/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TAppEncCfg.cpp \brief Handle encoder configuration parameters */ #include #include #include #include #include "TLibCommon/TComRom.h" #include "TAppEncCfg.h" static istream& operator>>(istream &, Level::Name &); static istream& operator>>(istream &, Level::Tier &); static istream& operator>>(istream &, Profile::Name &); #include "TAppCommon/program_options_lite.h" #include "TLibEncoder/TEncRateCtrl.h" #ifdef WIN32 #define strdup _strdup #endif using namespace std; namespace po = df::program_options_lite; //! \ingroup TAppEncoder //! \{ // ==================================================================================================================== // Constructor / destructor / initialization / destroy // ==================================================================================================================== TAppEncCfg::TAppEncCfg() #if H_MV : m_pchBitstreamFile() #else : m_pchInputFile() , m_pchBitstreamFile() , m_pchReconFile() #endif , m_pchdQPFile() , m_pColumnWidth() , m_pRowHeight() , m_scalingListFile() { #if !H_MV m_aidQP = NULL; #endif m_startOfCodedInterval = NULL; m_codedPivotValue = NULL; m_targetPivotValue = NULL; #if KWU_RC_MADPRED_E0227 m_depthMADPred = 0; #endif } TAppEncCfg::~TAppEncCfg() { #if H_MV for( Int layer = 0; layer < m_aidQP.size(); layer++ ) { if ( m_aidQP[layer] != NULL ) { delete[] m_aidQP[layer]; m_aidQP[layer] = NULL; } } for(Int i = 0; i< m_pchInputFileList.size(); i++ ) { if ( m_pchInputFileList[i] != NULL ) free (m_pchInputFileList[i]); } #else if ( m_aidQP ) { delete[] m_aidQP; } #endif if ( m_startOfCodedInterval ) { delete[] m_startOfCodedInterval; m_startOfCodedInterval = NULL; } if ( m_codedPivotValue ) { delete[] m_codedPivotValue; m_codedPivotValue = NULL; } if ( m_targetPivotValue ) { delete[] m_targetPivotValue; m_targetPivotValue = NULL; } #if !H_MV free(m_pchInputFile); #endif free(m_pchBitstreamFile); #if H_MV for(Int i = 0; i< m_pchReconFileList.size(); i++ ) { if ( m_pchReconFileList[i] != NULL ) free (m_pchReconFileList[i]); } #else free(m_pchReconFile); #endif free(m_pchdQPFile); free(m_pColumnWidth); free(m_pRowHeight); free(m_scalingListFile); #if H_MV for( Int i = 0; i < m_GOPListMvc.size(); i++ ) { if( m_GOPListMvc[i] ) { delete[] m_GOPListMvc[i]; m_GOPListMvc[i] = NULL; } } #endif #if H_3D #if H_3D_VSO if ( m_pchVSOConfig != NULL) free ( m_pchVSOConfig ); #endif if ( m_pchCameraParameterFile != NULL ) free ( m_pchCameraParameterFile ); if ( m_pchBaseViewCameraNumbers != NULL ) free ( m_pchBaseViewCameraNumbers ); #endif } Void TAppEncCfg::create() { } Void TAppEncCfg::destroy() { } std::istringstream &operator>>(std::istringstream &in, GOPEntry &entry) //input { in>>entry.m_sliceType; in>>entry.m_POC; in>>entry.m_QPOffset; in>>entry.m_QPFactor; in>>entry.m_tcOffsetDiv2; in>>entry.m_betaOffsetDiv2; in>>entry.m_temporalId; in>>entry.m_numRefPicsActive; in>>entry.m_numRefPics; for ( Int i = 0; i < entry.m_numRefPics; i++ ) { in>>entry.m_referencePics[i]; } in>>entry.m_interRPSPrediction; #if AUTO_INTER_RPS if (entry.m_interRPSPrediction==1) { in>>entry.m_deltaRPS; in>>entry.m_numRefIdc; for ( Int i = 0; i < entry.m_numRefIdc; i++ ) { in>>entry.m_refIdc[i]; } } else if (entry.m_interRPSPrediction==2) { in>>entry.m_deltaRPS; } #else if (entry.m_interRPSPrediction) { in>>entry.m_deltaRPS; in>>entry.m_numRefIdc; for ( Int i = 0; i < entry.m_numRefIdc; i++ ) { in>>entry.m_refIdc[i]; } } #endif #if H_MV in>>entry.m_numActiveRefLayerPics; for( Int i = 0; i < entry.m_numActiveRefLayerPics; i++ ) { in>>entry.m_interLayerPredLayerIdc[i]; } for( Int i = 0; i < entry.m_numActiveRefLayerPics; i++ ) { in>>entry.m_interViewRefPosL[0][i]; } for( Int i = 0; i < entry.m_numActiveRefLayerPics; i++ ) { in>>entry.m_interViewRefPosL[1][i]; } #endif return in; } static const struct MapStrToProfile { const Char* str; Profile::Name value; } strToProfile[] = { {"none", Profile::NONE}, {"main", Profile::MAIN}, {"main10", Profile::MAIN10}, {"main-still-picture", Profile::MAINSTILLPICTURE}, #if H_MV {"main-stereo", Profile::MAINSTEREO}, {"main-multiview", Profile::MAINMULTIVIEW}, #if H_3D {"main-3d" , Profile::MAIN3D}, #endif #endif }; static const struct MapStrToTier { const Char* str; Level::Tier value; } strToTier[] = { {"main", Level::MAIN}, {"high", Level::HIGH}, }; static const struct MapStrToLevel { const Char* str; Level::Name value; } strToLevel[] = { {"none",Level::NONE}, {"1", Level::LEVEL1}, {"2", Level::LEVEL2}, {"2.1", Level::LEVEL2_1}, {"3", Level::LEVEL3}, {"3.1", Level::LEVEL3_1}, {"4", Level::LEVEL4}, {"4.1", Level::LEVEL4_1}, {"5", Level::LEVEL5}, {"5.1", Level::LEVEL5_1}, {"5.2", Level::LEVEL5_2}, {"6", Level::LEVEL6}, {"6.1", Level::LEVEL6_1}, {"6.2", Level::LEVEL6_2}, }; template static istream& readStrToEnum(P map[], unsigned long mapLen, istream &in, T &val) { string str; in >> str; for (Int i = 0; i < mapLen; i++) { if (str == map[i].str) { val = map[i].value; goto found; } } /* not found */ in.setstate(ios::failbit); found: return in; } static istream& operator>>(istream &in, Profile::Name &profile) { return readStrToEnum(strToProfile, sizeof(strToProfile)/sizeof(*strToProfile), in, profile); } static istream& operator>>(istream &in, Level::Tier &tier) { return readStrToEnum(strToTier, sizeof(strToTier)/sizeof(*strToTier), in, tier); } static istream& operator>>(istream &in, Level::Name &level) { return readStrToEnum(strToLevel, sizeof(strToLevel)/sizeof(*strToLevel), in, level); } // ==================================================================================================================== // Public member functions // ==================================================================================================================== /** \param argc number of arguments \param argv array of arguments \retval true when success */ Bool TAppEncCfg::parseCfg( Int argc, Char* argv[] ) { Bool do_help = false; #if !H_MV string cfg_InputFile; #endif string cfg_BitstreamFile; #if !H_MV string cfg_ReconFile; #endif #if H_MV vector cfg_dimensionLength; #if H_3D cfg_dimensionLength.push_back( 2 ); // depth cfg_dimensionLength.push_back( 32 ); // texture #else cfg_dimensionLength.push_back( 64 ); #endif #endif string cfg_dQPFile; string cfg_ColumnWidth; string cfg_RowHeight; string cfg_ScalingListFile; string cfg_startOfCodedInterval; string cfg_codedPivotValue; string cfg_targetPivotValue; po::Options opts; opts.addOptions() ("help", do_help, false, "this help text") ("c", po::parseConfigFile, "configuration file name") // File, I/O and source parameters #if H_MV ("InputFile_%d,i_%d", m_pchInputFileList, (char *) 0 , MAX_NUM_LAYER_IDS , "original Yuv input file name %d") #else ("InputFile,i", cfg_InputFile, string(""), "Original YUV input file name") #endif ("BitstreamFile,b", cfg_BitstreamFile, string(""), "Bitstream output file name") #if H_MV ("ReconFile_%d,o_%d", m_pchReconFileList, (char *) 0 , MAX_NUM_LAYER_IDS , "reconstructed Yuv output file name %d") #else ("ReconFile,o", cfg_ReconFile, string(""), "Reconstructed YUV output file name") #endif #if H_MV ("NumberOfLayers", m_numberOfLayers , 1, "Number of layers") #if !H_3D ("ScalabilityMask", m_scalabilityMask , 2 , "Scalability Mask") #else ("ScalabilityMask", m_scalabilityMask , 3 , "Scalability Mask, 1: Texture 3: Texture + Depth ") #endif ("DimensionIdLen", m_dimensionIdLen , cfg_dimensionLength , "Number of bits used to store dimensions Id") ("ViewOrderIndex", m_viewOrderIndex , std::vector(1,0), "View Order Index per layer") ("ViewId", m_viewId , std::vector(1,0), "View Id per View Order Index") #if H_3D ("DepthFlag", m_depthFlag , std::vector(1,0), "Depth Flag") #if H_3D_DIM ("DMM", m_useDMM, true, "Depth intra model modes") ("SDC", m_useSDC, true, "Simplified depth coding") ("DLT", m_useDLT, true, "Depth lookup table") #endif #endif ("LayerIdInNuh", m_layerIdInNuh , std::vector(1,0), "LayerId in Nuh") ("SplittingFlag", m_splittingFlag , false , "Splitting Flag") // Layer Sets + Output Layer Sets + Profile Tier Level ("VpsNumLayerSets", m_vpsNumLayerSets , 1 , "Number of layer sets") ("LayerIdsInSet_%d", m_layerIdsInSets , std::vector(1,0), MAX_VPS_OP_SETS_PLUS1 ,"LayerIds of Layer set") ("DefaultTargetOutputLayerIdc" , m_defaultTargetOutputLayerIdc , 0, "Specifies output layers of layer sets, 0: output all layers, 1: output highest layer, 2: specified by LayerIdsInDefOutputLayerSet") ("OutputLayerSetIdx", m_outputLayerSetIdx , std::vector(0,0), "Indices of layer sets used as additional output layer sets") ("LayerIdsInAddOutputLayerSet_%d", m_layerIdsInAddOutputLayerSet , std::vector(0,0), MAX_VPS_ADD_OUTPUT_LAYER_SETS, "Indices in VPS of output layers in additional output layer set") ("LayerIdsInDefOutputLayerSet_%d", m_layerIdsInDefOutputLayerSet , std::vector(0,0), MAX_VPS_OP_SETS_PLUS1, "Indices in VPS of output layers in layer set") ("ProfileLevelTierIdx", m_profileLevelTierIdx, std::vector(1,0), "Indices to profile level tier") // Layer dependencies ("DirectRefLayers_%d", m_directRefLayers , std::vector(0,0), MAX_NUM_LAYERS, "LayerIds of direct reference layers") ("DependencyTypes_%d", m_dependencyTypes , std::vector(0,0), MAX_NUM_LAYERS, "Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion") #endif ("SourceWidth,-wdt", m_iSourceWidth, 0, "Source picture width") ("SourceHeight,-hgt", m_iSourceHeight, 0, "Source picture height") ("InputBitDepth", m_inputBitDepthY, 8, "Bit-depth of input file") ("OutputBitDepth", m_outputBitDepthY, 0, "Bit-depth of output file (default:InternalBitDepth)") ("InternalBitDepth", m_internalBitDepthY, 0, "Bit-depth the codec operates at. (default:InputBitDepth)" "If different to InputBitDepth, source data will be converted") ("InputBitDepthC", m_inputBitDepthC, 0, "As per InputBitDepth but for chroma component. (default:InputBitDepth)") ("OutputBitDepthC", m_outputBitDepthC, 0, "As per OutputBitDepth but for chroma component. (default:InternalBitDepthC)") ("InternalBitDepthC", m_internalBitDepthC, 0, "As per InternalBitDepth but for chroma component. (default:IntrenalBitDepth)") ("ConformanceMode", m_conformanceMode, 0, "Window conformance mode (0: no window, 1:automatic padding, 2:padding, 3:conformance") ("HorizontalPadding,-pdx",m_aiPad[0], 0, "Horizontal source padding for conformance window mode 2") ("VerticalPadding,-pdy", m_aiPad[1], 0, "Vertical source padding for conformance window mode 2") ("ConfLeft", m_confLeft, 0, "Left offset for window conformance mode 3") ("ConfRight", m_confRight, 0, "Right offset for window conformance mode 3") ("ConfTop", m_confTop, 0, "Top offset for window conformance mode 3") ("ConfBottom", m_confBottom, 0, "Bottom offset for window conformance mode 3") ("FrameRate,-fr", m_iFrameRate, 0, "Frame rate") ("FrameSkip,-fs", m_FrameSkip, 0u, "Number of frames to skip at start of input YUV") ("FramesToBeEncoded,f", m_framesToBeEncoded, 0, "Number of frames to be encoded (default=all)") //Field coding parameters ("FieldCoding", m_isField, false, "Signals if it's a field based coding") ("TopFieldFirst, Tff", m_isTopFieldFirst, false, "In case of field based coding, signals whether if it's a top field first or not") // Profile and level ("Profile", m_profile, Profile::NONE, "Profile to be used when encoding (Incomplete)") ("Level", m_level, Level::NONE, "Level limit to be used, eg 5.1 (Incomplete)") ("Tier", m_levelTier, Level::MAIN, "Tier to use for interpretation of --Level") ("ProgressiveSource", m_progressiveSourceFlag, false, "Indicate that source is progressive") ("InterlacedSource", m_interlacedSourceFlag, false, "Indicate that source is interlaced") ("NonPackedSource", m_nonPackedConstraintFlag, false, "Indicate that source does not contain frame packing") ("FrameOnly", m_frameOnlyConstraintFlag, false, "Indicate that the bitstream contains only frames") // Unit definition parameters ("MaxCUWidth", m_uiMaxCUWidth, 64u) ("MaxCUHeight", m_uiMaxCUHeight, 64u) // todo: remove defaults from MaxCUSize ("MaxCUSize,s", m_uiMaxCUWidth, 64u, "Maximum CU size") ("MaxCUSize,s", m_uiMaxCUHeight, 64u, "Maximum CU size") ("MaxPartitionDepth,h", m_uiMaxCUDepth, 4u, "CU depth") ("QuadtreeTULog2MaxSize", m_uiQuadtreeTULog2MaxSize, 6u, "Maximum TU size in logarithm base 2") ("QuadtreeTULog2MinSize", m_uiQuadtreeTULog2MinSize, 2u, "Minimum TU size in logarithm base 2") ("QuadtreeTUMaxDepthIntra", m_uiQuadtreeTUMaxDepthIntra, 1u, "Depth of TU tree for intra CUs") ("QuadtreeTUMaxDepthInter", m_uiQuadtreeTUMaxDepthInter, 2u, "Depth of TU tree for inter CUs") #if H_MV // Coding structure parameters ("IntraPeriod,-ip", m_iIntraPeriod,std::vector(1,-1), "Intra period in frames, (-1: only first frame), per layer") #else // Coding structure paramters ("IntraPeriod,-ip", m_iIntraPeriod, -1, "Intra period in frames, (-1: only first frame)") #endif ("DecodingRefreshType,-dr", m_iDecodingRefreshType, 0, "Intra refresh type (0:none 1:CRA 2:IDR)") ("GOPSize,g", m_iGOPSize, 1, "GOP size of temporal structure") // motion options ("FastSearch", m_iFastSearch, 1, "0:Full search 1:Diamond 2:PMVFAST") ("SearchRange,-sr", m_iSearchRange, 96, "Motion search range") ("BipredSearchRange", m_bipredSearchRange, 4, "Motion search range for bipred refinement") ("HadamardME", m_bUseHADME, true, "Hadamard ME for fractional-pel") ("ASR", m_bUseASR, false, "Adaptive motion search range") // Mode decision parameters ("LambdaModifier0,-LM0", m_adLambdaModifier[ 0 ], ( Double )1.0, "Lambda modifier for temporal layer 0") ("LambdaModifier1,-LM1", m_adLambdaModifier[ 1 ], ( Double )1.0, "Lambda modifier for temporal layer 1") ("LambdaModifier2,-LM2", m_adLambdaModifier[ 2 ], ( Double )1.0, "Lambda modifier for temporal layer 2") ("LambdaModifier3,-LM3", m_adLambdaModifier[ 3 ], ( Double )1.0, "Lambda modifier for temporal layer 3") ("LambdaModifier4,-LM4", m_adLambdaModifier[ 4 ], ( Double )1.0, "Lambda modifier for temporal layer 4") ("LambdaModifier5,-LM5", m_adLambdaModifier[ 5 ], ( Double )1.0, "Lambda modifier for temporal layer 5") ("LambdaModifier6,-LM6", m_adLambdaModifier[ 6 ], ( Double )1.0, "Lambda modifier for temporal layer 6") ("LambdaModifier7,-LM7", m_adLambdaModifier[ 7 ], ( Double )1.0, "Lambda modifier for temporal layer 7") /* Quantization parameters */ #if H_MV ("QP,q", m_fQP, std::vector(1,30.0), "Qp values for each layer, if value is float, QP is switched once during encoding") #else ("QP,q", m_fQP, 30.0, "Qp value, if value is float, QP is switched once during encoding") #endif ("DeltaQpRD,-dqr",m_uiDeltaQpRD, 0u, "max dQp offset for slice") ("MaxDeltaQP,d", m_iMaxDeltaQP, 0, "max dQp offset for block") ("MaxCuDQPDepth,-dqd", m_iMaxCuDQPDepth, 0, "max depth for a minimum CuDQP") ("CbQpOffset,-cbqpofs", m_cbQpOffset, 0, "Chroma Cb QP Offset") ("CrQpOffset,-crqpofs", m_crQpOffset, 0, "Chroma Cr QP Offset") #if ADAPTIVE_QP_SELECTION ("AdaptiveQpSelection,-aqps", m_bUseAdaptQpSelect, false, "AdaptiveQpSelection") #endif ("AdaptiveQP,-aq", m_bUseAdaptiveQP, false, "QP adaptation based on a psycho-visual model") ("MaxQPAdaptationRange,-aqr", m_iQPAdaptationRange, 6, "QP adaptation range") ("dQPFile,m", cfg_dQPFile, string(""), "dQP file name") ("RDOQ", m_useRDOQ, true ) ("RDOQTS", m_useRDOQTS, true ) ("RDpenalty", m_rdPenalty, 0, "RD-penalty for 32x32 TU for intra in non-intra slices. 0:disbaled 1:RD-penalty 2:maximum RD-penalty") // Deblocking filter parameters #if H_MV ("LoopFilterDisable", m_bLoopFilterDisable, std::vector(1,false), "Disable Loop Filter per Layer" ) #else ("LoopFilterDisable", m_bLoopFilterDisable, false ) #endif ("LoopFilterOffsetInPPS", m_loopFilterOffsetInPPS, false ) ("LoopFilterBetaOffset_div2", m_loopFilterBetaOffsetDiv2, 0 ) ("LoopFilterTcOffset_div2", m_loopFilterTcOffsetDiv2, 0 ) ("DeblockingFilterControlPresent", m_DeblockingFilterControlPresent, false ) ("DeblockingFilterMetric", m_DeblockingFilterMetric, false ) #if H_3D_ARP ("AdvMultiviewResPred", m_uiUseAdvResPred, (UInt)1, "Usage of Advanced Residual Prediction" ) #endif #if H_3D_SPIVMP ("SubPULog2Size", m_iSubPULog2Size, (Int)3, "Sub-PU size index: 2^n") ("SubPUMPILog2Size", m_iSubPUMPILog2Size, (Int)3, "Sub-PU MPI size index: 2^n") #endif #if H_3D_IC ("IlluCompEnable", m_abUseIC, true, "Enable illumination compensation") #endif #if H_3D_INTER_SDC ("InterSDC", m_bDepthInterSDCFlag, true, "Enable depth inter SDC") #endif #if H_3D_DBBP ("DBBP", m_bUseDBBP, true, "Enable depth-based block partitioning" ) #endif #if H_3D_IV_MERGE ("MPI", m_bMPIFlag, true, "Enable MPI") #endif // Coding tools ("AMP", m_enableAMP, true, "Enable asymmetric motion partitions") ("TransformSkip", m_useTransformSkip, false, "Intra transform skipping") ("TransformSkipFast", m_useTransformSkipFast, false, "Fast intra transform skipping") #if H_MV ("SAO", m_bUseSAO, std::vector(1,true), "Enable Sample Adaptive Offset per Layer") #else ("SAO", m_bUseSAO, true, "Enable Sample Adaptive Offset") #endif ("MaxNumOffsetsPerPic", m_maxNumOffsetsPerPic, 2048, "Max number of SAO offset per picture (Default: 2048)") ("SAOLcuBoundary", m_saoLcuBoundary, false, "0: right/bottom LCU boundary areas skipped from SAO parameter estimation, 1: non-deblocked pixels are used for those areas") ("SliceMode", m_sliceMode, 0, "0: Disable all Recon slice limits, 1: Enforce max # of LCUs, 2: Enforce max # of bytes, 3:specify tiles per dependent slice") ("SliceArgument", m_sliceArgument, 0, "Depending on SliceMode being:" "\t1: max number of CTUs per slice" "\t2: max number of bytes per slice" "\t3: max number of tiles per slice") ("SliceSegmentMode", m_sliceSegmentMode, 0, "0: Disable all slice segment limits, 1: Enforce max # of LCUs, 2: Enforce max # of bytes, 3:specify tiles per dependent slice") ("SliceSegmentArgument", m_sliceSegmentArgument, 0, "Depending on SliceSegmentMode being:" "\t1: max number of CTUs per slice segment" "\t2: max number of bytes per slice segment" "\t3: max number of tiles per slice segment") ("LFCrossSliceBoundaryFlag", m_bLFCrossSliceBoundaryFlag, true) ("ConstrainedIntraPred", m_bUseConstrainedIntraPred, false, "Constrained Intra Prediction") ("PCMEnabledFlag", m_usePCM, false) ("PCMLog2MaxSize", m_pcmLog2MaxSize, 5u) ("PCMLog2MinSize", m_uiPCMLog2MinSize, 3u) ("PCMInputBitDepthFlag", m_bPCMInputBitDepthFlag, true) ("PCMFilterDisableFlag", m_bPCMFilterDisableFlag, false) ("WeightedPredP,-wpP", m_useWeightedPred, false, "Use weighted prediction in P slices") ("WeightedPredB,-wpB", m_useWeightedBiPred, false, "Use weighted (bidirectional) prediction in B slices") ("Log2ParallelMergeLevel", m_log2ParallelMergeLevel, 2u, "Parallel merge estimation region") ("UniformSpacingIdc", m_iUniformSpacingIdr, 0, "Indicates if the column and row boundaries are distributed uniformly") ("NumTileColumnsMinus1", m_iNumColumnsMinus1, 0, "Number of columns in a picture minus 1") ("ColumnWidthArray", cfg_ColumnWidth, string(""), "Array containing ColumnWidth values in units of LCU") ("NumTileRowsMinus1", m_iNumRowsMinus1, 0, "Number of rows in a picture minus 1") ("RowHeightArray", cfg_RowHeight, string(""), "Array containing RowHeight values in units of LCU") ("LFCrossTileBoundaryFlag", m_bLFCrossTileBoundaryFlag, true, "1: cross-tile-boundary loop filtering. 0:non-cross-tile-boundary loop filtering") ("WaveFrontSynchro", m_iWaveFrontSynchro, 0, "0: no synchro; 1 synchro with TR; 2 TRR etc") ("ScalingList", m_useScalingListId, 0, "0: no scaling list, 1: default scaling lists, 2: scaling lists specified in ScalingListFile") ("ScalingListFile", cfg_ScalingListFile, string(""), "Scaling list file name") ("SignHideFlag,-SBH", m_signHideFlag, 1) ("MaxNumMergeCand", m_maxNumMergeCand, 5u, "Maximum number of merge candidates") /* Misc. */ ("SEIDecodedPictureHash", m_decodedPictureHashSEIEnabled, 0, "Control generation of decode picture hash SEI messages\n" "\t3: checksum\n" "\t2: CRC\n" "\t1: use MD5\n" "\t0: disable") ("SEIpictureDigest", m_decodedPictureHashSEIEnabled, 0, "deprecated alias for SEIDecodedPictureHash") ("TMVPMode", m_TMVPModeId, 1, "TMVP mode 0: TMVP disable for all slices. 1: TMVP enable for all slices (default) 2: TMVP enable for certain slices only") ("FEN", m_bUseFastEnc, false, "fast encoder setting") ("ECU", m_bUseEarlyCU, false, "Early CU setting") ("FDM", m_useFastDecisionForMerge, true, "Fast decision for Merge RD Cost") ("CFM", m_bUseCbfFastMode, false, "Cbf fast mode setting") ("ESD", m_useEarlySkipDetection, false, "Early SKIP detection setting") ( "RateControl", m_RCEnableRateControl, false, "Rate control: enable rate control" ) ( "TargetBitrate", m_RCTargetBitrate, 0, "Rate control: target bitrate" ) ( "KeepHierarchicalBit", m_RCKeepHierarchicalBit, 0, "Rate control: 0: equal bit allocation; 1: fixed ratio bit allocation; 2: adaptive ratio bit allocation" ) ( "LCULevelRateControl", m_RCLCULevelRC, true, "Rate control: true: LCU level RC; false: picture level RC" ) ( "RCLCUSeparateModel", m_RCUseLCUSeparateModel, true, "Rate control: use LCU level separate R-lambda model" ) ( "InitialQP", m_RCInitialQP, 0, "Rate control: initial QP" ) ( "RCForceIntraQP", m_RCForceIntraQP, false, "Rate control: force intra QP to be equal to initial QP" ) #if KWU_RC_VIEWRC_E0227 ("ViewWiseTargetBits, -vtbr" , m_viewTargetBits, std::vector(1, 32), "View-wise target bit-rate setting") ("TargetBitAssign, -ta", m_viewWiseRateCtrl, false, "View-wise rate control on/off") #endif #if KWU_RC_MADPRED_E0227 ("DepthMADPred, -dm", m_depthMADPred, (UInt)0, "Depth based MAD prediction on/off") #endif #if H_MV // VPS VUI ("VpsVuiPresentFlag" , m_vpsVuiPresentFlag , false , "VpsVuiPresentFlag ") ("CrossLayerPicTypeAlignedFlag", m_crossLayerPicTypeAlignedFlag, false , "CrossLayerPicTypeAlignedFlag") // Could actually be derived by the encoder ("CrossLayerIrapAlignedFlag" , m_crossLayerIrapAlignedFlag , false , "CrossLayerIrapAlignedFlag ") // Could actually be derived by the encoder ("AllLayersIdrAlignedFlag" , m_allLayersIdrAlignedFlag , false , "CrossLayerIrapAlignedFlag ") // Could actually be derived by the encoder ("BitRatePresentVpsFlag" , m_bitRatePresentVpsFlag , false , "BitRatePresentVpsFlag ") ("PicRatePresentVpsFlag" , m_picRatePresentVpsFlag , false , "PicRatePresentVpsFlag ") ("BitRatePresentFlag" , m_bitRatePresentFlag , std::vector< Bool >(1,0) ,MAX_VPS_OP_SETS_PLUS1, "BitRatePresentFlag per sub layer for the N-th layer set") ("PicRatePresentFlag" , m_picRatePresentFlag , std::vector< Bool >(1,0) ,MAX_VPS_OP_SETS_PLUS1, "PicRatePresentFlag per sub layer for the N-th layer set") ("AvgBitRate" , m_avgBitRate , std::vector< Int >(1,0) ,MAX_VPS_OP_SETS_PLUS1, "AvgBitRate per sub layer for the N-th layer set") ("MaxBitRate" , m_maxBitRate , std::vector< Int >(1,0) ,MAX_VPS_OP_SETS_PLUS1, "MaxBitRate per sub layer for the N-th layer set") ("ConstantPicRateIdc" , m_constantPicRateIdc , std::vector< Int >(1,0) ,MAX_VPS_OP_SETS_PLUS1, "ConstantPicRateIdc per sub layer for the N-th layer set") ("AvgPicRate" , m_avgPicRate , std::vector< Int >(1,0) ,MAX_VPS_OP_SETS_PLUS1, "AvgPicRate per sub layer for the N-th layer set") ("TilesNotInUseFlag" , m_tilesNotInUseFlag , true , "TilesNotInUseFlag ") ("TilesInUseFlag" , m_tilesInUseFlag , std::vector< Bool >(1,false) , "TilesInUseFlag ") ("LoopFilterNotAcrossTilesFlag" , m_loopFilterNotAcrossTilesFlag , std::vector< Bool >(1,false) , "LoopFilterNotAcrossTilesFlag ") ("WppNotInUseFlag" , m_wppNotInUseFlag , true , "WppNotInUseFlag ") ("WppInUseFlag" , m_wppInUseFlag , std::vector< Bool >(1,0) , "WppInUseFlag ") ("TileBoundariesAlignedFlag" , m_tileBoundariesAlignedFlag , std::vector< Bool >(1,0) ,MAX_NUM_LAYERS , "TileBoundariesAlignedFlag per direct reference for the N-th layer") ("IlpRestrictedRefLayersFlag" , m_ilpRestrictedRefLayersFlag , false , "IlpRestrictedRefLayersFlag") ("MinSpatialSegmentOffsetPlus1", m_minSpatialSegmentOffsetPlus1, std::vector< Int >(1,0) ,MAX_NUM_LAYERS , "MinSpatialSegmentOffsetPlus1 per direct reference for the N-th layer") ("CtuBasedOffsetEnabledFlag" , m_ctuBasedOffsetEnabledFlag , std::vector< Bool >(1,0) ,MAX_NUM_LAYERS , "CtuBasedOffsetEnabledFlag per direct reference for the N-th layer") ("MinHorizontalCtuOffsetPlus1" , m_minHorizontalCtuOffsetPlus1 , std::vector< Int >(1,0) ,MAX_NUM_LAYERS , "MinHorizontalCtuOffsetPlus1 per direct reference for the N-th layer") #endif ("TransquantBypassEnableFlag", m_TransquantBypassEnableFlag, false, "transquant_bypass_enable_flag indicator in PPS") ("CUTransquantBypassFlagForce", m_CUTransquantBypassFlagForce, false, "Force transquant bypass mode, when transquant_bypass_enable_flag is enabled") ("RecalculateQPAccordingToLambda", m_recalculateQPAccordingToLambda, false, "Recalculate QP values according to lambda values. Do not suggest to be enabled in all intra case") ("StrongIntraSmoothing,-sis", m_useStrongIntraSmoothing, true, "Enable strong intra smoothing for 32x32 blocks") ("SEIActiveParameterSets", m_activeParameterSetsSEIEnabled, 0, "Enable generation of active parameter sets SEI messages") ("VuiParametersPresent,-vui", m_vuiParametersPresentFlag, false, "Enable generation of vui_parameters()") ("AspectRatioInfoPresent", m_aspectRatioInfoPresentFlag, false, "Signals whether aspect_ratio_idc is present") ("AspectRatioIdc", m_aspectRatioIdc, 0, "aspect_ratio_idc") ("SarWidth", m_sarWidth, 0, "horizontal size of the sample aspect ratio") ("SarHeight", m_sarHeight, 0, "vertical size of the sample aspect ratio") ("OverscanInfoPresent", m_overscanInfoPresentFlag, false, "Indicates whether conformant decoded pictures are suitable for display using overscan\n") ("OverscanAppropriate", m_overscanAppropriateFlag, false, "Indicates whether conformant decoded pictures are suitable for display using overscan\n") ("VideoSignalTypePresent", m_videoSignalTypePresentFlag, false, "Signals whether video_format, video_full_range_flag, and colour_description_present_flag are present") ("VideoFormat", m_videoFormat, 5, "Indicates representation of pictures") ("VideoFullRange", m_videoFullRangeFlag, false, "Indicates the black level and range of luma and chroma signals") ("ColourDescriptionPresent", m_colourDescriptionPresentFlag, false, "Signals whether colour_primaries, transfer_characteristics and matrix_coefficients are present") ("ColourPrimaries", m_colourPrimaries, 2, "Indicates chromaticity coordinates of the source primaries") ("TransferCharateristics", m_transferCharacteristics, 2, "Indicates the opto-electronic transfer characteristics of the source") ("MatrixCoefficients", m_matrixCoefficients, 2, "Describes the matrix coefficients used in deriving luma and chroma from RGB primaries") ("ChromaLocInfoPresent", m_chromaLocInfoPresentFlag, false, "Signals whether chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are present") ("ChromaSampleLocTypeTopField", m_chromaSampleLocTypeTopField, 0, "Specifies the location of chroma samples for top field") ("ChromaSampleLocTypeBottomField", m_chromaSampleLocTypeBottomField, 0, "Specifies the location of chroma samples for bottom field") ("NeutralChromaIndication", m_neutralChromaIndicationFlag, false, "Indicates that the value of all decoded chroma samples is equal to 1<<(BitDepthCr-1)") ("DefaultDisplayWindowFlag", m_defaultDisplayWindowFlag, false, "Indicates the presence of the Default Window parameters") ("DefDispWinLeftOffset", m_defDispWinLeftOffset, 0, "Specifies the left offset of the default display window from the conformance window") ("DefDispWinRightOffset", m_defDispWinRightOffset, 0, "Specifies the right offset of the default display window from the conformance window") ("DefDispWinTopOffset", m_defDispWinTopOffset, 0, "Specifies the top offset of the default display window from the conformance window") ("DefDispWinBottomOffset", m_defDispWinBottomOffset, 0, "Specifies the bottom offset of the default display window from the conformance window") ("FrameFieldInfoPresentFlag", m_frameFieldInfoPresentFlag, false, "Indicates that pic_struct and field coding related values are present in picture timing SEI messages") ("PocProportionalToTimingFlag", m_pocProportionalToTimingFlag, false, "Indicates that the POC value is proportional to the output time w.r.t. first picture in CVS") ("NumTicksPocDiffOneMinus1", m_numTicksPocDiffOneMinus1, 0, "Number of ticks minus 1 that for a POC difference of one") ("BitstreamRestriction", m_bitstreamRestrictionFlag, false, "Signals whether bitstream restriction parameters are present") ("TilesFixedStructure", m_tilesFixedStructureFlag, false, "Indicates that each active picture parameter set has the same values of the syntax elements related to tiles") ("MotionVectorsOverPicBoundaries", m_motionVectorsOverPicBoundariesFlag, false, "Indicates that no samples outside the picture boundaries are used for inter prediction") ("MaxBytesPerPicDenom", m_maxBytesPerPicDenom, 2, "Indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units associated with any coded picture") ("MaxBitsPerMinCuDenom", m_maxBitsPerMinCuDenom, 1, "Indicates an upper bound for the number of bits of coding_unit() data") ("Log2MaxMvLengthHorizontal", m_log2MaxMvLengthHorizontal, 15, "Indicate the maximum absolute value of a decoded horizontal MV component in quarter-pel luma units") ("Log2MaxMvLengthVertical", m_log2MaxMvLengthVertical, 15, "Indicate the maximum absolute value of a decoded vertical MV component in quarter-pel luma units") ("SEIRecoveryPoint", m_recoveryPointSEIEnabled, 0, "Control generation of recovery point SEI messages") ("SEIBufferingPeriod", m_bufferingPeriodSEIEnabled, 0, "Control generation of buffering period SEI messages") ("SEIPictureTiming", m_pictureTimingSEIEnabled, 0, "Control generation of picture timing SEI messages") ("SEIToneMappingInfo", m_toneMappingInfoSEIEnabled, false, "Control generation of Tone Mapping SEI messages") ("SEIToneMapId", m_toneMapId, 0, "Specifies Id of Tone Mapping SEI message for a given session") ("SEIToneMapCancelFlag", m_toneMapCancelFlag, false, "Indicates that Tone Mapping SEI message cancels the persistance or follows") ("SEIToneMapPersistenceFlag", m_toneMapPersistenceFlag, true, "Specifies the persistence of the Tone Mapping SEI message") ("SEIToneMapCodedDataBitDepth", m_toneMapCodedDataBitDepth, 8, "Specifies Coded Data BitDepth of Tone Mapping SEI messages") ("SEIToneMapTargetBitDepth", m_toneMapTargetBitDepth, 8, "Specifies Output BitDepth of Tome mapping function") ("SEIToneMapModelId", m_toneMapModelId, 0, "Specifies Model utilized for mapping coded data into target_bit_depth range\n" "\t0: linear mapping with clipping\n" "\t1: sigmoidal mapping\n" "\t2: user-defined table mapping\n" "\t3: piece-wise linear mapping\n" "\t4: luminance dynamic range information ") ("SEIToneMapMinValue", m_toneMapMinValue, 0, "Specifies the minimum value in mode 0") ("SEIToneMapMaxValue", m_toneMapMaxValue, 1023, "Specifies the maxmum value in mode 0") ("SEIToneMapSigmoidMidpoint", m_sigmoidMidpoint, 512, "Specifies the centre point in mode 1") ("SEIToneMapSigmoidWidth", m_sigmoidWidth, 960, "Specifies the distance between 5% and 95% values of the target_bit_depth in mode 1") ("SEIToneMapStartOfCodedInterval", cfg_startOfCodedInterval, string(""), "Array of user-defined mapping table") ("SEIToneMapNumPivots", m_numPivots, 0, "Specifies the number of pivot points in mode 3") ("SEIToneMapCodedPivotValue", cfg_codedPivotValue, string(""), "Array of pivot point") ("SEIToneMapTargetPivotValue", cfg_targetPivotValue, string(""), "Array of pivot point") ("SEIToneMapCameraIsoSpeedIdc", m_cameraIsoSpeedIdc, 0, "Indicates the camera ISO speed for daylight illumination") ("SEIToneMapCameraIsoSpeedValue", m_cameraIsoSpeedValue, 400, "Specifies the camera ISO speed for daylight illumination of Extended_ISO") ("SEIToneMapExposureCompensationValueSignFlag", m_exposureCompensationValueSignFlag, 0, "Specifies the sign of ExposureCompensationValue") ("SEIToneMapExposureCompensationValueNumerator", m_exposureCompensationValueNumerator, 0, "Specifies the numerator of ExposureCompensationValue") ("SEIToneMapExposureCompensationValueDenomIdc", m_exposureCompensationValueDenomIdc, 2, "Specifies the denominator of ExposureCompensationValue") ("SEIToneMapRefScreenLuminanceWhite", m_refScreenLuminanceWhite, 350, "Specifies reference screen brightness setting in units of candela per square metre") ("SEIToneMapExtendedRangeWhiteLevel", m_extendedRangeWhiteLevel, 800, "Indicates the luminance dynamic range") ("SEIToneMapNominalBlackLevelLumaCodeValue", m_nominalBlackLevelLumaCodeValue, 16, "Specifies luma sample value of the nominal black level assigned decoded pictures") ("SEIToneMapNominalWhiteLevelLumaCodeValue", m_nominalWhiteLevelLumaCodeValue, 235, "Specifies luma sample value of the nominal white level assigned decoded pictures") ("SEIToneMapExtendedWhiteLevelLumaCodeValue", m_extendedWhiteLevelLumaCodeValue, 300, "Specifies luma sample value of the extended dynamic range assigned decoded pictures") ("SEIFramePacking", m_framePackingSEIEnabled, 0, "Control generation of frame packing SEI messages") ("SEIFramePackingType", m_framePackingSEIType, 0, "Define frame packing arrangement\n" "\t0: checkerboard - pixels alternatively represent either frames\n" "\t1: column alternation - frames are interlaced by column\n" "\t2: row alternation - frames are interlaced by row\n" "\t3: side by side - frames are displayed horizontally\n" "\t4: top bottom - frames are displayed vertically\n" "\t5: frame alternation - one frame is alternated with the other") ("SEIFramePackingId", m_framePackingSEIId, 0, "Id of frame packing SEI message for a given session") ("SEIFramePackingQuincunx", m_framePackingSEIQuincunx, 0, "Indicate the presence of a Quincunx type video frame") ("SEIFramePackingInterpretation", m_framePackingSEIInterpretation, 0, "Indicate the interpretation of the frame pair\n" "\t0: unspecified\n" "\t1: stereo pair, frame0 represents left view\n" "\t2: stereo pair, frame0 represents right view") ("SEIDisplayOrientation", m_displayOrientationSEIAngle, 0, "Control generation of display orientation SEI messages\n" "\tN: 0 < N < (2^16 - 1) enable display orientation SEI message with anticlockwise_rotation = N and display_orientation_repetition_period = 1\n" "\t0: disable") ("SEITemporalLevel0Index", m_temporalLevel0IndexSEIEnabled, 0, "Control generation of temporal level 0 index SEI messages") ("SEIGradualDecodingRefreshInfo", m_gradualDecodingRefreshInfoEnabled, 0, "Control generation of gradual decoding refresh information SEI message") ("SEIDecodingUnitInfo", m_decodingUnitInfoSEIEnabled, 0, "Control generation of decoding unit information SEI message.") ("SEISOPDescription", m_SOPDescriptionSEIEnabled, 0, "Control generation of SOP description SEI messages") ("SEIScalableNesting", m_scalableNestingSEIEnabled, 0, "Control generation of scalable nesting SEI messages") ("SubBitstreamPropSEIEnabled", m_subBistreamPropSEIEnabled, false ,"Enable signaling of sub-bitstream property SEI message") ("SEISubBitstreamNumAdditionalSubStreams", m_sbPropNumAdditionalSubStreams,0, "Number of substreams for which additional information is signalled") ("SEISubBitstreamSubBitstreamMode", m_sbPropSubBitstreamMode, std::vector< Int >(1,0) ,"Specifies mode of generation of the i-th sub-bitstream (0 or 1)") ("SEISubBitstreamOutputLayerSetIdxToVps", m_sbPropOutputLayerSetIdxToVps, std::vector< Int >(1,0) ,"Specifies output layer set index of the i-th sub-bitstream ") ("SEISubBitstreamHighestSublayerId", m_sbPropHighestSublayerId, std::vector< Int >(1,0) ,"Specifies highest TemporalId of the i-th sub-bitstream") ("SEISubBitstreamAvgBitRate", m_sbPropAvgBitRate, std::vector< Int >(1,0) ,"Specifies average bit rate of the i-th sub-bitstream") ("SEISubBitstreamMaxBitRate", m_sbPropMaxBitRate, std::vector< Int >(1,0) ,"Specifies maximum bit rate of the i-th sub-bitstream") #if H_3D ("CameraParameterFile,cpf", m_pchCameraParameterFile, (Char *) 0, "Camera Parameter File Name") ("BaseViewCameraNumbers" , m_pchBaseViewCameraNumbers, (Char *) 0, "Numbers of base views") ("CodedCamParsPrecision", m_iCodedCamParPrecision, STD_CAM_PARAMETERS_PRECISION, "precision for coding of camera parameters (in units of 2^(-x) luma samples)" ) /* View Synthesis Optimization */ #if H_3D_VSO ("VSOConfig", m_pchVSOConfig , (Char *) 0 , "VSO configuration") ("VSO", m_bUseVSO , false , "Use VSO" ) ("VSOMode", m_uiVSOMode , (UInt) 4 , "VSO Mode") ("LambdaScaleVSO", m_dLambdaScaleVSO , (Double) 1 , "Lambda Scaling for VSO") ("VSOLSTable", m_bVSOLSTable , true , "Depth QP dependent video/depth rate allocation by Lagrange multiplier" ) ("ForceLambdaScaleVSO", m_bForceLambdaScaleVSO , false , "Force using Lambda Scale VSO also in non-VSO-Mode") ("AllowNegDist", m_bAllowNegDist , true , "Allow negative Distortion in VSO") ("UseEstimatedVSD", m_bUseEstimatedVSD , true , "Model based VSD estimation instead of rendering based for some encoder decisions" ) ("VSOEarlySkip", m_bVSOEarlySkip , true , "Early skip of VSO computation if synthesis error assumed to be zero" ) ("WVSO", m_bUseWVSO , true , "Use depth fidelity term for VSO" ) ("VSOWeight", m_iVSOWeight , 10 , "Synthesized View Distortion Change weight" ) ("VSDWeight", m_iVSDWeight , 1 , "View Synthesis Distortion estimate weight" ) ("DWeight", m_iDWeight , 1 , "Depth Distortion weight" ) #endif //HHI_VSO #if H_3D_QTLPC ("QTL", m_bUseQTL , true , "Use depth Quadtree Limitation" ) ("PC", m_bUsePC , true , "Use Predictive Coding with QTL" ) #endif #if H_3D_IV_MERGE ("IvMvPred", m_ivMvPredFlag , std::vector(2, true) , "inter view motion prediction " ) #endif #if H_3D_NBDV_REF ("DepthRefinement", m_depthRefinementFlag, true , "depth refinement by DoNBDV" ) #endif #if H_3D_VSP ("ViewSynthesisPred", m_viewSynthesisPredFlag, true , "view synthesis prediction " ) #endif #if H_3D ("IvMvScaling", m_ivMvScalingFlag , true , "inter view motion vector scaling" ) #endif #endif //H_3D ; #if H_MV // parse coding structure for( Int k = 0; k < MAX_NUM_LAYERS; k++ ) { m_GOPListMvc.push_back( new GOPEntry[MAX_GOP + 1] ); if( k == 0 ) { m_GOPListMvc[0][0].m_sliceType = 'I'; for( Int i = 1; i < MAX_GOP + 1; i++ ) { std::ostringstream cOSS; cOSS<<"Frame"<opt->opt_duplicate = true; } } } else { std::ostringstream cOSS1; cOSS1<<"FrameI"<<"_l"< 1 ) { opts.opt_list.back()->opt->opt_duplicate = true; } for( Int i = 1; i < MAX_GOP + 1; i++ ) { std::ostringstream cOSS2; cOSS2<<"Frame"< 0 ) { opts.opt_list.back()->opt->opt_duplicate = true; } } } } #else for(Int i=1; i& argv_unhandled = po::scanArgv(opts, argc, (const Char**) argv); if(m_isField) { //Frame height m_iSourceHeightOrg = m_iSourceHeight; //Field height m_iSourceHeight = m_iSourceHeight >> 1; //number of fields to encode m_framesToBeEncoded *= 2; } for (list::const_iterator it = argv_unhandled.begin(); it != argv_unhandled.end(); it++) { fprintf(stderr, "Unhandled argument ignored: `%s'\n", *it); } if (argc == 1 || do_help) { /* argc == 1: no options have been specified */ po::doHelp(cout, opts); return false; } /* * Set any derived parameters */ /* convert std::string to c string for compatability */ #if !H_MV m_pchInputFile = cfg_InputFile.empty() ? NULL : strdup(cfg_InputFile.c_str()); #endif m_pchBitstreamFile = cfg_BitstreamFile.empty() ? NULL : strdup(cfg_BitstreamFile.c_str()); #if !H_MV m_pchReconFile = cfg_ReconFile.empty() ? NULL : strdup(cfg_ReconFile.c_str()); #endif m_pchdQPFile = cfg_dQPFile.empty() ? NULL : strdup(cfg_dQPFile.c_str()); Char* pColumnWidth = cfg_ColumnWidth.empty() ? NULL: strdup(cfg_ColumnWidth.c_str()); Char* pRowHeight = cfg_RowHeight.empty() ? NULL : strdup(cfg_RowHeight.c_str()); if( m_iUniformSpacingIdr == 0 && m_iNumColumnsMinus1 > 0 ) { char *columnWidth; int i=0; m_pColumnWidth = new UInt[m_iNumColumnsMinus1]; columnWidth = strtok(pColumnWidth, " ,-"); while(columnWidth!=NULL) { if( i>=m_iNumColumnsMinus1 ) { printf( "The number of columns whose width are defined is larger than the allowed number of columns.\n" ); exit( EXIT_FAILURE ); } *( m_pColumnWidth + i ) = atoi( columnWidth ); columnWidth = strtok(NULL, " ,-"); i++; } if( i 0 ) { char *rowHeight; int i=0; m_pRowHeight = new UInt[m_iNumRowsMinus1]; rowHeight = strtok(pRowHeight, " ,-"); while(rowHeight!=NULL) { if( i>=m_iNumRowsMinus1 ) { printf( "The number of rows whose height are defined is larger than the allowed number of rows.\n" ); exit( EXIT_FAILURE ); } *( m_pRowHeight + i ) = atoi( rowHeight ); rowHeight = strtok(NULL, " ,-"); i++; } if( i> (m_uiMaxCUDepth - 1); if (m_iSourceWidth % minCuSize) { m_aiPad[0] = m_confRight = ((m_iSourceWidth / minCuSize) + 1) * minCuSize - m_iSourceWidth; m_iSourceWidth += m_confRight; } if (m_iSourceHeight % minCuSize) { m_aiPad[1] = m_confBottom = ((m_iSourceHeight / minCuSize) + 1) * minCuSize - m_iSourceHeight; m_iSourceHeight += m_confBottom; if ( m_isField ) { m_iSourceHeightOrg += m_confBottom << 1; m_aiPad[1] = m_confBottom << 1; } } if (m_aiPad[0] % TComSPS::getWinUnitX(CHROMA_420) != 0) { fprintf(stderr, "Error: picture width is not an integer multiple of the specified chroma subsampling\n"); exit(EXIT_FAILURE); } if (m_aiPad[1] % TComSPS::getWinUnitY(CHROMA_420) != 0) { fprintf(stderr, "Error: picture height is not an integer multiple of the specified chroma subsampling\n"); exit(EXIT_FAILURE); } break; } case 2: { //padding m_iSourceWidth += m_aiPad[0]; m_iSourceHeight += m_aiPad[1]; m_confRight = m_aiPad[0]; m_confBottom = m_aiPad[1]; break; } case 3: { // conformance if ((m_confLeft == 0) && (m_confRight == 0) && (m_confTop == 0) && (m_confBottom == 0)) { fprintf(stderr, "Warning: Conformance window enabled, but all conformance window parameters set to zero\n"); } if ((m_aiPad[1] != 0) || (m_aiPad[0]!=0)) { fprintf(stderr, "Warning: Conformance window enabled, padding parameters will be ignored\n"); } m_aiPad[1] = m_aiPad[0] = 0; break; } } // allocate slice-based dQP values #if H_MV xResizeVector( m_viewOrderIndex ); std::vector uniqueViewOrderIndices; for( Int layer = 0; layer < m_numberOfLayers; layer++ ) { Bool isIn = false; for ( Int i = 0 ; i < uniqueViewOrderIndices.size(); i++ ) { isIn = isIn || ( m_viewOrderIndex[ layer ] == uniqueViewOrderIndices[ i ] ); } if ( !isIn ) { uniqueViewOrderIndices.push_back( m_viewOrderIndex[ layer ] ); } } m_iNumberOfViews = (Int) uniqueViewOrderIndices.size(); #if H_3D xResizeVector( m_depthFlag ); #endif xResizeVector( m_fQP ); for( Int layer = 0; layer < m_numberOfLayers; layer++ ) { m_aidQP.push_back( new Int[ m_framesToBeEncoded + m_iGOPSize + 1 ] ); ::memset( m_aidQP[layer], 0, sizeof(Int)*( m_framesToBeEncoded + m_iGOPSize + 1 ) ); // handling of floating-point QP values // if QP is not integer, sequence is split into two sections having QP and QP+1 m_iQP.push_back((Int)( m_fQP[layer] )); if ( m_iQP[layer] < m_fQP[layer] ) { Int iSwitchPOC = (Int)( m_framesToBeEncoded - (m_fQP[layer] - m_iQP[layer])*m_framesToBeEncoded + 0.5 ); iSwitchPOC = (Int)( (Double)iSwitchPOC / m_iGOPSize + 0.5 )*m_iGOPSize; for ( Int i=iSwitchPOC; i 0 ) ) { if( pcCodedPivotValue && pcTargetPivotValue ) { char *codedPivotValue; char *targetPivotValue; m_codedPivotValue = new Int[m_numPivots]; m_targetPivotValue = new Int[m_numPivots]; ::memset( m_codedPivotValue, 0, sizeof(Int)*( m_numPivots ) ); ::memset( m_targetPivotValue, 0, sizeof(Int)*( m_numPivots ) ); codedPivotValue = strtok(pcCodedPivotValue, " ."); int i=0; while(codedPivotValue&&i 51)); m_dLambdaScaleVSO *= adLambdaScaleTable[m_iQP[firstDepthLayer]]; } #endif #if H_3D_VSO if ( m_bUseVSO && m_uiVSOMode == 4) { m_cRenModStrParser.setString( m_iNumberOfViews, m_pchVSOConfig ); m_cCameraData .init ( ((UInt) m_iNumberOfViews ), g_bitDepthY, (UInt)m_iCodedCamParPrecision, m_FrameSkip, (UInt)m_framesToBeEncoded, m_pchCameraParameterFile, m_pchBaseViewCameraNumbers, NULL, m_cRenModStrParser.getSynthViews(), LOG2_DISP_PREC_LUT ); } else if ( m_bUseVSO && m_uiVSOMode != 4 ) { m_cCameraData .init ( ((UInt) m_iNumberOfViews ), g_bitDepthY, (UInt)m_iCodedCamParPrecision, m_FrameSkip, (UInt)m_framesToBeEncoded, m_pchCameraParameterFile, m_pchBaseViewCameraNumbers, m_pchVSOConfig, NULL, LOG2_DISP_PREC_LUT ); } else { m_cCameraData .init ( ((UInt) m_iNumberOfViews ), g_bitDepthY, (UInt) m_iCodedCamParPrecision, m_FrameSkip, (UInt) m_framesToBeEncoded, m_pchCameraParameterFile, m_pchBaseViewCameraNumbers, NULL, NULL, LOG2_DISP_PREC_LUT ); } #else m_cCameraData .init ( ((UInt) m_iNumberOfViews ), g_bitDepthY, (UInt) m_iCodedCamParPrecision, m_FrameSkip, (UInt) m_framesToBeEncoded, m_pchCameraParameterFile, m_pchBaseViewCameraNumbers, NULL, NULL, LOG2_DISP_PREC_LUT ); #endif m_cCameraData.check( false, true ); #endif // check validity of input parameters xCheckParameter(); #if !H_3D // set global varibles xSetGlobal(); #endif // print-out parameters xPrintParameter(); return true; } // ==================================================================================================================== // Private member functions // ==================================================================================================================== Bool confirmPara(Bool bflag, const Char* message); Void TAppEncCfg::xCheckParameter() { if (!m_decodedPictureHashSEIEnabled) { fprintf(stderr, "******************************************************************\n"); fprintf(stderr, "** WARNING: --SEIDecodedPictureHash is now disabled by default. **\n"); fprintf(stderr, "** Automatic verification of decoded pictures by a **\n"); fprintf(stderr, "** decoder requires this option to be enabled. **\n"); fprintf(stderr, "******************************************************************\n"); } if( m_profile==Profile::NONE ) { fprintf(stderr, "***************************************************************************\n"); fprintf(stderr, "** WARNING: For conforming bitstreams a valid Profile value must be set! **\n"); fprintf(stderr, "***************************************************************************\n"); } if( m_level==Level::NONE ) { fprintf(stderr, "***************************************************************************\n"); fprintf(stderr, "** WARNING: For conforming bitstreams a valid Level value must be set! **\n"); fprintf(stderr, "***************************************************************************\n"); } Bool check_failed = false; /* abort if there is a fatal configuration problem */ #define xConfirmPara(a,b) check_failed |= confirmPara(a,b) // check range of parameters xConfirmPara( m_inputBitDepthY < 8, "InputBitDepth must be at least 8" ); xConfirmPara( m_inputBitDepthC < 8, "InputBitDepthC must be at least 8" ); xConfirmPara( m_iFrameRate <= 0, "Frame rate must be more than 1" ); xConfirmPara( m_framesToBeEncoded <= 0, "Total Number Of Frames encoded must be more than 0" ); #if H_MV xConfirmPara( m_numberOfLayers > MAX_NUM_LAYER_IDS , "NumberOfLayers must be less than or equal to MAX_NUM_LAYER_IDS"); xConfirmPara( m_layerIdInNuh[0] != 0 , "LayerIdInNuh must be 0 for the first layer. "); xConfirmPara( (m_layerIdInNuh.size()!=1) && (m_layerIdInNuh.size() < m_numberOfLayers) , "LayerIdInNuh must be given for all layers. "); #if H_3D xConfirmPara( m_scalabilityMask != 2 && m_scalabilityMask != 3, "Scalability Mask must be equal to 2 or 3. "); #else xConfirmPara( m_scalabilityMask != 2 , "Scalability Mask must be equal to 2. "); #endif #if H_3D if ( m_scalabilityMask & ( 1 << DEPTH_ID ) ) { m_dimIds.push_back( m_depthFlag ); } #endif m_dimIds.push_back( m_viewOrderIndex ); xConfirmPara( m_dimensionIdLen.size() < m_dimIds.size(), "DimensionIdLen must be given for all dimensions. " ); Int dimBitOffset[MAX_NUM_SCALABILITY_TYPES+1]; dimBitOffset[ 0 ] = 0; for (Int j = 1; j <= ((Int) m_dimIds.size() - m_splittingFlag ? 1 : 0); j++ ) { dimBitOffset[ j ] = dimBitOffset[ j - 1 ] + m_dimensionIdLen[ j - 1]; } if ( m_splittingFlag ) { dimBitOffset[ (Int) m_dimIds.size() ] = 6; } for( Int j = 0; j < m_dimIds.size(); j++ ) { xConfirmPara( m_dimIds[j].size() < m_numberOfLayers, "DimensionId must be given for all layers and all dimensions. "); xConfirmPara( (m_dimIds[j][0] != 0) , "DimensionId of layer 0 must be 0. " ); xConfirmPara( m_dimensionIdLen[j] < 1 || m_dimensionIdLen[j] > 8, "DimensionIdLen must be greater than 0 and less than 9 in all dimensions. " ); for( Int i = 1; i < m_numberOfLayers; i++ ) { xConfirmPara( ( m_dimIds[j][i] < 0 ) || ( m_dimIds[j][i] > ( ( 1 << m_dimensionIdLen[j] ) - 1 ) ) , "DimensionId shall be in the range of 0 to 2^DimensionIdLen - 1. " ); if ( m_splittingFlag ) { Int layerIdInNuh = (m_layerIdInNuh.size()!=1) ? m_layerIdInNuh[i] : i; xConfirmPara( ( ( layerIdInNuh & ( (1 << dimBitOffset[ j + 1 ] ) - 1) ) >> dimBitOffset[ j ] ) != m_dimIds[j][ i ] , "When Splitting Flag is equal to 1 dimension ids shall match values derived from layer ids. "); } } } for( Int i = 0; i < m_numberOfLayers; i++ ) { for( Int j = 0; j < i; j++ ) { Int numDiff = 0; Int lastDiff = -1; for( Int dim = 0; dim < m_dimIds.size(); dim++ ) { if ( m_dimIds[dim][i] != m_dimIds[dim][j] ) { numDiff ++; lastDiff = dim; } } Bool allEqual = ( numDiff == 0 ); if ( allEqual ) { printf( "\nError: Positions of Layers %d and %d are identical in scalability space\n", i, j); } xConfirmPara( allEqual , "Each layer shall have a different position in scalability space." ); #if !H_3D_FCO if ( numDiff == 1 ) { Bool inc = m_dimIds[ lastDiff ][ i ] > m_dimIds[ lastDiff ][ j ]; Bool shallBeButIsNotIncreasing = ( !inc ) ; if ( shallBeButIsNotIncreasing ) { printf( "\nError: Positions of Layers %d and %d is not increasing in dimension %d \n", i, j, lastDiff); } xConfirmPara( shallBeButIsNotIncreasing, "DimensionIds shall be increasing within one dimension. " ); } #endif } } /// ViewId xConfirmPara( m_viewId.size() != m_iNumberOfViews, "The number of ViewIds must be equal to the number of views." ); /// Layer sets xConfirmPara( m_vpsNumLayerSets < 0 || m_vpsNumLayerSets > 1024, "VpsNumLayerSets must be greater than 0 and less than 1025. ") ; for( Int lsIdx = 0; lsIdx < m_vpsNumLayerSets; lsIdx++ ) { if (lsIdx == 0) { xConfirmPara( m_layerIdsInSets[lsIdx].size() != 1 || m_layerIdsInSets[lsIdx][0] != 0 , "0-th layer shall only include layer 0. "); } for ( Int i = 0; i < m_layerIdsInSets[lsIdx].size(); i++ ) { xConfirmPara( m_layerIdsInSets[lsIdx][i] < 0 || m_layerIdsInSets[lsIdx].size() >= MAX_NUM_LAYER_IDS, "LayerIdsInSet must be greater than and less than MAX_NUM_LAYER_IDS" ); } } // Output layer sets xConfirmPara( m_outputLayerSetIdx.size() > 1024, "The number of output layer set indices must be less than 1025.") ; for (Int lsIdx = 0; lsIdx < m_outputLayerSetIdx.size(); lsIdx++) { Int refLayerSetIdx = m_outputLayerSetIdx[ lsIdx ]; xConfirmPara( refLayerSetIdx < 0 || refLayerSetIdx >= m_vpsNumLayerSets, "Output layer set idx must be greater or equal to 0 and less than the VpsNumLayerSets." ); for (Int i = 0; i < m_layerIdsInAddOutputLayerSet[ lsIdx ].size(); i++) { Bool isAlsoInLayerSet = false; for (Int j = 0; j < m_layerIdsInSets[ refLayerSetIdx ].size(); j++ ) { if ( m_layerIdsInSets[ refLayerSetIdx ][ j ] == m_layerIdsInAddOutputLayerSet[ lsIdx ][ i ] ) { isAlsoInLayerSet = true; break; } } xConfirmPara( !isAlsoInLayerSet, "All output layers of a output layer set be included in corresponding layer set."); } } xConfirmPara( m_defaultTargetOutputLayerIdc < 0 || m_defaultTargetOutputLayerIdc > 2, "Default target output layer idc must greater than or equal to 0 and less than or equal to 2." ); if( m_defaultTargetOutputLayerIdc != 2 ) { Bool anyDefaultOutputFlag = false; for (Int lsIdx = 0; lsIdx < m_vpsNumLayerSets; lsIdx++) { anyDefaultOutputFlag = anyDefaultOutputFlag || ( m_layerIdsInDefOutputLayerSet[lsIdx].size() != 0 ); } printf( "\nWarning: Ignoring LayerIdsInDefOutputLayerSet parameters, since defaultTargetOuputLayerIdc is not equal 2.\n" ); } else { for (Int lsIdx = 0; lsIdx < m_vpsNumLayerSets; lsIdx++) { for (Int i = 0; i < m_layerIdsInDefOutputLayerSet[ lsIdx ].size(); i++) { Bool inLayerSetFlag = false; for (Int j = 0; j < m_layerIdsInSets[ lsIdx].size(); j++ ) { if ( m_layerIdsInSets[ lsIdx ][ j ] == m_layerIdsInDefOutputLayerSet[ lsIdx ][ i ] ) { inLayerSetFlag = true; break; } } xConfirmPara( !inLayerSetFlag, "All output layers of a output layer set must be included in corresponding layer set."); } } } xConfirmPara( m_profileLevelTierIdx.size() < m_vpsNumLayerSets + m_outputLayerSetIdx.size(), "The number of Profile Level Tier indices must be equal to the number of layer set plus the number of output layer set indices" ); // Layer Dependencies for (Int i = 0; i < m_numberOfLayers; i++ ) { xConfirmPara( (i == 0) && m_directRefLayers[0].size() != 0, "Layer 0 shall not have reference layers." ); xConfirmPara( m_directRefLayers[i].size() != m_dependencyTypes[ i ].size(), "Each reference layer shall have a reference type." ); for (Int j = 0; j < m_directRefLayers[i].size(); j++) { xConfirmPara( m_directRefLayers[i][j] < 0 || m_directRefLayers[i][j] >= i , "Reference layer id shall be greater than or equal to 0 and less than dependent layer id"); xConfirmPara( m_dependencyTypes[i][j] < 0 || m_dependencyTypes[i][j] > 2 , "Dependency type shall be greater than or equal to 0 and less than 3"); } } #endif xConfirmPara( m_iGOPSize < 1 , "GOP Size must be greater or equal to 1" ); xConfirmPara( m_iGOPSize > 1 && m_iGOPSize % 2, "GOP Size must be a multiple of 2, if GOP Size is greater than 1" ); #if H_MV for( Int layer = 0; layer < m_numberOfLayers; layer++ ) { xConfirmPara( (m_iIntraPeriod[layer] > 0 && m_iIntraPeriod[layer] < m_iGOPSize) || m_iIntraPeriod[layer] == 0, "Intra period must be more than GOP size, or -1 , not 0" ); } #else xConfirmPara( (m_iIntraPeriod > 0 && m_iIntraPeriod < m_iGOPSize) || m_iIntraPeriod == 0, "Intra period must be more than GOP size, or -1 , not 0" ); #endif xConfirmPara( m_iDecodingRefreshType < 0 || m_iDecodingRefreshType > 2, "Decoding Refresh Type must be equal to 0, 1 or 2" ); #if H_MV for( Int layer = 0; layer < m_numberOfLayers; layer++ ) { xConfirmPara( m_iQP[layer] < -6 * (m_internalBitDepthY - 8) || m_iQP[layer] > 51, "QP exceeds supported range (-QpBDOffsety to 51)" ); } #else xConfirmPara( m_iQP < -6 * (m_internalBitDepthY - 8) || m_iQP > 51, "QP exceeds supported range (-QpBDOffsety to 51)" ); #endif xConfirmPara( m_loopFilterBetaOffsetDiv2 < -6 || m_loopFilterBetaOffsetDiv2 > 6, "Loop Filter Beta Offset div. 2 exceeds supported range (-6 to 6)"); xConfirmPara( m_loopFilterTcOffsetDiv2 < -6 || m_loopFilterTcOffsetDiv2 > 6, "Loop Filter Tc Offset div. 2 exceeds supported range (-6 to 6)"); xConfirmPara( m_iFastSearch < 0 || m_iFastSearch > 2, "Fast Search Mode is not supported value (0:Full search 1:Diamond 2:PMVFAST)" ); xConfirmPara( m_iSearchRange < 0 , "Search Range must be more than 0" ); xConfirmPara( m_bipredSearchRange < 0 , "Search Range must be more than 0" ); xConfirmPara( m_iMaxDeltaQP > 7, "Absolute Delta QP exceeds supported range (0 to 7)" ); xConfirmPara( m_iMaxCuDQPDepth > m_uiMaxCUDepth - 1, "Absolute depth for a minimum CuDQP exceeds maximum coding unit depth" ); xConfirmPara( m_cbQpOffset < -12, "Min. Chroma Cb QP Offset is -12" ); xConfirmPara( m_cbQpOffset > 12, "Max. Chroma Cb QP Offset is 12" ); xConfirmPara( m_crQpOffset < -12, "Min. Chroma Cr QP Offset is -12" ); xConfirmPara( m_crQpOffset > 12, "Max. Chroma Cr QP Offset is 12" ); xConfirmPara( m_iQPAdaptationRange <= 0, "QP Adaptation Range must be more than 0" ); if (m_iDecodingRefreshType == 2) { #if H_MV for (Int i = 0; i < m_numberOfLayers; i++ ) { xConfirmPara( m_iIntraPeriod[i] > 0 && m_iIntraPeriod[i] <= m_iGOPSize , "Intra period must be larger than GOP size for periodic IDR pictures"); } #else xConfirmPara( m_iIntraPeriod > 0 && m_iIntraPeriod <= m_iGOPSize , "Intra period must be larger than GOP size for periodic IDR pictures"); #endif } xConfirmPara( (m_uiMaxCUWidth >> m_uiMaxCUDepth) < 4, "Minimum partition width size should be larger than or equal to 8"); xConfirmPara( (m_uiMaxCUHeight >> m_uiMaxCUDepth) < 4, "Minimum partition height size should be larger than or equal to 8"); xConfirmPara( m_uiMaxCUWidth < 16, "Maximum partition width size should be larger than or equal to 16"); xConfirmPara( m_uiMaxCUHeight < 16, "Maximum partition height size should be larger than or equal to 16"); xConfirmPara( (m_iSourceWidth % (m_uiMaxCUWidth >> (m_uiMaxCUDepth-1)))!=0, "Resulting coded frame width must be a multiple of the minimum CU size"); xConfirmPara( (m_iSourceHeight % (m_uiMaxCUHeight >> (m_uiMaxCUDepth-1)))!=0, "Resulting coded frame height must be a multiple of the minimum CU size"); xConfirmPara( m_uiQuadtreeTULog2MinSize < 2, "QuadtreeTULog2MinSize must be 2 or greater."); xConfirmPara( m_uiQuadtreeTULog2MaxSize > 5, "QuadtreeTULog2MaxSize must be 5 or smaller."); xConfirmPara( (1< m_uiMaxCUWidth, "QuadtreeTULog2MaxSize must be log2(maxCUSize) or smaller."); xConfirmPara( m_uiQuadtreeTULog2MaxSize < m_uiQuadtreeTULog2MinSize, "QuadtreeTULog2MaxSize must be greater than or equal to m_uiQuadtreeTULog2MinSize."); xConfirmPara( (1<(m_uiMaxCUWidth >>(m_uiMaxCUDepth-1)), "QuadtreeTULog2MinSize must not be greater than minimum CU size" ); // HS xConfirmPara( (1<(m_uiMaxCUHeight>>(m_uiMaxCUDepth-1)), "QuadtreeTULog2MinSize must not be greater than minimum CU size" ); // HS xConfirmPara( ( 1 << m_uiQuadtreeTULog2MinSize ) > ( m_uiMaxCUWidth >> m_uiMaxCUDepth ), "Minimum CU width must be greater than minimum transform size." ); xConfirmPara( ( 1 << m_uiQuadtreeTULog2MinSize ) > ( m_uiMaxCUHeight >> m_uiMaxCUDepth ), "Minimum CU height must be greater than minimum transform size." ); xConfirmPara( m_uiQuadtreeTUMaxDepthInter < 1, "QuadtreeTUMaxDepthInter must be greater than or equal to 1" ); xConfirmPara( m_uiMaxCUWidth < ( 1 << (m_uiQuadtreeTULog2MinSize + m_uiQuadtreeTUMaxDepthInter - 1) ), "QuadtreeTUMaxDepthInter must be less than or equal to the difference between log2(maxCUSize) and QuadtreeTULog2MinSize plus 1" ); xConfirmPara( m_uiQuadtreeTUMaxDepthIntra < 1, "QuadtreeTUMaxDepthIntra must be greater than or equal to 1" ); xConfirmPara( m_uiMaxCUWidth < ( 1 << (m_uiQuadtreeTULog2MinSize + m_uiQuadtreeTUMaxDepthIntra - 1) ), "QuadtreeTUMaxDepthInter must be less than or equal to the difference between log2(maxCUSize) and QuadtreeTULog2MinSize plus 1" ); xConfirmPara( m_maxNumMergeCand < 1, "MaxNumMergeCand must be 1 or greater."); xConfirmPara( m_maxNumMergeCand > 5, "MaxNumMergeCand must be 5 or smaller."); #if H_3D_ARP xConfirmPara( ( 0 != m_uiUseAdvResPred ) && ( 1 != m_uiUseAdvResPred ), "UseAdvResPred must be 0 or 1." ); #endif #if H_3D_SPIVMP xConfirmPara( m_iSubPULog2Size < 3, "SubPULog2Size must be 3 or greater."); xConfirmPara( m_iSubPULog2Size > 6, "SubPULog2Size must be 6 or smaller."); xConfirmPara( (1< m_uiMaxCUWidth, "SubPULog2Size must be log2(maxCUSize) or smaller."); xConfirmPara( m_iSubPUMPILog2Size < 3, "SubPUMPILog2Size must be 3 or greater."); xConfirmPara( m_iSubPUMPILog2Size > 6, "SubPUMPILog2Size must be 6 or smaller."); xConfirmPara( ( 1 << m_iSubPUMPILog2Size ) > m_uiMaxCUWidth, "SubPUMPILog2Size must be log2(maxCUSize) or smaller."); #endif #if ADAPTIVE_QP_SELECTION #if H_MV for( Int layer = 0; layer < m_numberOfLayers; layer++ ) { xConfirmPara( m_bUseAdaptQpSelect == true && m_iQP[layer] < 0, "AdaptiveQpSelection must be disabled when QP < 0."); } #else xConfirmPara( m_bUseAdaptQpSelect == true && m_iQP < 0, "AdaptiveQpSelection must be disabled when QP < 0."); #endif xConfirmPara( m_bUseAdaptQpSelect == true && (m_cbQpOffset !=0 || m_crQpOffset != 0 ), "AdaptiveQpSelection must be disabled when ChromaQpOffset is not equal to 0."); #endif if( m_usePCM) { xConfirmPara( m_uiPCMLog2MinSize < 3, "PCMLog2MinSize must be 3 or greater."); xConfirmPara( m_uiPCMLog2MinSize > 5, "PCMLog2MinSize must be 5 or smaller."); xConfirmPara( m_pcmLog2MaxSize > 5, "PCMLog2MaxSize must be 5 or smaller."); xConfirmPara( m_pcmLog2MaxSize < m_uiPCMLog2MinSize, "PCMLog2MaxSize must be equal to or greater than m_uiPCMLog2MinSize."); } xConfirmPara( m_sliceMode < 0 || m_sliceMode > 3, "SliceMode exceeds supported range (0 to 3)" ); if (m_sliceMode!=0) { xConfirmPara( m_sliceArgument < 1 , "SliceArgument should be larger than or equal to 1" ); } xConfirmPara( m_sliceSegmentMode < 0 || m_sliceSegmentMode > 3, "SliceSegmentMode exceeds supported range (0 to 3)" ); if (m_sliceSegmentMode!=0) { xConfirmPara( m_sliceSegmentArgument < 1 , "SliceSegmentArgument should be larger than or equal to 1" ); } Bool tileFlag = (m_iNumColumnsMinus1 > 0 || m_iNumRowsMinus1 > 0 ); xConfirmPara( tileFlag && m_iWaveFrontSynchro, "Tile and Wavefront can not be applied together"); //TODO:ChromaFmt assumes 4:2:0 below xConfirmPara( m_iSourceWidth % TComSPS::getWinUnitX(CHROMA_420) != 0, "Picture width must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_iSourceHeight % TComSPS::getWinUnitY(CHROMA_420) != 0, "Picture height must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_aiPad[0] % TComSPS::getWinUnitX(CHROMA_420) != 0, "Horizontal padding must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_aiPad[1] % TComSPS::getWinUnitY(CHROMA_420) != 0, "Vertical padding must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confLeft % TComSPS::getWinUnitX(CHROMA_420) != 0, "Left conformance window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confRight % TComSPS::getWinUnitX(CHROMA_420) != 0, "Right conformance window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confTop % TComSPS::getWinUnitY(CHROMA_420) != 0, "Top conformance window offset must be an integer multiple of the specified chroma subsampling"); xConfirmPara( m_confBottom % TComSPS::getWinUnitY(CHROMA_420) != 0, "Bottom conformance window offset must be an integer multiple of the specified chroma subsampling"); #if H_3D xConfirmPara( m_pchCameraParameterFile == 0 , "CameraParameterFile must be given"); xConfirmPara( m_pchBaseViewCameraNumbers == 0 , "BaseViewCameraNumbers must be given" ); xConfirmPara( ((UInt) m_numberOfLayers >> 1 ) != m_cCameraData.getBaseViewNumbers().size(), "Number of Views in BaseViewCameraNumbers must be equal to NumberOfViews" ); xConfirmPara ( m_iCodedCamParPrecision < 0 || m_iCodedCamParPrecision > 5, "CodedCamParsPrecision must be in range of 0..5" ); #if H_3D_VSO if( m_bUseVSO ) { xConfirmPara( m_pchVSOConfig == 0 , "VSO Setup string must be given"); xConfirmPara( m_uiVSOMode > 4 , "VSO Mode must be less than 5"); } #endif #endif // max CU width and height should be power of 2 UInt ui = m_uiMaxCUWidth; while(ui) { ui >>= 1; if( (ui & 1) == 1) xConfirmPara( ui != 1 , "Width should be 2^n"); } ui = m_uiMaxCUHeight; while(ui) { ui >>= 1; if( (ui & 1) == 1) xConfirmPara( ui != 1 , "Height should be 2^n"); } #if H_MV // validate that POC of same frame is identical across multiple layers Bool bErrorMvePoc = false; if( m_numberOfLayers > 1 ) { for( Int k = 1; k < m_numberOfLayers; k++ ) { for( Int i = 0; i < MAX_GOP; i++ ) { if( m_GOPListMvc[k][i].m_POC != m_GOPListMvc[0][i].m_POC ) { printf( "\nError: Frame%d_l%d POC %d is not identical to Frame%d POC\n", i, k, m_GOPListMvc[k][i].m_POC, i ); bErrorMvePoc = true; } } } } xConfirmPara( bErrorMvePoc, "Invalid inter-layer POC structure given" ); // validate that baseview has no inter-view refs Bool bErrorIvpBase = false; for( Int i = 0; i < MAX_GOP; i++ ) { if( m_GOPListMvc[0][i].m_numActiveRefLayerPics != 0 ) { printf( "\nError: Frame%d inter_layer refs not available in layer 0\n", i ); bErrorIvpBase = true; } } xConfirmPara( bErrorIvpBase, "Inter-layer refs not possible in base layer" ); // validate inter-view refs Bool bErrorIvpEnhV = false; if( m_numberOfLayers > 1 ) { for( Int layer = 1; layer < m_numberOfLayers; layer++ ) { for( Int i = 0; i < MAX_GOP+1; i++ ) { GOPEntry gopEntry = m_GOPListMvc[layer][i]; for( Int j = 0; j < gopEntry.m_numActiveRefLayerPics; j++ ) { Int ilPredLayerIdc = gopEntry.m_interLayerPredLayerIdc[j]; if( ilPredLayerIdc < 0 || ilPredLayerIdc >= m_directRefLayers[layer].size() ) { printf( "\nError: inter-layer ref idc %d is not available for Frame%d_l%d\n", gopEntry.m_interLayerPredLayerIdc[j], i, layer ); bErrorIvpEnhV = true; } if( gopEntry.m_interViewRefPosL[0][j] < -1 || gopEntry.m_interViewRefPosL[0][j] > gopEntry.m_numRefPicsActive ) { printf( "\nError: inter-layer ref pos %d on L0 is not available for Frame%d_l%d\n", gopEntry.m_interViewRefPosL[0][j], i, layer ); bErrorIvpEnhV = true; } if( gopEntry.m_interViewRefPosL[1][j] < -1 || gopEntry.m_interViewRefPosL[1][j] > gopEntry.m_numRefPicsActive ) { printf( "\nError: inter-layer ref pos %d on L1 is not available for Frame%d_l%d\n", gopEntry.m_interViewRefPosL[1][j], i, layer ); bErrorIvpEnhV = true; } } if( i == MAX_GOP ) // inter-view refs at I pic position in base view { if( gopEntry.m_sliceType != 'B' && gopEntry.m_sliceType != 'P' && gopEntry.m_sliceType != 'I' ) { printf( "\nError: slice type of FrameI_l%d must be equal to B or P or I\n", layer ); bErrorIvpEnhV = true; } if( gopEntry.m_POC != 0 ) { printf( "\nError: POC %d not possible for FrameI_l%d, must be 0\n", gopEntry.m_POC, layer ); bErrorIvpEnhV = true; } if( gopEntry.m_temporalId != 0 ) { printf( "\nWarning: Temporal id of FrameI_l%d must be 0 (cp. I-frame in base layer)\n", layer ); gopEntry.m_temporalId = 0; } if( gopEntry.m_numRefPics != 0 ) { printf( "\nWarning: temporal references not possible for FrameI_l%d\n", layer ); for( Int j = 0; j < m_GOPListMvc[layer][MAX_GOP].m_numRefPics; j++ ) { gopEntry.m_referencePics[j] = 0; } gopEntry.m_numRefPics = 0; } if( gopEntry.m_interRPSPrediction ) { printf( "\nError: inter RPS prediction not possible for FrameI_l%d, must be 0\n", layer ); bErrorIvpEnhV = true; } if( gopEntry.m_sliceType == 'I' && gopEntry.m_numActiveRefLayerPics != 0 ) { printf( "\nError: inter-layer prediction not possible for FrameI_l%d with slice type I, #IL_ref_pics must be 0\n", layer ); bErrorIvpEnhV = true; } if( gopEntry.m_numRefPicsActive > gopEntry.m_numActiveRefLayerPics ) { gopEntry.m_numRefPicsActive = gopEntry.m_numActiveRefLayerPics; } if( gopEntry.m_sliceType == 'P' ) { if( gopEntry.m_numActiveRefLayerPics < 1 ) { printf( "\nError: #IL_ref_pics must be at least one for FrameI_l%d with slice type P\n", layer ); bErrorIvpEnhV = true; } else { for( Int j = 0; j < gopEntry.m_numActiveRefLayerPics; j++ ) { if( gopEntry.m_interViewRefPosL[1][j] != -1 ) { printf( "\nError: inter-layer ref pos %d on L1 not possible for FrameI_l%d with slice type P\n", gopEntry.m_interViewRefPosL[1][j], layer ); bErrorIvpEnhV = true; } } } } if( gopEntry.m_sliceType == 'B' && gopEntry.m_numActiveRefLayerPics < 1 ) { printf( "\nError: #IL_ref_pics must be at least one for FrameI_l%d with slice type B\n", layer ); bErrorIvpEnhV = true; } } } } } xConfirmPara( bErrorIvpEnhV, "Invalid inter-layer coding structure for enhancement layers given" ); // validate temporal coding structure if( !bErrorMvePoc && !bErrorIvpBase && !bErrorIvpEnhV ) { for( Int layer = 0; layer < m_numberOfLayers; layer++ ) { GOPEntry* m_GOPList = m_GOPListMvc [layer]; // It is not a member, but this name helps avoiding code duplication !!! Int& m_extraRPSs = m_extraRPSsMvc [layer]; // It is not a member, but this name helps avoiding code duplication !!! Int& m_maxTempLayer = m_maxTempLayerMvc [layer]; // It is not a member, but this name helps avoiding code duplication !!! Int* m_maxDecPicBuffering = m_maxDecPicBufferingMvc[layer]; // It is not a member, but this name helps avoiding code duplication !!! Int* m_numReorderPics = m_numReorderPicsMvc [layer]; // It is not a member, but this name helps avoiding code duplication !!! #endif /* if this is an intra-only sequence, ie IntraPeriod=1, don't verify the GOP structure * This permits the ability to omit a GOP structure specification */ #if H_MV if (m_iIntraPeriod[layer] == 1 && m_GOPList[0].m_POC == -1) { #else if (m_iIntraPeriod == 1 && m_GOPList[0].m_POC == -1) { #endif m_GOPList[0] = GOPEntry(); m_GOPList[0].m_QPFactor = 1; m_GOPList[0].m_betaOffsetDiv2 = 0; m_GOPList[0].m_tcOffsetDiv2 = 0; m_GOPList[0].m_POC = 1; m_GOPList[0].m_numRefPicsActive = 4; } Bool verifiedGOP=false; Bool errorGOP=false; Int checkGOP=1; Int numRefs = m_isField ? 2 : 1; Int refList[MAX_NUM_REF_PICS+1]; refList[0]=0; if(m_isField) { refList[1] = 1; } Bool isOK[MAX_GOP]; for(Int i=0; i=0&&(m_iIntraPeriod[layer]%m_iGOPSize!=0), "Intra period must be a multiple of GOPSize, or -1" ); #else xConfirmPara( m_iIntraPeriod >=0&&(m_iIntraPeriod%m_iGOPSize!=0), "Intra period must be a multiple of GOPSize, or -1" ); #endif for(Int i=0; i 6, "Loop Filter Beta Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" ); xConfirmPara( (m_GOPList[i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) < -6 || (m_GOPList[i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) > 6, "Loop Filter Tc Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" ); } } m_extraRPSs=0; //start looping through frames in coding order until we can verify that the GOP structure is correct. while(!verifiedGOP&&!errorGOP) { Int curGOP = (checkGOP-1)%m_iGOPSize; Int curPOC = ((checkGOP-1)/m_iGOPSize)*m_iGOPSize + m_GOPList[curGOP].m_POC; if(m_GOPList[curGOP].m_POC<0) { #if H_MV printf("\nError: found fewer Reference Picture Sets than GOPSize for layer %d\n", layer ); #else printf("\nError: found fewer Reference Picture Sets than GOPSize\n"); #endif errorGOP=true; } else { //check that all reference pictures are available, or have a POC < 0 meaning they might be available in the next GOP. Bool beforeI = false; for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i]; if(absPOC < 0) { beforeI=true; } else { Bool found=false; for(Int j=0; j 0) m_GOPList[m_iGOPSize+m_extraRPSs]=m_GOPList[curGOP]; Int newRefs=0; for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i]; if(absPOC>=0) { m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[newRefs]=m_GOPList[curGOP].m_referencePics[i]; m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[newRefs]=m_GOPList[curGOP].m_usedByCurrPic[i]; newRefs++; } } Int numPrefRefs = m_GOPList[curGOP].m_numRefPicsActive; for(Int offset = -1; offset>-checkGOP; offset--) { //step backwards in coding order and include any extra available pictures we might find useful to replace the ones with POC < 0. Int offGOP = (checkGOP-1+offset)%m_iGOPSize; Int offPOC = ((checkGOP-1+offset)/m_iGOPSize)*m_iGOPSize + m_GOPList[offGOP].m_POC; if(offPOC>=0&&m_GOPList[offGOP].m_temporalId<=m_GOPList[curGOP].m_temporalId) { Bool newRef=false; for(Int i=0; i0) { insertPoint = j; break; } } Int prev = offPOC-curPOC; Int prevUsed = m_GOPList[offGOP].m_temporalId<=m_GOPList[curGOP].m_temporalId; for(Int j=insertPoint; j=numPrefRefs) { break; } } m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefPics=newRefs; m_GOPList[m_iGOPSize+m_extraRPSs].m_POC = curPOC; if (m_extraRPSs == 0) { m_GOPList[m_iGOPSize+m_extraRPSs].m_interRPSPrediction = 0; m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefIdc = 0; } else { Int rIdx = m_iGOPSize + m_extraRPSs - 1; Int refPOC = m_GOPList[rIdx].m_POC; Int refPics = m_GOPList[rIdx].m_numRefPics; Int newIdc=0; for(Int i = 0; i<= refPics; i++) { Int deltaPOC = ((i != refPics)? m_GOPList[rIdx].m_referencePics[i] : 0); // check if the reference abs POC is >= 0 Int absPOCref = refPOC+deltaPOC; Int refIdc = 0; for (Int j = 0; j < m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefPics; j++) { if ( (absPOCref - curPOC) == m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[j]) { if (m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[j]) { refIdc = 1; } else { refIdc = 2; } } } m_GOPList[m_iGOPSize+m_extraRPSs].m_refIdc[newIdc]=refIdc; newIdc++; } m_GOPList[m_iGOPSize+m_extraRPSs].m_interRPSPrediction = 1; m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefIdc = newIdc; m_GOPList[m_iGOPSize+m_extraRPSs].m_deltaRPS = refPOC - m_GOPList[m_iGOPSize+m_extraRPSs].m_POC; } curGOP=m_iGOPSize+m_extraRPSs; m_extraRPSs++; } numRefs=0; for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++) { Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i]; if(absPOC >= 0) { refList[numRefs]=absPOC; numRefs++; } } refList[numRefs]=curPOC; numRefs++; } checkGOP++; } xConfirmPara(errorGOP,"Invalid GOP structure given"); m_maxTempLayer = 1; for(Int i=0; i= m_maxTempLayer) { m_maxTempLayer = m_GOPList[i].m_temporalId+1; } xConfirmPara(m_GOPList[i].m_sliceType!='B'&&m_GOPList[i].m_sliceType!='P'&&m_GOPList[i].m_sliceType!='I', "Slice type must be equal to B or P or I"); } for(Int i=0; i m_maxDecPicBuffering[m_GOPList[i].m_temporalId]) { m_maxDecPicBuffering[m_GOPList[i].m_temporalId] = m_GOPList[i].m_numRefPics + 1; } Int highestDecodingNumberWithLowerPOC = 0; for(Int j=0; j m_GOPList[i].m_POC) { numReorder++; } } if(numReorder > m_numReorderPics[m_GOPList[i].m_temporalId]) { m_numReorderPics[m_GOPList[i].m_temporalId] = numReorder; } } for(Int i=0; i m_maxDecPicBuffering[i] - 1) { m_maxDecPicBuffering[i] = m_numReorderPics[i] + 1; } // a lower layer can not have higher value of m_uiMaxDecPicBuffering than a higher layer if(m_maxDecPicBuffering[i+1] < m_maxDecPicBuffering[i]) { m_maxDecPicBuffering[i+1] = m_maxDecPicBuffering[i]; } } // the value of num_reorder_pics[ i ] shall be in the range of 0 to max_dec_pic_buffering[ i ] - 1, inclusive if(m_numReorderPics[MAX_TLAYER-1] > m_maxDecPicBuffering[MAX_TLAYER-1] - 1) { m_maxDecPicBuffering[MAX_TLAYER-1] = m_numReorderPics[MAX_TLAYER-1] + 1; } if(m_vuiParametersPresentFlag && m_bitstreamRestrictionFlag) { Int PicSizeInSamplesY = m_iSourceWidth * m_iSourceHeight; if(tileFlag) { Int maxTileWidth = 0; Int maxTileHeight = 0; Int widthInCU = (m_iSourceWidth % m_uiMaxCUWidth) ? m_iSourceWidth/m_uiMaxCUWidth + 1: m_iSourceWidth/m_uiMaxCUWidth; Int heightInCU = (m_iSourceHeight % m_uiMaxCUHeight) ? m_iSourceHeight/m_uiMaxCUHeight + 1: m_iSourceHeight/m_uiMaxCUHeight; if(m_iUniformSpacingIdr) { maxTileWidth = m_uiMaxCUWidth*((widthInCU+m_iNumColumnsMinus1)/(m_iNumColumnsMinus1+1)); maxTileHeight = m_uiMaxCUHeight*((heightInCU+m_iNumRowsMinus1)/(m_iNumRowsMinus1+1)); // if only the last tile-row is one treeblock higher than the others // the maxTileHeight becomes smaller if the last row of treeblocks has lower height than the others if(!((heightInCU-1)%(m_iNumRowsMinus1+1))) { maxTileHeight = maxTileHeight - m_uiMaxCUHeight + (m_iSourceHeight % m_uiMaxCUHeight); } // if only the last tile-column is one treeblock wider than the others // the maxTileWidth becomes smaller if the last column of treeblocks has lower width than the others if(!((widthInCU-1)%(m_iNumColumnsMinus1+1))) { maxTileWidth = maxTileWidth - m_uiMaxCUWidth + (m_iSourceWidth % m_uiMaxCUWidth); } } else // not uniform spacing { if(m_iNumColumnsMinus1<1) { maxTileWidth = m_iSourceWidth; } else { Int accColumnWidth = 0; for(Int col=0; col<(m_iNumColumnsMinus1); col++) { maxTileWidth = m_pColumnWidth[col]>maxTileWidth ? m_pColumnWidth[col]:maxTileWidth; accColumnWidth += m_pColumnWidth[col]; } maxTileWidth = (widthInCU-accColumnWidth)>maxTileWidth ? m_uiMaxCUWidth*(widthInCU-accColumnWidth):m_uiMaxCUWidth*maxTileWidth; } if(m_iNumRowsMinus1<1) { maxTileHeight = m_iSourceHeight; } else { Int accRowHeight = 0; for(Int row=0; row<(m_iNumRowsMinus1); row++) { maxTileHeight = m_pRowHeight[row]>maxTileHeight ? m_pRowHeight[row]:maxTileHeight; accRowHeight += m_pRowHeight[row]; } maxTileHeight = (heightInCU-accRowHeight)>maxTileHeight ? m_uiMaxCUHeight*(heightInCU-accRowHeight):m_uiMaxCUHeight*maxTileHeight; } } Int maxSizeInSamplesY = maxTileWidth*maxTileHeight; m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/maxSizeInSamplesY-4; } else if(m_iWaveFrontSynchro) { m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/((2*m_iSourceHeight+m_iSourceWidth)*m_uiMaxCUHeight)-4; } else if(m_sliceMode == 1) { m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/(m_sliceArgument*m_uiMaxCUWidth*m_uiMaxCUHeight)-4; } else { m_minSpatialSegmentationIdc = 0; } } xConfirmPara( m_iWaveFrontSynchro < 0, "WaveFrontSynchro cannot be negative" ); xConfirmPara( m_iWaveFrontSubstreams <= 0, "WaveFrontSubstreams must be positive" ); xConfirmPara( m_iWaveFrontSubstreams > 1 && !m_iWaveFrontSynchro, "Must have WaveFrontSynchro > 0 in order to have WaveFrontSubstreams > 1" ); xConfirmPara( m_decodedPictureHashSEIEnabled<0 || m_decodedPictureHashSEIEnabled>3, "this hash type is not correct!\n"); if (m_toneMappingInfoSEIEnabled) { xConfirmPara( m_toneMapCodedDataBitDepth < 8 || m_toneMapCodedDataBitDepth > 14 , "SEIToneMapCodedDataBitDepth must be in rage 8 to 14"); xConfirmPara( m_toneMapTargetBitDepth < 1 || (m_toneMapTargetBitDepth > 16 && m_toneMapTargetBitDepth < 255) , "SEIToneMapTargetBitDepth must be in rage 1 to 16 or equal to 255"); xConfirmPara( m_toneMapModelId < 0 || m_toneMapModelId > 4 , "SEIToneMapModelId must be in rage 0 to 4"); xConfirmPara( m_cameraIsoSpeedValue == 0, "SEIToneMapCameraIsoSpeedValue shall not be equal to 0"); xConfirmPara( m_extendedRangeWhiteLevel < 100, "SEIToneMapExtendedRangeWhiteLevel should be greater than or equal to 100"); xConfirmPara( m_nominalBlackLevelLumaCodeValue >= m_nominalWhiteLevelLumaCodeValue, "SEIToneMapNominalWhiteLevelLumaCodeValue shall be greater than SEIToneMapNominalBlackLevelLumaCodeValue"); xConfirmPara( m_extendedWhiteLevelLumaCodeValue < m_nominalWhiteLevelLumaCodeValue, "SEIToneMapExtendedWhiteLevelLumaCodeValue shall be greater than or equal to SEIToneMapNominalWhiteLevelLumaCodeValue"); } if ( m_RCEnableRateControl ) { if ( m_RCForceIntraQP ) { if ( m_RCInitialQP == 0 ) { printf( "\nInitial QP for rate control is not specified. Reset not to use force intra QP!" ); m_RCForceIntraQP = false; } } xConfirmPara( m_uiDeltaQpRD > 0, "Rate control cannot be used together with slice level multiple-QP optimization!\n" ); } #if H_MV // VPS VUI for(Int i = 0; i < MAX_VPS_OP_SETS_PLUS1; i++ ) { for (Int j = 0; j < MAX_TLAYER; j++) { if ( j < m_avgBitRate [i].size() ) xConfirmPara( m_avgBitRate[i][j] < 0 || m_avgBitRate[i][j] > 65535, "avg_bit_rate must be more than or equal to 0 and less than 65536" ); if ( j < m_maxBitRate [i].size() ) xConfirmPara( m_maxBitRate[i][j] < 0 || m_maxBitRate[i][j] > 65535, "max_bit_rate must be more than or equal to 0 and less than 65536" ); if ( j < m_constantPicRateIdc[i].size() ) xConfirmPara( m_constantPicRateIdc[i][j] < 0 || m_constantPicRateIdc[i][j] > 3, "constant_pic_rate_idc must be more than or equal to 0 and less than 4" ); if ( j < m_avgPicRate [i].size() ) xConfirmPara( m_avgPicRate[i][j] < 0 || m_avgPicRate[i][j] > 65535, "avg_pic_rate must be more than or equal to 0 and less than 65536" ); } } // todo: replace value of 100 with requirement in spec for(Int i = 0; i < MAX_NUM_LAYERS; i++ ) { for (Int j = 0; j < MAX_NUM_LAYERS; j++) { if ( j < m_minSpatialSegmentOffsetPlus1[i].size() ) xConfirmPara( m_minSpatialSegmentOffsetPlus1[i][j] < 0 || m_minSpatialSegmentOffsetPlus1[i][j] > 100, "min_spatial_segment_offset_plus1 must be more than or equal to 0 and less than 101" ); if ( j < m_minHorizontalCtuOffsetPlus1[i] .size() ) xConfirmPara( m_minHorizontalCtuOffsetPlus1[i][j] < 0 || m_minHorizontalCtuOffsetPlus1[i][j] > 100, "min_horizontal_ctu_offset_plus1 must be more than or equal to 0 and less than 101" ); } } #endif xConfirmPara(!m_TransquantBypassEnableFlag && m_CUTransquantBypassFlagForce, "CUTransquantBypassFlagForce cannot be 1 when TransquantBypassEnableFlag is 0"); xConfirmPara(m_log2ParallelMergeLevel < 2, "Log2ParallelMergeLevel should be larger than or equal to 2"); if (m_framePackingSEIEnabled) { xConfirmPara(m_framePackingSEIType < 3 || m_framePackingSEIType > 5 , "SEIFramePackingType must be in rage 3 to 5"); } #if H_MV } } // Check input parameters for Sub-bitstream property SEI message if( m_subBistreamPropSEIEnabled ) { xConfirmPara( (this->m_sbPropNumAdditionalSubStreams != m_sbPropAvgBitRate.size() ) || (this->m_sbPropNumAdditionalSubStreams != m_sbPropHighestSublayerId.size() ) || (this->m_sbPropNumAdditionalSubStreams != m_sbPropMaxBitRate.size() ) || (this->m_sbPropNumAdditionalSubStreams != m_sbPropOutputLayerSetIdxToVps.size() ) || (this->m_sbPropNumAdditionalSubStreams != m_sbPropSubBitstreamMode.size()), "Some parameters of some sub-bitstream not defined"); for( Int i = 0; i < m_sbPropNumAdditionalSubStreams; i++ ) { xConfirmPara( m_sbPropSubBitstreamMode[i] < 0 || m_sbPropSubBitstreamMode[i] > 1, "Mode value should be 0 or 1" ); xConfirmPara( m_sbPropHighestSublayerId[i] < 0 || m_sbPropHighestSublayerId[i] > MAX_TLAYER-1, "Maximum sub-layer ID out of range" ); xConfirmPara( m_sbPropOutputLayerSetIdxToVps[i] < 0 || m_sbPropOutputLayerSetIdxToVps[i] >= MAX_VPS_OUTPUTLAYER_SETS, "OutputLayerSetIdxToVps should be within allowed range" ); } } #endif #undef xConfirmPara if (check_failed) { exit(EXIT_FAILURE); } } /** \todo use of global variables should be removed later */ Void TAppEncCfg::xSetGlobal() { // set max CU width & height g_uiMaxCUWidth = m_uiMaxCUWidth; g_uiMaxCUHeight = m_uiMaxCUHeight; // compute actual CU depth with respect to config depth and max transform size g_uiAddCUDepth = 0; while( (m_uiMaxCUWidth>>m_uiMaxCUDepth) > ( 1 << ( m_uiQuadtreeTULog2MinSize + g_uiAddCUDepth ) ) ) g_uiAddCUDepth++; m_uiMaxCUDepth += g_uiAddCUDepth; g_uiAddCUDepth++; g_uiMaxCUDepth = m_uiMaxCUDepth; // set internal bit-depth and constants g_bitDepthY = m_internalBitDepthY; g_bitDepthC = m_internalBitDepthC; g_uiPCMBitDepthLuma = m_bPCMInputBitDepthFlag ? m_inputBitDepthY : m_internalBitDepthY; g_uiPCMBitDepthChroma = m_bPCMInputBitDepthFlag ? m_inputBitDepthC : m_internalBitDepthC; } Void TAppEncCfg::xPrintParameter() { printf("\n"); #if H_MV for( Int layer = 0; layer < m_numberOfLayers; layer++) { printf("Input File %i : %s\n", layer, m_pchInputFileList[layer]); } #else printf("Input File : %s\n", m_pchInputFile ); #endif printf("Bitstream File : %s\n", m_pchBitstreamFile ); #if H_MV for( Int layer = 0; layer < m_numberOfLayers; layer++) { printf("Reconstruction File %i : %s\n", layer, m_pchReconFileList[layer]); } #else printf("Reconstruction File : %s\n", m_pchReconFile ); #endif #if H_MV xPrintParaVector( "ViewIdVal" , m_viewId ); xPrintParaVector( "ViewOrderIndex", m_viewOrderIndex ); #endif #if H_3D xPrintParaVector( "DepthFlag", m_depthFlag ); printf("Coded Camera Param. Precision: %d\n", m_iCodedCamParPrecision); #endif #if H_MV xPrintParaVector( "QP" , m_fQP ); xPrintParaVector( "LoopFilterDisable", m_bLoopFilterDisable ); xPrintParaVector( "SAO" , m_bUseSAO ); #endif printf("Real Format : %dx%d %dHz\n", m_iSourceWidth - m_confLeft - m_confRight, m_iSourceHeight - m_confTop - m_confBottom, m_iFrameRate ); printf("Internal Format : %dx%d %dHz\n", m_iSourceWidth, m_iSourceHeight, m_iFrameRate ); if (m_isField) { printf("Frame/Field : Field based coding\n"); printf("Field index : %u - %d (%d fields)\n", m_FrameSkip, m_FrameSkip+m_framesToBeEncoded-1, m_framesToBeEncoded ); if (m_isTopFieldFirst) { printf("Field Order : Top field first\n"); } else { printf("Field Order : Bottom field first\n"); } } else { printf("Frame/Field : Frame based coding\n"); printf("Frame index : %u - %d (%d frames)\n", m_FrameSkip, m_FrameSkip+m_framesToBeEncoded-1, m_framesToBeEncoded ); } printf("CU size / depth : %d / %d\n", m_uiMaxCUWidth, m_uiMaxCUDepth ); printf("RQT trans. size (min / max) : %d / %d\n", 1 << m_uiQuadtreeTULog2MinSize, 1 << m_uiQuadtreeTULog2MaxSize ); printf("Max RQT depth inter : %d\n", m_uiQuadtreeTUMaxDepthInter); printf("Max RQT depth intra : %d\n", m_uiQuadtreeTUMaxDepthIntra); printf("Min PCM size : %d\n", 1 << m_uiPCMLog2MinSize); printf("Motion search range : %d\n", m_iSearchRange ); #if H_MV xPrintParaVector( "Intra period", m_iIntraPeriod ); #else printf("Intra period : %d\n", m_iIntraPeriod ); #endif printf("Decoding refresh type : %d\n", m_iDecodingRefreshType ); #if !H_MV printf("QP : %5.2f\n", m_fQP ); #endif printf("Max dQP signaling depth : %d\n", m_iMaxCuDQPDepth); printf("Cb QP Offset : %d\n", m_cbQpOffset ); printf("Cr QP Offset : %d\n", m_crQpOffset); printf("QP adaptation : %d (range=%d)\n", m_bUseAdaptiveQP, (m_bUseAdaptiveQP ? m_iQPAdaptationRange : 0) ); printf("GOP size : %d\n", m_iGOPSize ); printf("Internal bit depth : (Y:%d, C:%d)\n", m_internalBitDepthY, m_internalBitDepthC ); printf("PCM sample bit depth : (Y:%d, C:%d)\n", g_uiPCMBitDepthLuma, g_uiPCMBitDepthChroma ); printf("RateControl : %d\n", m_RCEnableRateControl ); if(m_RCEnableRateControl) { printf("TargetBitrate : %d\n", m_RCTargetBitrate ); printf("KeepHierarchicalBit : %d\n", m_RCKeepHierarchicalBit ); printf("LCULevelRC : %d\n", m_RCLCULevelRC ); printf("UseLCUSeparateModel : %d\n", m_RCUseLCUSeparateModel ); printf("InitialQP : %d\n", m_RCInitialQP ); printf("ForceIntraQP : %d\n", m_RCForceIntraQP ); #if KWU_RC_MADPRED_E0227 printf("Depth based MAD prediction : %d\n", m_depthMADPred); #endif #if KWU_RC_VIEWRC_E0227 printf("View-wise Rate control : %d\n", m_viewWiseRateCtrl); if(m_viewWiseRateCtrl) { printf("ViewWiseTargetBits : "); for (Int i = 0 ; i < m_iNumberOfViews ; i++) printf("%d ", m_viewTargetBits[i]); printf("\n"); } else { printf("TargetBitrate : %d\n", m_RCTargetBitrate ); } #endif } printf("Max Num Merge Candidates : %d\n", m_maxNumMergeCand); #if H_3D printf("BaseViewCameraNumbers : %s\n", m_pchBaseViewCameraNumbers ); printf("Coded Camera Param. Precision: %d\n", m_iCodedCamParPrecision); #if H_3D_VSO printf("Force use of Lambda Scale : %d\n", m_bForceLambdaScaleVSO ); if ( m_bUseVSO ) { printf("VSO Lambda Scale : %5.2f\n", m_dLambdaScaleVSO ); printf("VSO Mode : %d\n", m_uiVSOMode ); printf("VSO Config : %s\n", m_pchVSOConfig ); printf("VSO Negative Distortion : %d\n", m_bAllowNegDist ? 1 : 0); printf("VSO LS Table : %d\n", m_bVSOLSTable ? 1 : 0); printf("VSO Estimated VSD : %d\n", m_bUseEstimatedVSD ? 1 : 0); printf("VSO Early Skip : %d\n", m_bVSOEarlySkip ? 1 : 0); if ( m_bUseWVSO ) printf("Dist. Weights (VSO/VSD/SAD) : %d/%d/%d\n ", m_iVSOWeight, m_iVSDWeight, m_iDWeight ); } #endif //HHI_VSO #endif //H_3D printf("\n"); #if H_MV printf("TOOL CFG General: "); #else printf("TOOL CFG: "); #endif printf("IBD:%d ", g_bitDepthY > m_inputBitDepthY || g_bitDepthC > m_inputBitDepthC); printf("HAD:%d ", m_bUseHADME ); printf("RDQ:%d ", m_useRDOQ ); printf("RDQTS:%d ", m_useRDOQTS ); printf("RDpenalty:%d ", m_rdPenalty ); printf("SQP:%d ", m_uiDeltaQpRD ); printf("ASR:%d ", m_bUseASR ); printf("FEN:%d ", m_bUseFastEnc ); printf("ECU:%d ", m_bUseEarlyCU ); printf("FDM:%d ", m_useFastDecisionForMerge ); printf("CFM:%d ", m_bUseCbfFastMode ); printf("ESD:%d ", m_useEarlySkipDetection ); printf("RQT:%d ", 1 ); printf("TransformSkip:%d ", m_useTransformSkip ); printf("TransformSkipFast:%d ", m_useTransformSkipFast ); printf("Slice: M=%d ", m_sliceMode); if (m_sliceMode!=0) { printf("A=%d ", m_sliceArgument); } printf("SliceSegment: M=%d ",m_sliceSegmentMode); if (m_sliceSegmentMode!=0) { printf("A=%d ", m_sliceSegmentArgument); } printf("CIP:%d ", m_bUseConstrainedIntraPred); #if !H_MV printf("SAO:%d ", (m_bUseSAO)?(1):(0)); #endif printf("PCM:%d ", (m_usePCM && (1<