ getLayerSetIdxForOutputLayerSet( i ) ].size() - 1 ); break; case 2: if ( i == 0 && j == 0) { outputLayerFlag = true; // This is a software only fix for a bug in the spec. In spec outputLayerFlag is neither present nor inferred. } else { assert( 0 ); } break; default: assert( 0 ); break; } return outputLayerFlag; } Int TComVPS::getMaxSubLayersInLayerSetMinus1( Int i ) { Int maxSLMinus1 = 0; Int optLsIdx = getLayerSetIdxForOutputLayerSet( i ); for( Int k = 0; k < getNumLayersInIdList( optLsIdx ); k++ ) { Int lId = m_layerSetLayerIdList[optLsIdx][k]; maxSLMinus1 = std::max( maxSLMinus1, getSubLayersVpsMaxMinus1( getLayerIdInVps( lId ) )); } return maxSLMinus1; } #endif // H_MV // ------------------------------------------------------------------------------------------------ // Sequence parameter set (SPS) // ------------------------------------------------------------------------------------------------ TComSPS::TComSPS() : m_SPSId ( 0) , m_VPSId ( 0) , m_chromaFormatIdc (CHROMA_420) , m_uiMaxTLayers ( 1) // Structure , m_picWidthInLumaSamples (352) , m_picHeightInLumaSamples (288) , m_log2MinCodingBlockSize ( 0) , m_log2DiffMaxMinCodingBlockSize (0) , m_uiMaxCUWidth ( 32) , m_uiMaxCUHeight ( 32) , m_uiMaxCUDepth ( 3) , m_bLongTermRefsPresent (false) , m_uiQuadtreeTULog2MaxSize ( 0) , m_uiQuadtreeTULog2MinSize ( 0) , m_uiQuadtreeTUMaxDepthInter ( 0) , m_uiQuadtreeTUMaxDepthIntra ( 0) // Tool list , m_usePCM (false) , m_pcmLog2MaxSize ( 5) , m_uiPCMLog2MinSize ( 7) #if H_3D_QTLPC , m_bUseQTL (false) , m_bUsePC (false) #endif , m_bitDepthY ( 8) , m_bitDepthC ( 8) , m_qpBDOffsetY ( 0) , m_qpBDOffsetC ( 0) , m_uiPCMBitDepthLuma ( 8) , m_uiPCMBitDepthChroma ( 8) , m_bPCMFilterDisableFlag (false) , m_uiBitsForPOC ( 8) , m_numLongTermRefPicSPS ( 0) , m_uiMaxTrSize ( 32) , m_bUseSAO (false) , m_bTemporalIdNestingFlag (false) , m_scalingListEnabledFlag (false) , m_useStrongIntraSmoothing (false) , m_vuiParametersPresentFlag (false) , m_vuiParameters () #if H_MV , m_pcVPS ( NULL ) , m_spsInferScalingListFlag ( false ) , m_spsScalingListRefLayerId ( 0 ) , m_updateRepFormatFlag ( false ) , m_spsRepFormatIdx ( 0 ) , m_interViewMvVertConstraintFlag (false) #endif #if H_3D , m_bCamParInSliceHeader (false) #endif { for ( Int i = 0; i < MAX_TLAYER; i++ ) { m_uiMaxLatencyIncrease[i] = 0; m_uiMaxDecPicBuffering[i] = 1; m_numReorderPics[i] = 0; } m_scalingList = new TComScalingList; ::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps)); ::memset(m_usedByCurrPicLtSPSFlag, 0, sizeof(m_usedByCurrPicLtSPSFlag)); #if H_MV m_spsExtensionFlag = false; for( Int i = 0; i < PS_EX_T_MAX_NUM; i++ ) { m_spsExtensionTypeFlag[ i ] = false; } m_numScaledRefLayerOffsets = 0; for (Int i = 0; i < MAX_NUM_SCALED_REF_LAYERS; i++ ) { m_scaledRefLayerId [i] = -1; } for (Int i = 0; i < MAX_NUM_LAYERS; i++ ) { m_scaledRefLayerLeftOffset [i] = 0; m_scaledRefLayerTopOffset [i] = 0; m_scaledRefLayerRightOffset [i] = 0; m_scaledRefLayerBottomOffset [i] = 0; } #endif } TComSPS::~TComSPS() { delete m_scalingList; m_RPSList.destroy(); } Void TComSPS::createRPSList( Int numRPS ) { m_RPSList.destroy(); m_RPSList.create(numRPS); } Void TComSPS::setHrdParameters( UInt frameRate, UInt numDU, UInt bitRate, Bool randomAccess ) { if( !getVuiParametersPresentFlag() ) { return; } TComVUI *vui = getVuiParameters(); TComHRD *hrd = vui->getHrdParameters(); TimingInfo *timingInfo = vui->getTimingInfo(); timingInfo->setTimingInfoPresentFlag( true ); switch( frameRate ) { case 24: timingInfo->setNumUnitsInTick( 1125000 ); timingInfo->setTimeScale ( 27000000 ); break; case 25: timingInfo->setNumUnitsInTick( 1080000 ); timingInfo->setTimeScale ( 27000000 ); break; case 30: timingInfo->setNumUnitsInTick( 900900 ); timingInfo->setTimeScale ( 27000000 ); break; case 50: timingInfo->setNumUnitsInTick( 540000 ); timingInfo->setTimeScale ( 27000000 ); break; case 60: timingInfo->setNumUnitsInTick( 450450 ); timingInfo->setTimeScale ( 27000000 ); break; default: timingInfo->setNumUnitsInTick( 1001 ); timingInfo->setTimeScale ( 60000 ); break; } Bool rateCnt = ( bitRate > 0 ); hrd->setNalHrdParametersPresentFlag( rateCnt ); hrd->setVclHrdParametersPresentFlag( rateCnt ); hrd->setSubPicCpbParamsPresentFlag( ( numDU > 1 ) ); if( hrd->getSubPicCpbParamsPresentFlag() ) { hrd->setTickDivisorMinus2( 100 - 2 ); // hrd->setDuCpbRemovalDelayLengthMinus1( 7 ); // 8-bit precision ( plus 1 for last DU in AU ) hrd->setSubPicCpbParamsInPicTimingSEIFlag( true ); hrd->setDpbOutputDelayDuLengthMinus1( 5 + 7 ); // With sub-clock tick factor of 100, at least 7 bits to have the same value as AU dpb delay } else { hrd->setSubPicCpbParamsInPicTimingSEIFlag( false ); } hrd->setBitRateScale( 4 ); // in units of 2~( 6 + 4 ) = 1,024 bps hrd->setCpbSizeScale( 6 ); // in units of 2~( 4 + 4 ) = 1,024 bit hrd->setDuCpbSizeScale( 6 ); // in units of 2~( 4 + 4 ) = 1,024 bit hrd->setInitialCpbRemovalDelayLengthMinus1(15); // assuming 0.5 sec, log2( 90,000 * 0.5 ) = 16-bit if( randomAccess ) { hrd->setCpbRemovalDelayLengthMinus1(5); // 32 = 2^5 (plus 1) hrd->setDpbOutputDelayLengthMinus1 (5); // 32 + 3 = 2^6 } else { hrd->setCpbRemovalDelayLengthMinus1(9); // max. 2^10 hrd->setDpbOutputDelayLengthMinus1 (9); // max. 2^10 } /* Note: only the case of "vps_max_temporal_layers_minus1 = 0" is supported. */ Int i, j; UInt birateValue, cpbSizeValue; UInt ducpbSizeValue; UInt duBitRateValue = 0; for( i = 0; i < MAX_TLAYER; i ++ ) { hrd->setFixedPicRateFlag( i, 1 ); hrd->setPicDurationInTcMinus1( i, 0 ); hrd->setLowDelayHrdFlag( i, 0 ); hrd->setCpbCntMinus1( i, 0 ); birateValue = bitRate; cpbSizeValue = bitRate; // 1 second ducpbSizeValue = bitRate/numDU; duBitRateValue = bitRate; for( j = 0; j < ( hrd->getCpbCntMinus1( i ) + 1 ); j ++ ) { hrd->setBitRateValueMinus1( i, j, 0, ( birateValue - 1 ) ); hrd->setCpbSizeValueMinus1( i, j, 0, ( cpbSizeValue - 1 ) ); hrd->setDuCpbSizeValueMinus1( i, j, 0, ( ducpbSizeValue - 1 ) ); hrd->setCbrFlag( i, j, 0, ( j == 0 ) ); hrd->setBitRateValueMinus1( i, j, 1, ( birateValue - 1) ); hrd->setCpbSizeValueMinus1( i, j, 1, ( cpbSizeValue - 1 ) ); hrd->setDuCpbSizeValueMinus1( i, j, 1, ( ducpbSizeValue - 1 ) ); hrd->setDuBitRateValueMinus1( i, j, 1, ( duBitRateValue - 1 ) ); hrd->setCbrFlag( i, j, 1, ( j == 0 ) ); } } } const Int TComSPS::m_winUnitX[]={1,2,2,1}; const Int TComSPS::m_winUnitY[]={1,2,1,1}; TComPPS::TComPPS() : m_PPSId (0) , m_SPSId (0) , m_picInitQPMinus26 (0) , m_useDQP (false) , m_bConstrainedIntraPred (false) , m_bSliceChromaQpFlag (false) , m_pcSPS (NULL) , m_uiMaxCuDQPDepth (0) , m_uiMinCuDQPSize (0) , m_chromaCbQpOffset (0) , m_chromaCrQpOffset (0) , m_numRefIdxL0DefaultActive (1) , m_numRefIdxL1DefaultActive (1) , m_TransquantBypassEnableFlag (false) , m_useTransformSkip (false) , m_dependentSliceSegmentsEnabledFlag (false) , m_tilesEnabledFlag (false) , m_entropyCodingSyncEnabledFlag (false) , m_loopFilterAcrossTilesEnabledFlag (true) , m_uniformSpacingFlag (0) , m_iNumColumnsMinus1 (0) , m_puiColumnWidth (NULL) , m_iNumRowsMinus1 (0) , m_puiRowHeight (NULL) , m_iNumSubstreams (1) , m_signHideFlag(0) , m_cabacInitPresentFlag (false) , m_encCABACTableIdx (I_SLICE) , m_sliceHeaderExtensionPresentFlag (false) , m_loopFilterAcrossSlicesEnabledFlag (false) , m_listsModificationPresentFlag( 0) , m_numExtraSliceHeaderBits(0) #if H_MV , m_ppsInferScalingListFlag(false) , m_ppsScalingListRefLayerId(0) , m_pocResetInfoPresentFlag(false) #if H_3D , m_pcDLT(NULL) #endif #endif { m_scalingList = new TComScalingList; #if H_MV for( Int i = 0; i < PS_EX_T_MAX_NUM; i++ ) { m_ppsExtensionTypeFlag[ i ] = false; } #endif } TComPPS::~TComPPS() { if( m_iNumColumnsMinus1 > 0 && m_uniformSpacingFlag == 0 ) { if (m_puiColumnWidth) delete [] m_puiColumnWidth; m_puiColumnWidth = NULL; } if( m_iNumRowsMinus1 > 0 && m_uniformSpacingFlag == 0 ) { if (m_puiRowHeight) delete [] m_puiRowHeight; m_puiRowHeight = NULL; } delete m_scalingList; } #if H_3D TComDLT::TComDLT() : m_bDltPresentFlag(false) , m_iNumDepthViews(0) , m_uiDepthViewBitDepth(8) { m_uiDepthViewBitDepth = g_bitDepthY; for( Int i = 0; i < MAX_NUM_LAYERS; i++ ) { m_bUseDLTFlag [i] = false; m_bInterViewDltPredEnableFlag [i] = false; // allocate some memory and initialize with default mapping m_iNumDepthmapValues[i] = ((1 << m_uiDepthViewBitDepth)-1)+1; m_iBitsPerDepthValue[i] = numBitsForValue(m_iNumDepthmapValues[i]); m_iDepthValue2Idx[i] = (Int*) xMalloc(Int, m_iNumDepthmapValues[i]); m_iIdx2DepthValue[i] = (Int*) xMalloc(Int, m_iNumDepthmapValues[i]); //default mapping for (Int d=0; d p ) { iIdxDown = i-1; bFound = true; } i++; } // iterate over indices to find upper closest depth i = iNumDepthValues-2; bFound = false; while(!bFound && i>=0) { if( m_iIdx2DepthValue[layerIdInVps][i] < p ) { iIdxUp = i+1; bFound = true; } i--; } // assert monotony assert(iIdxDown<=iIdxUp); // assign closer depth value/idx if( abs(p-m_iIdx2DepthValue[layerIdInVps][iIdxDown]) < abs(p-m_iIdx2DepthValue[layerIdInVps][iIdxUp]) ) { m_iDepthValue2Idx[layerIdInVps][p] = iIdxDown; } else { m_iDepthValue2Idx[layerIdInVps][p] = iIdxUp; } } // update DLT variables m_iNumDepthmapValues[layerIdInVps] = iNumDepthValues; m_iBitsPerDepthValue[layerIdInVps] = numBitsForValue(m_iNumDepthmapValues[layerIdInVps]); } #if H_3D_DELTA_DLT Void TComDLT::getDeltaDLT( Int layerIdInVps, Int* piDLTInRef, UInt uiDLTInRefNum, Int* piDeltaDLTOut, UInt *puiDeltaDLTOutNum ) { Bool abBM0[ 256 ]; Bool abBM1[ 256 ]; memset( abBM0, 0, sizeof( abBM0 )); memset( abBM1, 0, sizeof( abBM1 )); // convert reference DLT to bit string for( Int i = 0; i < uiDLTInRefNum; i++ ) { abBM0[ piDLTInRef[ i ] ] = true; } // convert internal DLT to bit string for( Int i = 0; i < m_iNumDepthmapValues[ layerIdInVps ]; i++ ) { abBM1[ m_iIdx2DepthValue[ layerIdInVps ][ i ] ] = true; } *puiDeltaDLTOutNum = 0; for( Int i = 0; i < 256; i++ ) { if( abBM0[ i ] ^ abBM1[ i ] ) { piDeltaDLTOut[ *puiDeltaDLTOutNum ] = i; *puiDeltaDLTOutNum = *puiDeltaDLTOutNum + 1; } } } Void TComDLT::setDeltaDLT( Int layerIdInVps, Int* piDLTInRef, UInt uiDLTInRefNum, Int* piDeltaDLTIn, UInt uiDeltaDLTInNum ) { Bool abBM0[ 256 ]; Bool abBM1[ 256 ]; memset( abBM0, 0, sizeof( abBM0 )); memset( abBM1, 0, sizeof( abBM1 )); // convert reference DLT to bit string for( Int i = 0; i < uiDLTInRefNum; i++ ) { abBM0[ piDLTInRef[ i ] ] = true; } // convert delta DLT to bit string for( Int i = 0; i < uiDeltaDLTInNum; i++ ) { abBM1[ piDeltaDLTIn[ i ] ] = true; } Int aiIdx2DepthValue[256]; UInt uiNumDepthValues = 0; memset( aiIdx2DepthValue, 0, sizeof( aiIdx2DepthValue )); for( Int i = 0; i < 256; i++ ) { if( abBM0[ i ] ^ abBM1[ i ] ) { aiIdx2DepthValue[ uiNumDepthValues++ ] = i; } } // update internal tables setDepthLUTs(layerIdInVps, aiIdx2DepthValue, uiNumDepthValues); } #endif #endif #if H_MV Void TComSPS::inferRepFormat( TComVPS* vps, Int layerIdCurr ) { if ( layerIdCurr > 0 ) { Int repFormatIdx = getUpdateRepFormatFlag() ? getSpsRepFormatIdx() : vps->getVpsRepFormatIdx( vps->getLayerIdInVps( layerIdCurr ) ) ; TComRepFormat* repFormat = vps->getRepFormat( repFormatIdx ); setChromaFormatIdc( repFormat->getChromaFormatVpsIdc() ); //// ToDo: add when supported: // setSeperateColourPlaneFlag( repFormat->getSeparateColourPlaneVpsFlag() ) ; setPicWidthInLumaSamples ( repFormat->getPicWidthVpsInLumaSamples() ); setPicHeightInLumaSamples( repFormat->getPicHeightVpsInLumaSamples() ); setBitDepthY ( repFormat->getBitDepthVpsLumaMinus8() + 8 ); setQpBDOffsetY ( (Int) (6*( getBitDepthY() - 8 )) ); setBitDepthC ( repFormat->getBitDepthVpsChromaMinus8() + 8 ); setQpBDOffsetC ( (Int) (6* ( getBitDepthC() -8 ) ) ); if ( getLayerId() > 0 && getUpdateRepFormatFlag() ) { assert( getChromaFormatIdc() <= repFormat->getChromaFormatVpsIdc() ); //// ToDo: add when supported: // assert( getSeperateColourPlaneFlag() <= repFormat->getSeparateColourPlaneVpsFlag() ) ; assert( getPicWidthInLumaSamples() <= repFormat->getPicWidthVpsInLumaSamples() ); assert( getPicHeightInLumaSamples() <= repFormat->getPicHeightVpsInLumaSamples() ); assert( getBitDepthY() <= repFormat->getBitDepthVpsLumaMinus8() + 8 ); assert( getBitDepthC() <= repFormat->getBitDepthVpsChromaMinus8() + 8 ); } } // Set conformance window Int scal = TComSPS::getWinUnitX( getChromaFormatIdc() ) ; getConformanceWindow().scaleOffsets( scal ); getVuiParameters()->getDefaultDisplayWindow().scaleOffsets( scal ); } Void TComSPS::inferScalingList( TComSPS* spsSrc ) { if ( getSpsInferScalingListFlag() ) { assert( spsSrc != NULL ); assert( !spsSrc->getSpsInferScalingListFlag() ); getScalingList()->inferFrom( spsSrc->getScalingList() ); } } #endif TComReferencePictureSet::TComReferencePictureSet() : m_numberOfPictures (0) , m_numberOfNegativePictures (0) , m_numberOfPositivePictures (0) , m_numberOfLongtermPictures (0) , m_interRPSPrediction (0) , m_deltaRIdxMinus1 (0) , m_deltaRPS (0) , m_numRefIdc (0) { ::memset( m_deltaPOC, 0, sizeof(m_deltaPOC) ); ::memset( m_POC, 0, sizeof(m_POC) ); ::memset( m_used, 0, sizeof(m_used) ); ::memset( m_refIdc, 0, sizeof(m_refIdc) ); } TComReferencePictureSet::~TComReferencePictureSet() { } Void TComReferencePictureSet::setUsed(Int bufferNum, Bool used) { m_used[bufferNum] = used; } Void TComReferencePictureSet::setDeltaPOC(Int bufferNum, Int deltaPOC) { m_deltaPOC[bufferNum] = deltaPOC; } Void TComReferencePictureSet::setNumberOfPictures(Int numberOfPictures) { m_numberOfPictures = numberOfPictures; } Int TComReferencePictureSet::getUsed(Int bufferNum) { return m_used[bufferNum]; } Int TComReferencePictureSet::getDeltaPOC(Int bufferNum) { return m_deltaPOC[bufferNum]; } Int TComReferencePictureSet::getNumberOfPictures() { return m_numberOfPictures; } Int TComReferencePictureSet::getPOC(Int bufferNum) { return m_POC[bufferNum]; } Void TComReferencePictureSet::setPOC(Int bufferNum, Int POC) { m_POC[bufferNum] = POC; } Bool TComReferencePictureSet::getCheckLTMSBPresent(Int bufferNum) { return m_bCheckLTMSB[bufferNum]; } Void TComReferencePictureSet::setCheckLTMSBPresent(Int bufferNum, Bool b) { m_bCheckLTMSB[bufferNum] = b; } /** set the reference idc value at uiBufferNum entry to the value of iRefIdc * \param uiBufferNum * \param iRefIdc * \returns Void */ Void TComReferencePictureSet::setRefIdc(Int bufferNum, Int refIdc) { m_refIdc[bufferNum] = refIdc; } /** get the reference idc value at uiBufferNum * \param uiBufferNum * \returns Int */ Int TComReferencePictureSet::getRefIdc(Int bufferNum) { return m_refIdc[bufferNum]; } /** Sorts the deltaPOC and Used by current values in the RPS based on the deltaPOC values. * deltaPOC values are sorted with -ve values before the +ve values. -ve values are in decreasing order. * +ve values are in increasing order. * \returns Void */ Void TComReferencePictureSet::sortDeltaPOC() { // sort in increasing order (smallest first) for(Int j=1; j < getNumberOfPictures(); j++) { Int deltaPOC = getDeltaPOC(j); Bool used = getUsed(j); for (Int k=j-1; k >= 0; k--) { Int temp = getDeltaPOC(k); if (deltaPOC < temp) { setDeltaPOC(k+1, temp); setUsed(k+1, getUsed(k)); setDeltaPOC(k, deltaPOC); setUsed(k, used); } } } // flip the negative values to largest first Int numNegPics = getNumberOfNegativePictures(); for(Int j=0, k=numNegPics-1; j < numNegPics>>1; j++, k--) { Int deltaPOC = getDeltaPOC(j); Bool used = getUsed(j); setDeltaPOC(j, getDeltaPOC(k)); setUsed(j, getUsed(k)); setDeltaPOC(k, deltaPOC); setUsed(k, used); } } /** Prints the deltaPOC and RefIdc (if available) values in the RPS. * A "*" is added to the deltaPOC value if it is Used bu current. * \returns Void */ Void TComReferencePictureSet::printDeltaPOC() { printf("DeltaPOC = { "); for(Int j=0; j < getNumberOfPictures(); j++) { printf("%d%s ", getDeltaPOC(j), (getUsed(j)==1)?"*":""); } if (getInterRPSPrediction()) { printf("}, RefIdc = { "); for(Int j=0; j < getNumRefIdc(); j++) { printf("%d ", getRefIdc(j)); } } printf("}\n"); } TComRPSList::TComRPSList() :m_referencePictureSets (NULL) { } TComRPSList::~TComRPSList() { } Void TComRPSList::create( Int numberOfReferencePictureSets) { m_numberOfReferencePictureSets = numberOfReferencePictureSets; m_referencePictureSets = new TComReferencePictureSet[numberOfReferencePictureSets]; } Void TComRPSList::destroy() { if (m_referencePictureSets) { delete [] m_referencePictureSets; } m_numberOfReferencePictureSets = 0; m_referencePictureSets = NULL; } TComReferencePictureSet* TComRPSList::getReferencePictureSet(Int referencePictureSetNum) { return &m_referencePictureSets[referencePictureSetNum]; } Int TComRPSList::getNumberOfReferencePictureSets() { return m_numberOfReferencePictureSets; } Void TComRPSList::setNumberOfReferencePictureSets(Int numberOfReferencePictureSets) { m_numberOfReferencePictureSets = numberOfReferencePictureSets; } TComRefPicListModification::TComRefPicListModification() : m_bRefPicListModificationFlagL0 (false) , m_bRefPicListModificationFlagL1 (false) { ::memset( m_RefPicSetIdxL0, 0, sizeof(m_RefPicSetIdxL0) ); ::memset( m_RefPicSetIdxL1, 0, sizeof(m_RefPicSetIdxL1) ); } TComRefPicListModification::~TComRefPicListModification() { } TComScalingList::TComScalingList() { init(); } TComScalingList::~TComScalingList() { destroy(); } /** set default quantization matrix to array */ Void TComSlice::setDefaultScalingList() { for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(UInt listId=0;listIdprocessDefaultMatrix(sizeId, listId); } } } /** check if use default quantization matrix * \returns true if use default quantization matrix in all size */ Bool TComSlice::checkDefaultScalingList() { UInt defaultCounter=0; for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(UInt listId=0;listIdgetScalingListAddress(sizeId,listId), getScalingList()->getScalingListDefaultAddress(sizeId, listId),sizeof(Int)*min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId])) // check value of matrix && ((sizeId < SCALING_LIST_16x16) || (getScalingList()->getScalingListDC(sizeId,listId) == 16))) // check DC value { defaultCounter++; } } } return (defaultCounter == (SCALING_LIST_NUM * SCALING_LIST_SIZE_NUM - 4)) ? false : true; // -4 for 32x32 } #if H_MV Void TComSlice::createInterLayerReferencePictureSet( TComPicLists* ivPicLists, std::vector& refPicSetInterLayer0, std::vector& refPicSetInterLayer1 ) { refPicSetInterLayer0.clear(); refPicSetInterLayer1.clear(); for( Int i = 0; i < getNumActiveRefLayerPics(); i++ ) { Int layerIdRef = getRefPicLayerId( i ); TComPic* picRef = ivPicLists->getPic( layerIdRef, getPOC() ) ; assert ( picRef != 0 ); // There shall be no entry equal to "no reference picture" in RefPicSetInterLayer0 or RefPicSetInterLayer1. picRef->getPicYuvRec()->extendPicBorder(); picRef->setIsLongTerm( true ); picRef->getSlice(0)->setReferenced( true ); Int viewIdCur = getVPS()->getViewId( getLayerId() ); Int viewIdZero = getVPS()->getViewId( 0 ); Int viewIdRef = getVPS()->getViewId( layerIdRef ); if ( ( viewIdCur <= viewIdZero && viewIdCur <= viewIdRef ) || ( viewIdCur >= viewIdZero && viewIdCur >= viewIdRef ) ) { refPicSetInterLayer0.push_back( picRef ); } else { refPicSetInterLayer1.push_back( picRef ); } // Consider to check here: // "If the current picture is a RADL picture, there shall be no entry in the RefPicSetInterLayer0 and RefPicSetInterLayer1 that is a RASL picture. " assert( picRef->getSlice(0)->getDiscardableFlag() == false ); // "There shall be no picture that has discardable_flag equal to 1 in RefPicSetInterLayer0 or RefPicSetInterLayer1". } } Void TComSlice::markIvRefPicsAsShortTerm( std::vector refPicSetInterLayer0, std::vector refPicSetInterLayer1 ) { // Mark as shortterm for ( Int i = 0; i < refPicSetInterLayer0.size(); i++ ) { refPicSetInterLayer0[i]->setIsLongTerm( false ); } for ( Int i = 0; i < refPicSetInterLayer1.size(); i++ ) { refPicSetInterLayer1[i]->setIsLongTerm( false ); } } Void TComSlice::markIvRefPicsAsUnused( TComPicLists* ivPicLists, std::vector targetDecLayerIdSet, TComVPS* vps, Int curLayerId, Int curPoc ) { // Fill targetDecLayerIdSet with all layers if empty (at encoder side) if (targetDecLayerIdSet.size() == 0 ) { for ( Int layerIdInVps = 0; layerIdInVps <= vps->getMaxLayersMinus1(); layerIdInVps++ ) { targetDecLayerIdSet.push_back( vps->getLayerIdInNuh( layerIdInVps ) ); } } Int numTargetDecLayers = (Int) targetDecLayerIdSet.size(); Int latestDecIdx; for ( latestDecIdx = 0; latestDecIdx < numTargetDecLayers; latestDecIdx++) { if ( targetDecLayerIdSet[ latestDecIdx ] == curLayerId ) { break; } } for( Int i = 0; i <= latestDecIdx; i++ ) { if ( vps->nuhLayerIdIncluded( targetDecLayerIdSet[ i ] ) ) { TComPic* pcPic = ivPicLists->getPic( targetDecLayerIdSet[ i ], curPoc ); if ( pcPic ) { if( pcPic->getSlice(0)->isReferenced() && pcPic->getSlice(0)->getTemporalLayerNonReferenceFlag() ) { Bool remainingInterLayerReferencesFlag = false; for( Int j = latestDecIdx + 1; j < numTargetDecLayers; j++ ) { TComVPS* vpsSlice = pcPic->getSlice(0)->getVPS(); if ( vps->nuhLayerIdIncluded( targetDecLayerIdSet[ j ] ) ) { for( Int k = 0; k < vpsSlice->getNumDirectRefLayers( targetDecLayerIdSet[ j ] ); k++ ) { if ( targetDecLayerIdSet[ i ] == vpsSlice->getRefLayerId( targetDecLayerIdSet[ j ], k ) ) { remainingInterLayerReferencesFlag = true; } } } } if( !remainingInterLayerReferencesFlag ) { pcPic->getSlice(0)->setReferenced( false ); } } } } } } Void TComSlice::printRefPicList() { for ( Int li = 0; li < 2; li++) { std::cout << std::endl << "RefPicListL" << li << ":" << std::endl; for (Int rIdx = 0; rIdx <= (m_aiNumRefIdx[li]-1); rIdx ++) { if (rIdx == 0 && li == 0) m_apcRefPicList[li][rIdx]->print( true ); m_apcRefPicList[li][rIdx]->print( false ); } } } Void TComSlice::markCurrPic( TComPic* currPic ) { if ( !currPic->getSlice(0)->getDiscardableFlag() ) { currPic->getSlice(0)->setReferenced( true ) ; currPic->setIsLongTerm( false ); } else { currPic->getSlice(0)->setReferenced( false ) ; } } Void TComSlice::setRefPicSetInterLayer( std::vector* refPicSetInterLayer0, std::vector* refPicSetInterLayer1 ) { m_refPicSetInterLayer0 = refPicSetInterLayer0; m_refPicSetInterLayer1 = refPicSetInterLayer1; } TComPic* TComSlice::getPicFromRefPicSetInterLayer(Int setIdc, Int layerId ) { assert ( setIdc == 0 || setIdc == 1); std::vector* refPicSetInterLayer = ( setIdc == 0 ? m_refPicSetInterLayer0 : m_refPicSetInterLayer1); assert( refPicSetInterLayer != 0 ); TComPic* pcPic = NULL; for ( Int i = 0; i < (*refPicSetInterLayer).size(); i++ ) { if ((*refPicSetInterLayer)[ i ]->getLayerId() == layerId ) { pcPic = (*refPicSetInterLayer)[ i ]; } } assert(pcPic != NULL); return pcPic; } Int TComSlice::getRefLayerPicFlag( Int i ) { TComVPS* vps = getVPS(); Int refLayerIdx = vps->getLayerIdInVps( vps->getRefLayerId( getLayerId(), i ) ); Bool refLayerPicFlag = ( vps->getSubLayersVpsMaxMinus1( refLayerIdx ) >= getTLayer() ) && ( vps->getMaxTidIlRefPicsPlus1( refLayerIdx, vps->getLayerIdInVps( getLayerId() )) > getTLayer() ); return refLayerPicFlag; } Int TComSlice::getRefLayerPicIdc( Int j ) { Int refLayerPicIdc = -1; Int curj = 0; for( Int i = 0; i < getVPS()->getNumDirectRefLayers( getLayerId()) ; i++ ) { if( getRefLayerPicFlag( i ) ) { if ( curj == j ) { refLayerPicIdc = i; break; } curj++; } } assert( curj == j ); assert( refLayerPicIdc != -1 ); return refLayerPicIdc; } Int TComSlice::getNumRefLayerPics( ) { Int numRefLayerPics = 0; for( Int i = 0; i < getVPS()->getNumDirectRefLayers( getLayerId()) ; i++ ) { numRefLayerPics += getRefLayerPicFlag( i ); } return numRefLayerPics; } Int TComSlice::getNumActiveRefLayerPics() { Int numActiveRefLayerPics; if( getLayerId() == 0 || getNumRefLayerPics() == 0 ) { numActiveRefLayerPics = 0; } else if (getVPS()->getAllRefLayersActiveFlag() ) { numActiveRefLayerPics = getNumRefLayerPics(); } else if ( !getInterLayerPredEnabledFlag() ) { numActiveRefLayerPics = 0; } else if( getVPS()->getMaxOneActiveRefLayerFlag() || getVPS()->getNumDirectRefLayers( getLayerId() ) == 1 ) { numActiveRefLayerPics = 1; } else { numActiveRefLayerPics = getNumInterLayerRefPicsMinus1() + 1; } return numActiveRefLayerPics; } Int TComSlice::getRefPicLayerId( Int i ) { return getVPS()->getRefLayerId( getLayerId(), getInterLayerPredLayerIdc( i ) ); } #if H_3D_ARP Void TComSlice::setARPStepNum( TComPicLists*ivPicLists ) { Bool tempRefPicInListsFlag = false; if(!getVPS()->getUseAdvRP(getLayerId()) || this->isIRAP()) { m_nARPStepNum = 0; } else { setFirstTRefIdx (REF_PIC_LIST_0, -1); setFirstTRefIdx (REF_PIC_LIST_1, -1); for ( Int refListIdx = 0; refListIdx < ((m_eSliceType==B_SLICE) ? 2 : 1); refListIdx++ ) { Int diffPOC=MAX_INT; Int idx=-1; for(Int i = 0; i < getNumRefIdx(RefPicList(refListIdx)); i++ ) { if ( getRefPic(RefPicList(refListIdx), i)->getPOC() != getPOC() ) { if( abs(getRefPic(RefPicList(refListIdx), i)->getPOC() - getPOC()) < diffPOC) { diffPOC=abs(getRefPic(RefPicList(refListIdx), i)->getPOC() - getPOC()); idx=i; } } if(idx>=0) { setFirstTRefIdx (RefPicList(refListIdx), idx); } } } tempRefPicInListsFlag = getFirstTRefIdx(REF_PIC_LIST_0) >= 0 || getFirstTRefIdx(REF_PIC_LIST_1) >= 0; m_nARPStepNum = tempRefPicInListsFlag ? getVPS()->getARPStepNum(getLayerId()) : 0; } if (tempRefPicInListsFlag) { for ( Int refListIdx = 0; refListIdx < ((m_eSliceType==B_SLICE) ? 2 : 1); refListIdx++ ) { RefPicList eRefPicList = RefPicList( refListIdx ); Int prevPOC = getRefPic(eRefPicList, getFirstTRefIdx(eRefPicList) )->getPOC(); for( Int i = 0; i < getNumActiveRefLayerPics(); i++ ) { Int layerIdInNuh = getRefPicLayerId( i ); Int viewIdx = getVPS()->getViewId( layerIdInNuh ); TComPic*pcPicPrev = ivPicLists->getPic(viewIdx, 0, prevPOC); if (getFirstTRefIdx(eRefPicList) >= 0 && pcPicPrev && pcPicPrev->getSlice( 0 )->isReferenced()) { m_arpRefPicAvailable[eRefPicList][layerIdInNuh] = true; } else { m_arpRefPicAvailable[eRefPicList][layerIdInNuh] = false; } } } } } #endif #if H_3D_IC #if MTK_LOW_LATENCY_IC_ENCODING_H0086 Void TComSlice::xSetApplyIC(Bool bUseLowLatencyICEnc) #else Void TComSlice::xSetApplyIC() #endif { #if MTK_LOW_LATENCY_IC_ENCODING_H0086 if(bUseLowLatencyICEnc) { Bool existInterViewRef=false; TComPic* pcCurrPic = getPic(); TComPic* pcRefPic = NULL; for ( Int i = 0; (i < getNumRefIdx( REF_PIC_LIST_0 )) && !existInterViewRef; i++ ) { pcRefPic = getRefPic( REF_PIC_LIST_0, i ); if ( pcRefPic != NULL ) { if ( pcCurrPic->getViewIndex() != pcRefPic->getViewIndex() ) { existInterViewRef = true; } } } for ( Int i = 0; (i < getNumRefIdx( REF_PIC_LIST_1 )) && !existInterViewRef; i++ ) { pcRefPic = getRefPic( REF_PIC_LIST_1, i ); if ( pcRefPic != NULL ) { if ( pcCurrPic->getViewIndex() != pcRefPic->getViewIndex() ) { existInterViewRef = true; } } } if(!existInterViewRef) { m_bApplyIC = false; } else { Int curLayer=getDepth(); if( curLayer>9) curLayer=9; // Max layer is 10 m_bApplyIC = true; Int refLayer = curLayer-1; if( (refLayer>=0) && (g_aICEnableCANDIDATE[refLayer]>0) ) { Double ratio=Double(g_aICEnableNUM[refLayer])/Double(g_aICEnableCANDIDATE[refLayer]); if( ratio > MTK_LOW_LATENCY_IC_ENCODING_THRESHOLD_H0086) { m_bApplyIC=true; } else { m_bApplyIC=false; } } g_aICEnableNUM[curLayer]=0; g_aICEnableCANDIDATE[curLayer]=0; g_lastlayer=getDepth(); } } else { #endif Int iMaxPelValue = ( 1 << g_bitDepthY ); Int *aiRefOrgHist; Int *aiCurrHist; aiRefOrgHist = (Int *) xMalloc( Int,iMaxPelValue ); aiCurrHist = (Int *) xMalloc( Int,iMaxPelValue ); memset( aiRefOrgHist, 0, iMaxPelValue*sizeof(Int) ); memset( aiCurrHist, 0, iMaxPelValue*sizeof(Int) ); // Reference Idx Number Int iNumRefIdx = getNumRefIdx( REF_PIC_LIST_0 ); TComPic* pcCurrPic = NULL; TComPic* pcRefPic = NULL; TComPicYuv* pcCurrPicYuv = NULL; TComPicYuv* pcRefPicYuvOrg = NULL; pcCurrPic = getPic(); pcCurrPicYuv = pcCurrPic->getPicYuvOrg(); Int iWidth = pcCurrPicYuv->getWidth(); Int iHeight = pcCurrPicYuv->getHeight(); // Get InterView Reference picture // !!!!! Assume only one Interview Reference Picture in L0 for ( Int i = 0; i < iNumRefIdx; i++ ) { pcRefPic = getRefPic( REF_PIC_LIST_0, i ); if ( pcRefPic != NULL ) { if ( pcCurrPic->getViewIndex() != pcRefPic->getViewIndex() ) { pcRefPicYuvOrg = pcRefPic->getPicYuvOrg(); } } } if ( pcRefPicYuvOrg != NULL ) { Pel* pCurrY = pcCurrPicYuv ->getLumaAddr(); Pel* pRefOrgY = pcRefPicYuvOrg ->getLumaAddr(); Int iCurrStride = pcCurrPicYuv->getStride(); Int iRefStride = pcRefPicYuvOrg->getStride(); Int iSumOrgSAD = 0; Double dThresholdOrgSAD = getIsDepth() ? 0.1 : 0.05; // Histogram building - luminance for ( Int y = 0; y < iHeight; y++ ) { for ( Int x = 0; x < iWidth; x++ ) { aiCurrHist[pCurrY[x]]++; aiRefOrgHist[pRefOrgY[x]]++; } pCurrY += iCurrStride; pRefOrgY += iRefStride; } // Histogram SAD for ( Int i = 0; i < iMaxPelValue; i++ ) { iSumOrgSAD += abs( aiCurrHist[i] - aiRefOrgHist[i] ); } // Setting if ( iSumOrgSAD > Int( dThresholdOrgSAD * iWidth * iHeight ) ) { m_bApplyIC = true; } else { m_bApplyIC = false; } } xFree( aiCurrHist ); xFree( aiRefOrgHist ); aiCurrHist = NULL; aiRefOrgHist = NULL; #if MTK_LOW_LATENCY_IC_ENCODING_H0086 }//if(bUseLowLatencyICEnc) #endif } #endif #if H_3D Void TComSlice::setIvPicLists( TComPicLists* m_ivPicLists ) { for (Int i = 0; i < MAX_NUM_LAYERS; i++ ) { for ( Int depthId = 0; depthId < 2; depthId++ ) { m_ivPicsCurrPoc[ depthId ][ i ] = ( i <= m_viewIndex ) ? m_ivPicLists->getPic( i, ( depthId == 1) , getPOC() ) : NULL; } } } Void TComSlice::setDepthToDisparityLUTs() { Bool setupLUT = false; Int layerIdInVPS = getVPS()->getLayerIdInNuh( m_layerId ); #if H_3D_VSP setupLUT = setupLUT || getVPS()->getViewSynthesisPredFlag( layerIdInVPS); #endif #if H_3D_NBDV_REF setupLUT = setupLUT || getVPS()->getDepthRefinementFlag( layerIdInVPS ); #endif #if H_3D_IV_MERGE setupLUT = setupLUT || ( getVPS()->getIvMvPredFlag(layerIdInVPS ) && getIsDepth() ); #endif #if H_3D_DDD if( getIsDepth() && getViewIndex() > 0 ) { TComSlice *pcTextSlice = getTexturePic()->getSlice( 0 ); memcpy( m_aiDDDInvScale, pcTextSlice->m_aiDDDInvScale, sizeof( Int ) * getViewIndex() ); memcpy( m_aiDDDInvOffset, pcTextSlice->m_aiDDDInvOffset, sizeof( Int ) * getViewIndex() ); memcpy( m_aiDDDShift, pcTextSlice->m_aiDDDShift, sizeof( Int ) * getViewIndex() ); } #endif if( !setupLUT ) return; /// GT: Allocation should be moved to a better place later; if ( m_depthToDisparityB == NULL ) { m_depthToDisparityB = new Int*[ getViewIndex() ]; for ( Int i = 0; i < getViewIndex(); i++ ) { m_depthToDisparityB[ i ] = new Int[ Int(1 << g_bitDepthY) ]; } } if ( m_depthToDisparityF == NULL ) { m_depthToDisparityF= new Int*[ getViewIndex() ]; for ( Int i = 0; i < getViewIndex(); i++ ) { m_depthToDisparityF[ i ] = new Int[ Int(1 << g_bitDepthY) ]; } } assert( m_depthToDisparityB != NULL ); assert( m_depthToDisparityF != NULL ); TComVPS* vps = getVPS(); Int log2Div = g_bitDepthY - 1 + vps->getCamParPrecision(); Int viewIndex = getViewIndex(); Bool camParaSH = vps->hasCamParInSliceHeader( viewIndex ); Int* codScale = camParaSH ? m_aaiCodedScale [ 0 ] : vps->getCodedScale ( viewIndex ); Int* codOffset = camParaSH ? m_aaiCodedOffset[ 0 ] : vps->getCodedOffset ( viewIndex ); Int* invCodScale = camParaSH ? m_aaiCodedScale [ 1 ] : vps->getInvCodedScale ( viewIndex ); Int* invCodOffset = camParaSH ? m_aaiCodedOffset[ 1 ] : vps->getInvCodedOffset( viewIndex ); for (Int i = 0; i <= ( getViewIndex() - 1); i++) { for ( Int d = 0; d <= ( ( 1 << g_bitDepthY ) - 1 ); d++ ) { Int offset = ( codOffset [ i ] << g_bitDepthY ) + ( ( 1 << log2Div ) >> 1 ); m_depthToDisparityB[ i ][ d ] = ( codScale [ i ] * d + offset ) >> log2Div; Int invOffset = ( invCodOffset[ i ] << g_bitDepthY ) + ( ( 1 << log2Div ) >> 1 ); m_depthToDisparityF[ i ][ d ] = ( invCodScale[ i ] * d + invOffset ) >> log2Div; } #if H_3D_DDD InitializeDDDPara( vps->getCamParPrecision(), codScale[ i ], codOffset[ i ], i ); #endif } } #endif #endif #if H_3D_DDD Void TComSlice::InitializeDDDPara( UInt uiCamParsCodedPrecision, Int iCodedScale,Int iCodedOffset, Int iBaseViewIdx ) { UInt uiViewId = getViewIndex(); if( uiViewId == 0 ) { m_aiDDDInvScale[ iBaseViewIdx ] = m_aiDDDInvOffset[ iBaseViewIdx ] = m_aiDDDShift[ iBaseViewIdx ] = 0; return; } Int iSign = iCodedScale >= 0 ? 1 : -1; iCodedScale = abs( iCodedScale ); Int iBitWidth = 0; const Int iInvPres = 9; while( ((( 1 << iBitWidth ) << 1 ) <= iCodedScale ) ) { iBitWidth ++; } iBitWidth += iInvPres; Int iTargetValue = 1 << iBitWidth; Int iMinError = MAX_INT; Int iBestD = 1 << ( iInvPres - 1 ); for( Int d = 1 << ( iInvPres - 1 ); d < ( 1 << iInvPres ); d++ ) { Int iError = abs( iCodedScale * d - iTargetValue ); if( iError < iMinError ) { iMinError = iError; iBestD = d; } if( iMinError == 0 ) { break; } } Int iRoundingDir = 0; if( iCodedScale * iBestD > iTargetValue ) { iRoundingDir = -1; } else if( iCodedScale * iBestD < iTargetValue ) { iRoundingDir = 1; } Int iCamPres = uiCamParsCodedPrecision - 1; m_aiDDDInvScale [ iBaseViewIdx ] = ( iBestD << ( iCamPres + g_bitDepthY )) * iSign; m_aiDDDInvOffset[ iBaseViewIdx ] = -iSign * iBestD * ( iCodedOffset << g_bitDepthY ); m_aiDDDShift [ iBaseViewIdx ] = iBitWidth; m_aiDDDInvOffset[ iBaseViewIdx ] += 1 << ( m_aiDDDShift[ iBaseViewIdx ] - 1 ); m_aiDDDInvOffset[ iBaseViewIdx ] += ( 1 << ( m_aiDDDShift[ iBaseViewIdx ] - 4 ) ) * iRoundingDir; return; } #endif /** get scaling matrix from RefMatrixID * \param sizeId size index * \param Index of input matrix * \param Index of reference matrix */ Void TComScalingList::processRefMatrix( UInt sizeId, UInt listId , UInt refListId ) { ::memcpy(getScalingListAddress(sizeId, listId),((listId == refListId)? getScalingListDefaultAddress(sizeId, refListId): getScalingListAddress(sizeId, refListId)),sizeof(Int)*min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId])); } /** parse syntax infomation * \param pchFile syntax infomation * \returns false if successful */ Bool TComScalingList::xParseScalingList(Char* pchFile) { FILE *fp; Char line[1024]; UInt sizeIdc,listIdc; UInt i,size = 0; Int *src=0,data; Char *ret; UInt retval; if((fp = fopen(pchFile,"r")) == (FILE*)NULL) { printf("can't open file %s :: set Default Matrix\n",pchFile); return true; } for(sizeIdc = 0; sizeIdc < SCALING_LIST_SIZE_NUM; sizeIdc++) { size = min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeIdc]); for(listIdc = 0; listIdc < g_scalingListNum[sizeIdc]; listIdc++) { src = getScalingListAddress(sizeIdc, listIdc); fseek(fp,0,0); do { ret = fgets(line, 1024, fp); if ((ret==NULL)||(strstr(line, MatrixType[sizeIdc][listIdc])==NULL && feof(fp))) { printf("Error: can't read Matrix :: set Default Matrix\n"); return true; } } while (strstr(line, MatrixType[sizeIdc][listIdc]) == NULL); for (i=0; i SCALING_LIST_8x8) { fseek(fp,0,0); do { ret = fgets(line, 1024, fp); if ((ret==NULL)||(strstr(line, MatrixType_DC[sizeIdc][listIdc])==NULL && feof(fp))) { printf("Error: can't read DC :: set Default Matrix\n"); return true; } } while (strstr(line, MatrixType_DC[sizeIdc][listIdc]) == NULL); retval = fscanf(fp, "%d,", &data); if (retval!=1) { printf("Error: can't read Matrix :: set Default Matrix\n"); return true; } //overwrite DC value when size of matrix is larger than 16x16 setScalingListDC(sizeIdc,listIdc,data); } } } fclose(fp); return false; } #if H_MV Void TComScalingList::inferFrom( TComScalingList* srcScLi ) { for(Int sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(Int listId = 0; listId < g_scalingListNum[sizeId]; listId++) { setRefMatrixId (sizeId,listId, srcScLi->getRefMatrixId (sizeId,listId)); setScalingListDC(sizeId,listId, srcScLi->getScalingListDC(sizeId,listId)); ::memcpy(getScalingListAddress(sizeId, listId),srcScLi->getScalingListAddress(sizeId, listId),sizeof(Int)*min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId])); } } } #endif /** initialization process of quantization matrix array */ Void TComScalingList::init() { for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(UInt listId = 0; listId < g_scalingListNum[sizeId]; listId++) { m_scalingListCoef[sizeId][listId] = new Int [min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId])]; } } m_scalingListCoef[SCALING_LIST_32x32][3] = m_scalingListCoef[SCALING_LIST_32x32][1]; // copy address for 32x32 } /** destroy quantization matrix array */ Void TComScalingList::destroy() { for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(UInt listId = 0; listId < g_scalingListNum[sizeId]; listId++) { if(m_scalingListCoef[sizeId][listId]) delete [] m_scalingListCoef[sizeId][listId]; } } } /** get default address of quantization matrix * \param sizeId size index * \param listId list index * \returns pointer of quantization matrix */ Int* TComScalingList::getScalingListDefaultAddress(UInt sizeId, UInt listId) { Int *src = 0; switch(sizeId) { case SCALING_LIST_4x4: src = g_quantTSDefault4x4; break; case SCALING_LIST_8x8: src = (listId<3) ? g_quantIntraDefault8x8 : g_quantInterDefault8x8; break; case SCALING_LIST_16x16: src = (listId<3) ? g_quantIntraDefault8x8 : g_quantInterDefault8x8; break; case SCALING_LIST_32x32: src = (listId<1) ? g_quantIntraDefault8x8 : g_quantInterDefault8x8; break; default: assert(0); src = NULL; break; } return src; } /** process of default matrix * \param sizeId size index * \param Index of input matrix */ Void TComScalingList::processDefaultMatrix(UInt sizeId, UInt listId) { ::memcpy(getScalingListAddress(sizeId, listId),getScalingListDefaultAddress(sizeId,listId),sizeof(Int)*min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId])); setScalingListDC(sizeId,listId,SCALING_LIST_DC); } /** check DC value of matrix for default matrix signaling */ Void TComScalingList::checkDcOfMatrix() { for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { for(UInt listId = 0; listId < g_scalingListNum[sizeId]; listId++) { //check default matrix? if(getScalingListDC(sizeId,listId) == 0) { processDefaultMatrix(sizeId, listId); } } } } ParameterSetManager::ParameterSetManager() : m_vpsMap(MAX_NUM_VPS) , m_spsMap(MAX_NUM_SPS) , m_ppsMap(MAX_NUM_PPS) , m_activeVPSId(-1) #if !H_MV , m_activeSPSId(-1) , m_activePPSId(-1) { #else { for (Int i = 0; i < MAX_NUM_LAYERS; i++ ) { m_activeSPSId[ i ] = -1; m_activePPSId[ i ] = -1; } #endif } ParameterSetManager::~ParameterSetManager() { } //! activate a SPS from a active parameter sets SEI message //! \returns true, if activation is successful #if H_MV Bool ParameterSetManager::activateSPSWithSEI(Int spsId, Int layerId ) #else Bool ParameterSetManager::activateSPSWithSEI(Int spsId) #endif { TComSPS *sps = m_spsMap.getPS(spsId); if (sps) { Int vpsId = sps->getVPSId(); if (m_vpsMap.getPS(vpsId)) { m_activeVPSId = vpsId; #if H_MV m_activeSPSId[ layerId ] = spsId; #else m_activeSPSId = spsId; #endif return true; } else { printf("Warning: tried to activate SPS using an Active parameter sets SEI message. Referenced VPS does not exist."); } } else { printf("Warning: tried to activate non-existing SPS using an Active parameter sets SEI message."); } return false; } //! activate a PPS and depending on isIDR parameter also SPS and VPS //! \returns true, if activation is successful #if H_MV Bool ParameterSetManager::activatePPS(Int ppsId, Bool isIRAP, Int layerId ) #else Bool ParameterSetManager::activatePPS(Int ppsId, Bool isIRAP) #endif { TComPPS *pps = m_ppsMap.getPS(ppsId); if (pps) { Int spsId = pps->getSPSId(); #if H_MV if (!isIRAP && (spsId != m_activeSPSId[ layerId ])) #else if (!isIRAP && (spsId != m_activeSPSId)) #endif { printf("Warning: tried to activate PPS referring to a inactive SPS at non-IRAP."); return false; } TComSPS *sps = m_spsMap.getPS(spsId); if (sps) { Int vpsId = sps->getVPSId(); if (!isIRAP && (vpsId != m_activeVPSId)) { printf("Warning: tried to activate PPS referring to a inactive VPS at non-IRAP."); return false; } if (m_vpsMap.getPS(vpsId)) { #if H_MV m_activePPSId[ layerId ] = ppsId; m_activeVPSId = vpsId; m_activeSPSId[ layerId ] = spsId; #else m_activePPSId = ppsId; m_activeVPSId = vpsId; m_activeSPSId = spsId; #endif return true; } else { printf("Warning: tried to activate PPS that refers to a non-existing VPS."); } } else { printf("Warning: tried to activate a PPS that refers to a non-existing SPS."); } } else { printf("Warning: tried to activate non-existing PPS."); } return false; } ProfileTierLevel::ProfileTierLevel() : m_profileSpace (0) , m_tierFlag (false) , m_profileIdc (0) , m_levelIdc (0) , m_progressiveSourceFlag (false) , m_interlacedSourceFlag (false) , m_nonPackedConstraintFlag(false) , m_frameOnlyConstraintFlag(false) { ::memset(m_profileCompatibilityFlag, 0, sizeof(m_profileCompatibilityFlag)); } TComPTL::TComPTL() { ::memset(m_subLayerProfilePresentFlag, 0, sizeof(m_subLayerProfilePresentFlag)); ::memset(m_subLayerLevelPresentFlag, 0, sizeof(m_subLayerLevelPresentFlag )); } #if H_MV Void TComPTL::copyLevelFrom( TComPTL* source ) { getGeneralPTL()->setLevelIdc( source->getGeneralPTL()->getLevelIdc() ); for( Int subLayer = 0; subLayer < 6; subLayer++ ) { setSubLayerLevelPresentFlag( subLayer, source->getSubLayerLevelPresentFlag( subLayer ) ); getSubLayerPTL( subLayer )->setLevelIdc( source->getSubLayerPTL( subLayer )->getLevelIdc() ); } } #endif //! \} #if H_MV TComVPSVUI::TComVPSVUI() { m_crossLayerIrapAlignedFlag = true; m_allLayersIdrAlignedFlag = false; m_bitRatePresentVpsFlag = false; m_picRatePresentVpsFlag = false; for ( Int i = 0; i < MAX_VPS_OP_SETS_PLUS1; i++) { for ( Int j = 0; j < MAX_TLAYER; j++) { m_bitRatePresentFlag [i][j] = false; m_picRatePresentFlag [i][j] = false; m_avgBitRate [i][j] = -1; m_maxBitRate [i][j] = -1; m_constantPicRateIdc [i][j] = -1; m_avgPicRate [i][j] = -1; } } m_ilpRestrictedRefLayersFlag = false; for ( Int i = 0; i < MAX_NUM_LAYERS; i++) { for ( Int j = 0; j < MAX_NUM_LAYERS; j++) { m_tileBoundariesAlignedFlag [i][j] = false; m_minSpatialSegmentOffsetPlus1[i][j] = 0; m_ctuBasedOffsetEnabledFlag [i][j] = false; m_minHorizontalCtuOffsetPlus1 [i][j] = -1; } m_baseLayerParameterSetCompatibilityFlag[i] = false; } for ( Int i = 0; i < MAX_NUM_VIDEO_SIGNAL_INFO; i++ ) { m_videoSignalInfo [i] = NULL; } m_vpsVuiBspHrdPresentFlag = false; m_vpsVuiBspHrdParameters = new TComVpsVuiBspHrdParameters(); } TComVPSVUI::~TComVPSVUI() { for ( Int i = 0; i < MAX_NUM_VIDEO_SIGNAL_INFO; i++ ) { if (m_videoSignalInfo[ i ] != NULL ) delete m_videoSignalInfo[ i ]; m_videoSignalInfo [ i ] = NULL; } if ( m_vpsVuiBspHrdParameters ) delete m_vpsVuiBspHrdParameters; m_vpsVuiBspHrdParameters = NULL; } Void TComVPSVUI::inferVpsVui( Bool encoderFlag ) { // inference of syntax elements that differ from default inference (as done in constructor), when VPS VUI is not present if (!encoderFlag ) { setCrossLayerIrapAlignedFlag( false ); } else { assert( !getCrossLayerIrapAlignedFlag() ); } } Void TComRepFormat::inferChromaAndBitDepth( TComRepFormat* prevRepFormat, Bool encoderFlag ) { if ( !encoderFlag ) { setChromaAndBitDepthVpsPresentFlag( prevRepFormat->getChromaAndBitDepthVpsPresentFlag() ); setSeparateColourPlaneVpsFlag ( prevRepFormat->getSeparateColourPlaneVpsFlag () ); setBitDepthVpsLumaMinus8 ( prevRepFormat->getBitDepthVpsLumaMinus8 () ); setBitDepthVpsChromaMinus8 ( prevRepFormat->getBitDepthVpsChromaMinus8 () ); } else { assert( getChromaAndBitDepthVpsPresentFlag() == prevRepFormat->getChromaAndBitDepthVpsPresentFlag() ); assert( getSeparateColourPlaneVpsFlag () == prevRepFormat->getSeparateColourPlaneVpsFlag () ); assert( getBitDepthVpsLumaMinus8 () == prevRepFormat->getBitDepthVpsLumaMinus8 () ); assert( getBitDepthVpsChromaMinus8 () == prevRepFormat->getBitDepthVpsChromaMinus8 () ); } } Void TComVpsVuiBspHrdParameters::checkLayerInBspFlag( TComVPS* vps, Int h ) { // It is a requirement of bitstream conformance that bitstream partition with index j shall not include // direct or indirect reference layers of any layers in bitstream partition i for any values of i and j // in the range of 0 to num_bitstream_partitions[ h ] ?1, inclusive, such that i is less than j. for ( Int partJ = 0; partJ < getNumBitstreamPartitions( h ); partJ++ ) { for ( Int partI = 0; partI < partJ; partI++ ) { for ( Int layerJ = 0; layerJ < vps->getMaxLayersMinus1(); layerJ++ ) { if ( m_layerInBspFlag[ h ][partJ][layerJ ] ) { for ( Int layerI = 0; layerI < vps->getMaxLayersMinus1(); layerI++ ) { if ( m_layerInBspFlag[ h ][partI][layerI] ) { assert( !vps->getInDirectDependencyFlag( layerI, layerJ ) ); } } } } } } } Void TComVUI::inferVideoSignalInfo( TComVPS* vps, Int layerIdCurr ) { if ( layerIdCurr == 0 || !vps->getVpsVuiPresentFlag() ) { return; } TComVPSVUI* vpsVUI = vps->getVPSVUI(); assert( vpsVUI != NULL ); TComVideoSignalInfo* videoSignalInfo = vpsVUI->getVideoSignalInfo( vpsVUI->getVpsVideoSignalInfoIdx( vps->getLayerIdInVps( layerIdCurr ) ) ); assert( videoSignalInfo != NULL ); setVideoFormat ( videoSignalInfo->getVideoVpsFormat () ); setVideoFullRangeFlag ( videoSignalInfo->getVideoFullRangeVpsFlag () ); setColourPrimaries ( videoSignalInfo->getColourPrimariesVps () ); setTransferCharacteristics( videoSignalInfo->getTransferCharacteristicsVps() ); setMatrixCoefficients ( videoSignalInfo->getMatrixCoeffsVps () ); } TComDpbSize::TComDpbSize() { for (Int i = 0; i < MAX_VPS_OUTPUTLAYER_SETS; i++ ) { m_subLayerFlagInfoPresentFlag[i] = false; for (Int j = 0; j < MAX_TLAYER; j++ ) { m_subLayerDpbInfoPresentFlag [i][j] = ( j == 0) ; m_maxVpsNumReorderPics [i][j] = 0; m_maxVpsLatencyIncreasePlus1 [i][j] = 0; for (Int k = 0; k < MAX_NUM_LAYER_IDS; k++ ) { m_maxVpsDecPicBufferingMinus1[i][k][j] = 0; } } } } #endif